Abomriga WM (2018) Central North Atlantic (IODP Site U1313) paleoceanography based on a high-resolution dinoflagellate cyst record across the Early–Middle Pleistocene boundary (Marine Isotope Stages 20–18, ~ 810 –741 ka). Unpublished MSc thesis, Brock University.
Google Scholar
Anonymous (1988) Biostratigraphy rejected for Pleistocene subdivisions. Episodes 11:228
Article
Google Scholar
Arrhenius G (1952) Sediment cores from the East Pacific. Swedish Deep-Sea Exped (1947–1948) Repts 5(1):89
Google Scholar
Azzarone M, Ferretti P, Rossi V, Scarponi D, Capraro L, Macrì P, Huntley JW, Faranda C (2018) Early-Middle Pleistocene benthic turnover and oxygen isotope stratigraphy from the Central Mediterranean (Valle di Manche, Crotone Basin, Italy): Data and trends. Data Brief 17:1099–1107
Article
Google Scholar
Balota EJ, Head MJ, Okada M, Suganuma Y, Haneda Y (2021) Paleoceanography and dinoflagellate cyst stratigraphy across the Lower–Middle Pleistocene Subseries (Calabrian–Chibanian Stage) boundary at the Chiba composite section, Japan. Prog Earth Planet Sci (this issue)
Barth AM, Clark PU, Bill NS, Feng H, Pisias NG (2018) Climate evolution across the Mid-Brunhes Transition. Clim Past 14:2071–2087
Article
Google Scholar
Bassinot FC, Labeyrie LD, Vincent E, Quidelleur X, Shackleton NJ, Lancelot Y (1994) The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet Sci Lett 126:91–108
Article
Google Scholar
Bazin L, Landais A, Lemieux-Dudon B, Toyé Mahamadou Kele H, Veres D, Parrenin F, Martinerie P, Ritz C, Capron E, Lipenkov V, Loutre M-F, Raynaud D, Vinther B, Svensson A, Rasmussen SO, Severi M, Blunier T, Leuenberger M, Fischer H, Masson-Delmotte V, Chappellaz J, Wolff E (2013) An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Clim Past 9:1715–1731
Article
Google Scholar
Bereiter B, Eggleston S, Schmitt J, Nehrbass-Ahles C, Stocker TF, Fischer H, Kipfstuhl S, Chappellaz J (2015) Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys Res Lett 42:542–549 https://doi.org/10.1002/2014GL061957
Article
Google Scholar
Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10(4):297–317
Article
Google Scholar
Berger A, Yin Q, Nifenecker H, Poitou J (2017) Slowdown of global surface air temperature increase and acceleration of ice melting. Earth’s Future 5:811–822. https://doi.org/10.1002/2017EF000554
Article
Google Scholar
Berggren WA, Hilgen FJ, Langereis CG, Kent DV, Obradovich JD, Raffi I, Raymo ME, Shackleton NJ (1995) Late Neogene chronology: New perspectives in high-resolution stratigraphy. Geol Soc Am Bull 107:1272–1287
Article
Google Scholar
Bertini A, Toti F, Marino M, Ciaranfi N (2015) Vegetation and climate across the Early–Middle Pleistocene transition at the Montalbano Jonico section (southern Italy). Quat Int 383:74–88
Article
Google Scholar
Björck S, Walker MJC, Cwynar LC, Johnsen S, Knudsen K-L, Lowe JJ, Wohlfarth B, Members INTIMATE (1998) An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. J Quat Sci 13:283–292
Article
Google Scholar
Bosmans JHC, Hilgen FJ, Tuenter E, Lourens LJ (2015) Obliquity forcing of low-latitude climate. Clim Past 11:1335–1346
Article
Google Scholar
Bowen DQ (1988) Quaternary geology: a stratigraphic framework for multidisciplinary work. Pergamon Press, Oxford, p 237
Google Scholar
Butzer KW, Isaac GL (eds) (1975) After the Australopithecines. Mouton, The Hague, p 911
Google Scholar
Capraro L, Asioli A, Backman J, Bertoldi R, Channell JET, Massari F, Rio D (2005) Climatic patterns revealed by pollen and oxygen isotope records across the Matuyama–Brunhes Boundary in the central Mediterranean (southern Italy). In: Head MJ, Gibbard PL (eds) Early–Middle Pleistocene transitions: the land–ocean evidence: Geological Society of London, Special Publication 247, pp 159–182
Google Scholar
Capraro L, Ferretti P, Macrì P, Scarponi D, Fornaciari E, Xian F, Zhou W, Kong X, Boschi V (2018) The 10Be record as a proxy of paleomagnetic reversals and excursions: a Mediterranean perspective. Alpine Mediterr Q 31:173–175
Google Scholar
Capraro L, Ferretti P, Macrì P, Scarponi D, Tateo F, Fornaciari E, Bellini G, Dalan G (2017) The Valle di Manche section (Calabria, Southern Italy): A high resolution record of the Early–Middle Pleistocene transition (MIS 21–MIS 19) in the Central Mediterranean. Quat Sci Rev 165:31–48
Article
Google Scholar
Capraro L, Rio D, Sprovieri R, Channell JET, Vai GB (2004) A candidate section for defining the Lower-Middle Pleistocene boundary. Program and Abstracts, 32nd International Geological Congress, Florence, Italy.
Google Scholar
Capraro L, Tateo F, Ferretti P, Fornaciari E, Macrì P, Scarponi D, Preto N, Xian F, Kong X, Xie X (2019) A Mediterranean perspective on 10Be, sedimentation and climate around the Matuyama/Brunhes boundary: les liaisons dangereuses? Quat Sci Rev 226:106039
Article
Google Scholar
Channell JET (2017) Complexity in Matuyama–Brunhes polarity transitions from North Atlantic IODP/ODP deep-sea sites. Earth Planet Sci Lett 467:43–56
Article
Google Scholar
Channell JET, Hodell DA (2017) Comment on Mark et al. (2017): High-precision 40Ar/39Ar dating of Pleistocene tuffs and temporal anchoring of the Matuyama–Brunhes boundary. Quaternary Geochronology, 39, 1–23. Quat Geochronol 42:56–59
Article
Google Scholar
Channell JET, Hodell DA, Curtis JH (2016) Relative paleointensity (RPI) and oxygen isotope stratigraphy at IODP Site U1308: North Atlantic RPI stack for 1.2–2.2 Ma (NARPI-2200) and age of the Olduvai Subchron. Quat Sci Rev 131:1–19
Article
Google Scholar
Channell JET, Kleiven HF (2000) Geomagnetic palaeointensitites and astrochronological ages for the Matuyama–Brunhes boundary and the boundaries of the Jaramillo Subchron: Palaeomagnetic and oxygen isotope records from ODP Site 983. Phil Trans R Soc Lond Ser A 358:1027–1047
Article
Google Scholar
Channell JET, Singer BS, Jicha BR (2020) Timing of Quaternary geomagnetic reversals and excursions in volcanic and sedimentary archives. Quat Sci Rev 228:1–29
Article
Google Scholar
Chen H-F, Liu Y-C, Chiang C-W, Liu X, Chou Y-M, Pan H-J (2019) China’s historical record when searching for tropical cyclones corresponding to Intertropical Convergence Zone (ITCZ) shifts over the past 2 kyr. Clim Past 15:279–289
Article
Google Scholar
Chen S (2008) The Kuroshio Extension front from satellite sea surface temperature measurements. J Oceanogr 64(6):891–897. https://doi.org/10.1007/s10872-008-0073-6
Article
Google Scholar
Cheng H, Sinha A, Wang X, Cruz FW, Edwards RL (2012) The Global Paleomonsoon as seen through speleothem records from Asia and the Americas. Clim Dyn 39:1045–1062
Article
Google Scholar
Chiang JCH, Friedman AR (2012) Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu Rev Earth Planet Sci 40:383–412
Article
Google Scholar
Ciaranfi N, Head MJ, Marino M (2015) Report of the Field Workshop on the Lower–Middle Pleistocene transition in Italy. Quat Perspect 22(1):12–14
Google Scholar
Cita MB (2008) Summary of Italian marine stages of the Quaternary. Episodes 31:251–254
Article
Google Scholar
Cita MB, Capraro L, Ciaranfi N, Di Stefano E, Lirer F, Maiorano P, Marino M, Raffi I, Rio D, Sprovieri R, Stefanelli S, Vai GB (2008) The Calabrian Stage redefined. Episodes 31:408–419
Article
Google Scholar
Cita MB, Capraro L, Ciaranfi N, Di Stefano E, Marino M, Rio D, Sprovieri R, Vai GB (2006) Calabrian and Ionian: a proposal for the definition of Mediterranean stages for the Lower and Middle Pleistocene. Episodes 29:107–114
Article
Google Scholar
Cohen KM, Finney SC, Gibbard PL, Fan JX (2013, updated) The ICS International Chronostratigraphic Chart. Episodes 36:199–204. Version 2020/01. https://stratigraphy.org/icschart/ChronostratChart2020-01.pdf
Cohen KM, Gibbard PL (2019) Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500. Quat Int 500:20–31
Article
Google Scholar
Cox A, Doell RR, Dalrymple GB (1963) Geomagnetic polarity epochs and Pleistocene geochronometry. Nature 198(4885):1049–1051
Article
Google Scholar
Cox A, Doell RR, Dalrymple GB (1964) Reversals of the Earth’s magnetic field. Science 143:351–352
Article
Google Scholar
Dawkins B (1878) On the evidence afforded by the caves of Great Britain as to the antiquity of Man. J Anthropol Inst G B Irel 7:151–162
Google Scholar
Doell RR, Dalrymple GB (1966) Geomagnetic polarity epochs: a new polarity event and the age of the Brunhes–Matuyama boundary. Science 152:1060–1061
Article
Google Scholar
Elderfield H, Ferretti P, Greaves M, Crowhurst S, McCave IN, Hodell D, Piotrowski AM (2012) Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337:704–709
Article
Google Scholar
Emanuele D, Ferretti P, Palumbo E, Amore FO (2015) Sea-surface dynamics and palaeoenvironmental changes in the North Atlantic Ocean (IODP Site U1313) during Marine Isotope Stage 19 inferred from coccolithophore assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 430:104–117
Article
Google Scholar
Emeis K-C, Sakamoto T, Wehausen R, Brumsack H-J (2000) The sapropel record of the eastern Mediterranean Sea – results of Ocean Drilling Program Leg 160. Palaeogeogr Palaeoclimatol Palaeoecol 158:371–395
Article
Google Scholar
Emiliani C (1955) Pleistocene temperatures. J Geol 63:538–578
Article
Google Scholar
Emiliani C (1966) Paleotemperature analysis of Caribbean cores P6304-8 and P6304-9 and a generalized temperature curve for the past 425,000 years. J Geol 74:109–124
Article
Google Scholar
EPICA Community Members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444:195–198
Article
Google Scholar
Evans ME, Muxworthy AR (2018) A re-appraisal of the proposed rapid Matuyama–Brunhes geomagnetic reversal in the Sulmona Basin, Italy. Geophys J Int 213:1744–1750
Article
Google Scholar
Ferretti P, Crowhurst SJ, Naafs BDA, Barbante C (2015) The marine isotope stage 19 in the mid-latitude North Atlantic Ocean: astronomical signature and intra-interglacial variability. Quat Sci Rev 108:95–110
Article
Google Scholar
Forbes E (1846) On the connexion between the distribution of the existing fauna and flora of the British Isles, and the geological changes which have affected their area, especially during the epoch of the Northern Drift. Mem Geol Surv Great Britain I:336–432
Google Scholar
Ganopolski A, Winkelmann R, Schellnhuber HJ (2016) Critical insolation–CO2 relation for diagnosing past and future glacial inception. Nature 529:200–203
Article
Google Scholar
Giaccio B, Castorina F, Nomade S, Scardia G, Voltaggio M, Sagnotti L (2013) Revised chronology of the Sulmona lacustrine succession, central Italy. J Quat Sci 28:545–551. https://doi.org/10.1002/jqs.2647
Article
Google Scholar
Giaccio B, Regattieri E, Zanchetta G, Nomade S, Renne PR, Sprain CJ, Drysdale RN, Tzedakis PC, Messina P, Scardia G, Sposato A, Bassinot F (2015) Duration and dynamics of the best orbital analogue to the present interglacial. Geology 43(7):603–606
Article
Google Scholar
Glass B, Ericson DB, Heezen BC, Opdyke ND, Glass JA (1967) Geomagnetic reversals and Pleistocene chronology. Nature 216:437–442
Article
Google Scholar
Gradstein FM, Ogg JG, Smith AG (2005) A geologic time scale 2004. Cambridge University Press, Cambridge, p 589 [Imprinted 2004]
Book
Google Scholar
Hamouda ME, Pasquero C, Tziperman E (2021) Decoupling of the Arctic Oscillation and North Atlantic Oscillation in a warmer climate. Nat Clim Chang 11:137–142
Article
Google Scholar
Haneda Y, Okada M, Kubota Y, Suganuma Y (2020b) Millennial-scale hydrographic changes in the northwestern Pacific during marine isotope stage 19: Teleconnections with ice melt in the North Atlantic. Earth Planet Sci Lett 531:1–12 https://doi.org/10.1016/j.epsl.2019.115936
Article
Google Scholar
Haneda Y, Okada M, Kubota Y, Suganuma Y (2020c) Corrigendum to “Millennial-scale hydrographic changes in the northwestern Pacific during marine isotope stage 19: Teleconnections with ice melt in the North Atlantic”. Earth Planet. Sci. Lett. 531 (2020) 115936. Earth Planet Sci Lett 534:1–4 https://doi.org/10.1016/j.epsl.2020.116107
Article
Google Scholar
Haneda Y, Okada M, Suganuama Y, Kitamura T (2020a) A full sequence of the Matuyama–Brunhes geomagnetic reversal in the Chiba composite section, central Japan. Prog Earth Planet Sci 7:44
Article
Google Scholar
Hao Q, Wang L, Oldfield F, Peng S, Qin L, Song Y, Xu B, Qiao Y, Bloemendal J, Guo Z (2012) Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability. Nature 490:393–396
Article
Google Scholar
Harkness R (1869) IV.—On the Middle Pleistocene deposits. Geol Mag 6(66):542–550
Article
Google Scholar
Hays JD, Saito T, Opdyke ND, Burckle LH (1969) Pliocene-Pleistocene sediments of the Equatorial Pacific: their paleomagnetic, biostratigraphic, and climatic record. Geol Soc Am Bull 80:1481–1514
Article
Google Scholar
Head MJ (2019) Formal subdivision of the Quaternary System/Period: present status and future directions. Quat Int 500:32–51
Article
Google Scholar
Head MJ, Aubry M-P, Walker M, Miller KG, Pratt BR (2017) A case for formalizing subseries (subepochs) of the Cenozoic Era. Episodes 40(1):22–27
Article
Google Scholar
Head MJ, Gibbard PL (2005) Early–Middle Pleistocene transitions: an overview and recommendation for the defining boundary. In: Head MJ, Gibbard PL (eds) Early–Middle Pleistocene transitions: the land–ocean evidence: Geological Society of London, Special Publication 247, pp 1–18
Google Scholar
Head MJ, Gibbard PL (2015a) Formal subdivision of the Quaternary System/Period: past, present, and future. Quat Int 383:4–35
Article
Google Scholar
Head MJ, Gibbard PL (2015b) Early–Middle Pleistocene transitions: linking terrestrial and marine realms. Quat Int 389:7–46
Article
Google Scholar
Head MJ, Pillans B, Farquhar SA (2008) The Early–Middle Pleistocene transition: characterization and proposed guide for the defining boundary. Episodes 31:255–259
Article
Google Scholar
Head MJ, Pillans B, Zalasiewicz JA (in press) Formal ratification of subseries for the Pleistocene Series of the Quaternary System. Episodes
Huang W, Wang B, Wright JS, Chen R (2016) On the non-stationary relationship between the Siberian High and Arctic Oscillation. PLoS ONE 11(6):e0158122. https://doi.org/10.1371/journal.pone.0158122
Article
Google Scholar
Hyodo M, Bradak B, Okada M, Katoh S, Kitaba I, Dettman DL, Hayashi H, Kumazawa K, Hirose K, Kazaoka O, Shikoku K, Kitamura A (2017) Millennial-scale northern Hemisphere Atlantic-Pacifc climate teleconnections in the earliest Middle Pleistocene. Sci Rep 7:10036
Article
Google Scholar
Hyodo M, Katoh S, Kitamura A, Takasaki K, Matsushita H, Kitaba I, Tanaka I, Nara M, Matsuzaki T, Dettman DL, Okada M (2016) High resolution stratigraphy across the early–middle Pleistocene boundary from a core of the Kokumoto Formation at Tabuchi, Chiba prefecture, Japan. Quat Int 397:16–26
Article
Google Scholar
Ito M, Katsura Y (1992) Inferred glacio-eustatic control for high-frequency depositional sequences of the Plio-Pleistocene Kazusa Group, a forearc basin fill in Boso Peninsula, Japan. Sediment Geol 80:67–75
Article
Google Scholar
Izumi K, Haneda Y, Suganuma Y, Okada M, Kubota Y, Nishida N, Kawamata M, Matsuzaki T (2021) Multiproxy sedimentological and geochemical analyses across the Lower–Middle Pleistocene boundary: chemostratigraphy and paleoenvironment of the Chiba composite section, central Japan. Prog Earth Planet Sci 8:10
Article
Google Scholar
Jansen JHF, Kuijpers A, Troelstra SR (1986) A Mid-Brunhes climatic event: long-term changes in global atmosphere and ocean circulation. Science 232:619–622
Article
Google Scholar
Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793–796
Article
Google Scholar
Kameo K, Kubota Y, Haneda Y, Suganuma Y, Okada M (2020) Calcareous nannofossil biostratigraphy of the Lower–Middle Pleistocene boundary of the GSSP, Chiba composite section in the Kokumoto Formation, Kazusa Group, central Japan, and implications for sea-surface environmental changes. Prog Earth Planet Sci 7:36
Article
Google Scholar
Kawai N (1951) Magnetic polarization of Tertiary rocks in Japan. J Geophys Res 56(1):73–79
Article
Google Scholar
Kawamura K, Abe-Ouchi A, Motoyama H, Ageta Y, Aoki S, Azuma N, Fujii Y, Fujita K, Fujita S, Fukui K, Furukawa T, Furusaki A, Goto-Azuma K, Greve R, Hirabayashi M, Hondoh T, Hori A, Horikawa S, Horiuchi K, Igarashi M, Iizuka Y, Kameda T, Kanda H, Kohno M, Kuramoto T, Matsushi Y, Miyahara M, Miyake T, Miyamoto A, Nagashima Y, Nakayama Y, Nakazawa T, Nakazawa F, Nishio F, Obinata I, Ohgaito R, Oka A, Okuno J, Okuyama J, Oyabu I, Parrenin F, Pattyn F, Saito F, Saito T, Saito T, Sakurai T, Sasa K, Seddik H, Shibata Y, Shinbori K, Suzuki K, Suzuki T, Takahashi A, Takahashi K, Takahashi S, Takata M, Tanaka Y, Uemura R, Watanabe G, Watanabe O, Yamasaki T, Yokoyama K, Yoshimori M, Yoshimoto T (2017) State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling. Sci Adv 3:e1600446
Article
Google Scholar
Kazaoka O, Suganuma Y, Okada M, Kameo K, Head MJ, Yoshida T, Kameyama S, Nirei H, Aida N, Kumai H (2015) Stratigraphy of the Kazusa Group, Central Japan: a high-resolution marine sedimentary sequence from the Lower to Middle Pleistocene. Quat Int 383:116–135
Article
Google Scholar
Kida S, Mitsudera H, Aoki S, Guo X, Ito S, Kobashi F, Komori N, Kubokawa A, Miyama T, Morie R, Nakamura H, Nakamura T, Nakano H, Nishigaki H, Nonaka M, Sasaki H, Sasaki YN, Suga T, Sugimoto S, Taguchi B, Takaya K, Tozuka T, Tsujino H, Usui N (2015) Oceanic fronts and jets around Japan: a review. J Oceanogr 71:469–497. https://doi.org/10.1007/s10872-015-0283-7
Article
Google Scholar
Kleinen T, Mikolajewicz U, Brovkin V (2020) Terrestrial methane emissions from the Last Glacial Maximum to the preindustrial period. Clim Past 16:575–595
Article
Google Scholar
Kleiven HF, Hall IR, McCave IN, Knorr G, Jansen E (2011) Coupled deep-water flow and climate variability in the middle Pleistocene North Atlantic. Geology 39:343–346
Article
Google Scholar
Komatsu K, Hiroe Y (2019) Structure and impact of the Kuroshio nutrient stream. In: Nagai T, Saito H, Suzuki K, Takahashi M. (eds) Kuroshio Current: physical, biogeochemical, and ecosystem dynamics. Geophys Monogr 243:85–104
Konijnendijk TYM, Ziegler M, Lourens LJ (2014) Chronological constraints on Pleistocene sapropel depositions from high-resolution geochemical records of ODP Sites 967 and 968. Newsl Stratigr 47(3):263–282
Article
Google Scholar
Kubota Y, Haneda Y, Kameo K, Itaki T, Hayashi H, Shikoku K, Izumi K, Head MJ, Suganuma Y, Okada M (2021) Paleoceanography of the northwestern Pacific across the Early–Middle Pleistocene boundary (Marine Isotope Stages 20–18). Prog Earth Planet Sci 8(29):1–24
Kumar A, Lo EYM, Switzer AD (2019) Relationship between East Asian cold surges and synoptic patterns: A new coupling framework. Climate 7:30. https://doi.org/10.3390/cli7020030
Article
Google Scholar
Laskar J, Fienga A, Gastineau M, Manche H (2011) La2010: a new orbital solution for the long-term motion of the Earth. Astron Astrophys 532:A89 https://doi.org/10.1051/0004-6361/201116836
Article
Google Scholar
Laskar J, Joutel F, Boudin F (1993) Orbital, precessional and insolation quantities for the Earth from –20 Myr to + 10 Myr. Astron Astrophys 270:522–533
Google Scholar
Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428(1):261–285 https://doi.org/10.1051/0004-6361:20041335
Article
Google Scholar
Lisiecki LE (undated) MIS boundary ages from http://www.lorraine-lisiecki.com/LR04_MISboundaries.txt. Accessed 18 May 2020.
Lisiecki LE, Raymo ME (2005) A Plio-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20 PA1003:17
Google Scholar
Lisiecki LE, Raymo ME (2009) Diachronous benthic δ18O responses during late Pleistocene terminations. Paleoceanography 24:PA3210 https://doi.org/10.1029/2009PA001732
Article
Google Scholar
Lisiecki LE, Stern JV (2016) Regional and global benthic δ18O stacks for the last glacial cycle. Paleoceanography 31(10):1368–1394
Article
Google Scholar
Liu C, Liao X, Qiu J, Yang Y, Feng X, Allan RP, Cao N, Long J, Xu J (2020) Observed variability of intertropical convergence zone over 1998–2018. Environ Res Lett 15:104011. https://doi.org/10.1088/1748-9326/aba033
Article
Google Scholar
Liu Y, Lo L, Shi Z, Wei K-Y, Chou C-J, Chen Y-C, Chuang C-K, Wu C-C, Mii H-S, Peng Z, Amakawa H, Burr GS, Lee S-Y, DeLong KL, Elderfield H, Shen C-C (2015) Obliquity pacing of the western Pacific Intertropical Convergence Zone over the past 282,000 years. Nat Commun 6:10018. https://doi.org/10.1038/ncomms10018
Article
Google Scholar
Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Paver CR, Reagan JR, Johnson DR, Hamilton M, Seidov D (2013) World Ocean Atlas 2013, Volume 1: Temperature. Levitus S (ed), Mishonov A (technical ed) NOAA Atlas NESDIS 73, p 40
Google Scholar
Lourens LJ (2004) Revised tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and implications for the δ18O, tephra, calcareous nannofossil, and geomagnetic reversal chronologies of the past 1.1 Myr. Paleoceanography 19:PA3010
Article
Google Scholar
Löwemark L, Werner F (2001) Dating errors in high-resolution stratigraphy: a detailed X-ray radiograph and AMS-14C study of Zoophycos burrows. Mar Geol 177:191–198
Article
Google Scholar
Lyell C (1839) Éléments de géologie. Pitois-Levrault et Co., Paris
Google Scholar
Lyell C (1863) The geological evidences of the antiquity of Man, 1st edn. John Murray, London, pp i–xii, 1–514
Google Scholar
Lyell C (1865) Elements of geology, 6th edn. John Murray, London, pp i–xvi, 1–794
Google Scholar
Lyell C (1873) The geological evidences of the antiquity of Man, 4th edn. John Murray, London, pp i–xviii, 1–572
Google Scholar
Macrì P, Capraro L, Ferretti P, Scarponi D (2018) A high-resolution record of the Matuyama–Brunhes transition from the Mediterranean region: The Valle di Manche section (Calabria, Southern Italy). Phys Earth Planet Inter 278:1–15
Article
Google Scholar
Maiorano P, Bertini A, Capolongo D, Eramo G, Gallicchio S, Girone A, Pinto D, Toti F, Ventruti G, Marino M (2016) Climate signatures through Marine Isotope Stage 19 in the Montalbano Jonico section (Southern Italy): A land–sea perspective. Palaeogeogr Palaeoclimatol Palaeoecol 461:341–361
Article
Google Scholar
Mangerud J, Andersen ST, Berglund BE, Donner JJ (1974) Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 4:109–128
Google Scholar
Marino M, Bertini A, Ciaranfi N, Aiello G, Barra D, Gallicchio S, Girone A, La Perna R, Lirer F, Maiorano P, Petrosino P, Toti F (2015) Paleoenvironmental and climatostratigraphic insights for Marine Isotope Stage 19 (Pleistocene) at the Montalbano Jonico succession, South Italy. Quat Int 383:104–115
Article
Google Scholar
Marino M, Girone A, Gallicchio S, Herbert T, Addante M, Bazzicalupo P, Quivelli O, Bassinot F, Bertini A, Nomade S, Ciaranfi N, Maiorano P (2020) Climate variability during MIS 20–18 as recorded by alkenone-SST and calcareous plankton in the Ionian Basin (central Mediterranean). Palaeogeogr Palaeoclimatol Palaeoecol 560:110027
Article
Google Scholar
Mark DF, Renne PR, Dymock R, Smith VC, Simon JI, Morgan LE, Staff RA, Ellis BS (2017) High-precision 40Ar/39Ar dating of Pleistocene tuffs and temporal anchoring of the Matuyama-Brunhes boundary. Quat Geochronol 39:1–23
Article
Google Scholar
Matuyama M (1929) On the direction of magnetization of basalt in Japan, Tyosen and Manchuria. Proc Imperial Acad (Tokyo) 5:203–205
Article
Google Scholar
Miao J, Wang T, Wang H (2020) Interdecadal variations of the East Asian winter monsoon in CMIP5 preindustrial simulations. J Clim 33:559–575
Article
Google Scholar
Moreno-Chamarro E, Marshall J, Delworth TL (2020) Linking ITCZ migrations to the AMOC and North Atlantic/Pacific SST decadal variability. J Clim 33:893–905
Article
Google Scholar
Moscariello A, Ravazzi C, Brauer A, Mangili C, Chiesa S, Rossi S, de Beaulieu JL, Reille M (2000) A long lacustrine record from the Piànico-Sèllere basin (Middle–Late Pleistocene, Northern Italy). Quat Int 73–74:47–68
Article
Google Scholar
NASA Earth Observations (2020). NEO: NASA Earth Observations. https://neo.sci.gsfc.nasa.gov
Ninkovich D, Opdyke N, Heezen BC, Foster JH (1966) Paleomagnetic stratigraphy, rates of deposition and tephrachronology in North Pacific deep-sea sediments. Earth Planet Sci Lett 1:476–492
Article
Google Scholar
Nishida N, Kazaoka O, Izumi K, Suganuma Y, Okada M, Yoshida T, Ogitsu I, Nakazato H, Kameyama S, Kagawa A, Morisaki M, Nirei H (2016) Sedimentary processes and depositional environments of a continuous marine succession across the Lower–Middle Pleistocene boundary: Kokumoto Formation, Kazusa Group, central Japan. Quat Int 397:3–15
Article
Google Scholar
Nomade S, Bassinot F, Marino M, Simon Q, Dewilde F, Maiorano P, Isguder G, Blamart D, Girone A, Scao V, Pereira A, Toti F, Bertini A, Combourieu-Nebout N, Peral M, Bourles DL, Petrosino P, Gallicchio S, Ciaranfi N (2019) High-resolution foraminifer stable isotope record of MIS 19 at Montalbano Jonico, southern Italy: A window into Mediterranean climatic variability during a low-eccentricity interglacial. Quat Sci Rev 205:106–125
Article
Google Scholar
Nowaczyk NR, Haltia EM, Ulbricht D, Wennrich V, Sauerbrey MA, Rosén P, Vogel H, Francke A, Meyer-Jacob C, Andreev AA, Lozhkin AV (2013) Chronology of Lake El’gygytgyn sediments – a combined magnetostratigraphic, palaeoclimatic and orbital tuning study based on multi-parameter analyses. Clim Past 9:2413–2432. https://doi.org/10.5194/cp-9-2413-2013
Article
Google Scholar
Obase T, Abe-Ouchi A (2019) Abrupt Bølling-Allerød warming simulated under gradual forcing of the last deglaciation. Geophys Res Lett 46:11,397–11,405. https://doi.org/10.1029/2019GL084675
Okada M, Suganuma Y (2018) Report on the PO-5 field trip to the GSSP candidate for the Middle Pleistocene Subseries on the Yoro River (Chiba Section, Japan), held during the XIX INQUA Congress 2015, 3–4 August 2015. Quat Perspect 25(2):22
Google Scholar
Okada M, Suganuma Y, Haneda Y, Kazaoka O (2017) Paleomagnetic direction and paleointensity variations during the Matuyama-Brunhes polarity transition from a marine succession in the Chiba composite section of the Boso Peninsula, central Japan. Earth Planets Space 69:45. https://doi.org/10.1186/s40623-017-0627-1
Article
Google Scholar
Opdyke ND, Glass B, Hays JD, Foster J (1966) Paleomagnetic study of Antarctic deep-sea cores. Science 154(3748):349–357
Article
Google Scholar
Osborn HF (1900) The geological and faunal relations of Europe and America during the Tertiary Period and the theory of the successive invasions of an African fauna. Sci New Ser 11(276):561–574
Google Scholar
Past Interglacials Working Group of PAGES (2016) Interglacials of the last 800,000 years. Rev Geophys 54:162–219. https://doi.org/10.1002/2015RG000482
Article
Google Scholar
Pedro JB, Jochum M, Buizert C, He F, Barker S, Rasmussen SO (2018) Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling. Quat Sci Rev 192:27–46
Article
Google Scholar
Penck A, Brückner E (1909) Die Alpen im Eiszeitalter. C H Tauchnitz, Leipzig
Google Scholar
Peng X, Ao H, Xiao G, Qiang X, Sun Q (2020) The Early-Middle Pleistocene transition of Asian summer monsoon. Palaeogeogr Palaeoclimatol Palaeoecol 545:109636
Article
Google Scholar
Pillans B (2003) Subdividing the Pleistocene using the Matuyama–Brunhes boundary (MBB): an Australasian perspective. Quat Sci Rev 22:1569–1577
Article
Google Scholar
Pinti DL, Rouchon V, Quidelleur X, Gillot P-Y, Chiesa S, Ravazzi C (2007) Comment: “Tephrochronological dating of varved interglacial lake deposits from Piànico-Sèllere (Southern Alps, Italy) to around 400 ka” by Achim Brauer, Sabine Wulf, Clara Mangili and Andrea Moscariello, Journal of Quaternary Science 22: 85–96. J Quat Sci 22(4):411–414
Pinti DL, Quidelleur X, Chiesa S, Ravazzi C, Gillot P-Y (2001) K-Ar dating of an early Middle Pleistocene distal tephra in the interglacial varved succession of Piànico-Sèllere (Southern Alps, Italy). Earth Planet Sci Lett 188:1–7
Article
Google Scholar
Pol K, Masson-Delmotte V, Johnsen S, Bigler M, Cattani O, Durand G, Falourd S, Jouzel J, Minster B, Parrenin F, Ritz C, Steen-Larsen HC, Stenni B (2010) New MIS 19 EPICA Dome C high-resolution deuterium data: hints for a problematic preservation of climate variability in the “oldest ice”. Earth Planet Sci Lett 298:95–103
Article
Google Scholar
Prell WL, Imbrie J, Martinson DG, Morley JJ, Pisias NG, Shackleton NJ, Streeter HF (1986) Graphic correlation of oxygen isotope stratigraphy. Application to the Late Quaternary. Paleoceanography 1:137–162
Article
Google Scholar
Prokopenko AA, Hinnov LA, Williams DF, Kuzmin MI (2006) Orbital forcing of continental climate during the Pleistocene: a complete astronomically tuned climatic record from Lake Baikal, SE Siberia. Quat Sci Rev 25:3431–3457
Article
Google Scholar
Qiu B (2019) Kuroshio and Oyashio currents. In: Cochran SJK, Bokuniewicz HJ, Yager PL (eds) Encyclopedia of Ocean Sciences, 3rd edn. Academic, London, pp 384–394
Chapter
Google Scholar
Quivelli O, Marino M, Rodrigues T, Girone A, Maiorano P, Abrantes F, Salgueiro E, Bassinot F (2020) Surface and deep water variability in the Western Mediterranean (ODP Site 975) during insolation cycle 74: High-resolution calcareous plankton and molecular biomarker signals. Palaeogeogr Palaeoclimatol Palaeoecol 542:109583
Article
Google Scholar
Railsback LB, Gibbard PL, Head MJ, Voarintsoa NRG, Toucanne S (2015) An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quat Sci Rev 111:94–106
Article
Google Scholar
Regattieri E, Giaccio B, Mannella G, Zanchetta G, Nomade S, Tognarelli A, Perchiazzi N, Vogel H, Boschi C, Drysdale RN, Wagner B, Gemelli M, Tzedakis PC (2019) Frequency and dynamics of millennial-scale variability during Marine Isotope Stage 19: Insights from the Sulmona Basin (central Italy). Quat Sci Rev 214:28–43
Article
Google Scholar
Remane J, Bassett MG, Cowie JW, Gohrbandt KH, Lane HR, Michelsen O, Wang N, with the cooperation of members of ICS (1996) Revised guidelines for the establishment of global chronostratigraphic standards by the International Commission on Stratigraphy (ICS). Episodes 19:77–81
Article
Google Scholar
Richmond GM (1996) The INQUA-approved provisional Lower–Middle Pleistocene boundary. In: Turner C (ed) The early Middle Pleistocene in Europe. Balkema, Rotterdam, pp 319–327
Google Scholar
Roberts AP, Winklhofer M (2004) Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modeling. Earth Planet Sci Lett 227:345–359
Article
Google Scholar
Rossi V, Azzarone M, Capraro L, Faranda C, Ferretti P, Macrì P, Scarponi D (2018) Dynamics of benthic marine communities across the Early-Middle Pleistocene boundary in the Mediterranean region (Valle di Manche, Southern Italy): Biotic and stratigraphic implications. Palaeogeogr Palaeoclimatol Palaeoecol 495:127–138
Article
Google Scholar
Roulleau E, Pinti DL, Rouchon V, Quidelleur X, Gillot PY (2009) Tephro-chronostratigraphy of the lacustrine interglacial record of Piànico, Italian Southern Alps: Identifying the volcanic sources using radiogenic isotopes and trace elements. Quat Int 204:31–43
Article
Google Scholar
Sagnotti L, Cascella A, Ciaranfi N, Macrì P, Maiorano P, Marino M, Taddeucci J (2010) Rock magnetism and palaeomagnetism of the Montalbano Jonico section (Italy): evidence for late diagenetic growth of greigite and implications for magnetostratigraphy. Geophys J Int 180:1049–1066
Article
Google Scholar
Sagnotti L, Giaccio B, Liddicoat JC, Caricchi C, Nomade S, Renne PR (2018) On the reliability of the Matuyama–Brunhes record in the Sulmona Basin—Comment to ‘A reappraisal of the proposed rapid Matuyama–Brunhes geomagnetic reversal in the Sulmona Basin, Italy’ by Evans and Muxworthy (2018). Geophys J Int 216:296–301
Article
Google Scholar
Sagnotti L, Giaccio B, Liddicoat JC, Nomade S, Renne PR, Scardia G, Sprain CJ (2016) How fast was the Matuyama-Brunhes geomagnetic reversal? A new sub-centennial record from the Sulmona Basin, central Italy. Geophys J Int 204:798–812
Sagnotti L, Scardia G, Giaccio B, Liddicoat JC, Nomade S, Renne PR, Sprain CJ (2014) Extremely rapid directional change during Matuyama-Brunhes geomagnetic polarity reversal. Geophys J Int 199:1110–1124
Article
Google Scholar
Salvador A (ed) (1994) International Stratigraphic Guide: a guide to stratigraphic classification, terminology, and procedure, 2nd edn. International Subcommission on Stratigraphic Classification of IUGS International Commission on Stratigraphy and The Geological Society of America, Boulder, p xix + 214
Sánchez Goñi MF, Desprat S, Fletcher WJ, Morales-Molino C, Naughton F, Oliveira D, Urrego DH, Zorzi C (2018) Pollen from the deep-sea: A breakthrough in the mystery of the Ice Ages. Front Plant Sci 9:38. https://doi.org/10.3389/fpls.2018.00038
Article
Google Scholar
Sánchez-Goñi MF, Ferretti P, Polanco-Martínez JM, Rodrigues T, Alonso-García M, Rodríguez-Tovar FJ, Dorador J, Desprat S (2019) Pronounced northward shift of the westerlies during MIS 17 leading to the strong 100-kyr ice age cycles. Earth Planet Sci Lett 511:117–129
Article
Google Scholar
Sánchez-Goñi MF, Rodrigues T, Hodell DA, Polanco-Martinez JM, Alonso-Garcia M, Hernandez-Almeida I, Desprat S, Ferretti P (2016) Tropically-driven climate shifts in southwestern Europe during MIS 19, a low eccentricity interglacial. Earth Planet Sci Lett 448:81–93
Article
Google Scholar
Scardia G, Muttoni G (2009) Paleomagnetic investigations on Pleistocene lacustrine sequence of Piànico-Sèllere (northern Italy). Quat Int 204:44–53
Article
Google Scholar
Schlitzer R (2015) Ocean data view. http://odv.awi.de.
Google Scholar
Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513:45–53
Article
Google Scholar
Shackleton NJ (1969) The last interglacial in the marine and terrestrial record. Proc R Soc Lond B 174:135–154
Article
Google Scholar
Shackleton NJ (2006) Formal Quaternary stratigraphy – What do we expect and need? Quat Sci Rev 25:3458–3462
Article
Google Scholar
Shackleton NJ, Hall MA, Vincent E (2000) Phase relationships between millennial scale events 64,000–24,000 years ago. Paleoceanogr 15:565–569
Article
Google Scholar
Shackleton NJ, Opdyke ND (1973) Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific Core V28-238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quat Res 3:39–55
Article
Google Scholar
Shackleton NJ, Sánchez-Goñi MF, Pailler D, Lancelot Y (2003) Marine Isotope Substage 5e and the Eemian Interglacial. Glob Planet Chang 36:151–155
Article
Google Scholar
Simon Q, Bourlès DL, Bassinot F, Nomade S, Marino M, Ciaranfi N, Girone A, Maiorano P, Thouveny N, Choy S, Dewilde F, Scao V, Isguder G, Blamart D, Team ASTER (2017) Authigenic 10Be/9Be ratio signature of the Matuyama–Brunhes boundary in the Montalbano Jonico marine succession. Earth Planet Sci Lett 460:255–267
Article
Google Scholar
Simon Q, Suganuma Y, Okada M, Haneda Y, Team ASTER (2019) High-resolution 10Be and paleomagnetic recording of the last polarity reversal in the Chiba composite section: Age and dynamics of the Matuyama–Brunhes transition. Earth Planet Sci Lett 519:92–100
Article
Google Scholar
Singer BS, Jicha BR, Mochizuki N, Coe RS (2019) Synchronizing volcanic, sedimentary, and ice core records of Earth’s last magnetic polarity reversal. Sci Adv 5:eaaw4621
Article
Google Scholar
Stocker TF, Johnsen SJ (2003) A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18(Nov):11–11. https://doi.org/10.1029/2003PA000920
Article
Google Scholar
Studer AS, Sigman DM, Martínez-García A, Thöle LM, Michel E, Jaccard SL, Lippold JA, Mazaud A, Wang XT, Robinson LF, Adkins JF, Haug GH (2018) Increased nutrient supply to the Southern Ocean during the Holocene and its implications for the pre-industrial atmospheric CO2 rise. Nat Geosci 11:756–760
Article
Google Scholar
Suganuma Y, Haneda Y, Kameo K, Kubota Y, Hayashi H, Itaki T, Okuda M, Head MJ, Sugaya M, Nakazato H, Igarashi A, Shikoku K, Hongo M, Watanabe M, Satoguchi Y, Takeshita Y, Nishida N, Izumi K, Kawamura K, Kawamata M, Okuno J, Yoshida T, Ogitsu I, Yabusaki H, Okada M (2018) Paleoclimatic and paleoceanographic records of Marine Isotope Stage 19 at the Chiba composite section, central Japan: A reference for the Early–Middle Pleistocene boundary. Quat Sci Rev 191:406–430
Article
Google Scholar
Suganuma Y, Head MJ, Sagawa T, eds (2021) Stratigraphy and paleoclimatic/paleoenviromental evolution across the Early–Middle Pleistocene transition in the Chiba composite section, Japan, and other reference sections in East Asia. Prog Earth Planet Sci (this issue).
Suganuma Y, Okada M, Head MJ, Kameo K, Haneda Y, Hayashi H, Irizuki T, Itaki T, Izumi K, Kubota Y, Nakazato H, Nishida N, Okuda M, Satoguchi Y, Simon Q, Takeshita Y, the Chiba composite section community members (in press) Formal ratification of the Global Boundary Stratotype Section and Point (GSSP) for the Chibanian Stage and Middle Pleistocene Subseries of the Quaternary System: the Chiba Section, Japan. Episodes. https://doi.org/10.18814/epiiugs/2020/020080
Suganuma Y, Okada M, Horie K, Kaiden H, Takehara M, Senda R, Kimura J, Haneda Y, Kawamura K, Kazaoka O, Head MJ (2015) Age of Matuyama–Brunhes boundary constrained by U-Pb zircon dating of a widespread tephra. Geology 43:491–494
Article
Google Scholar
Suganuma Y, Okuno J, Heslop D, Roberts AP, Yamazaki T, Yokoyama Y (2011) Post-depositional remanent magnetization lock-in for marine sediments deduced from 10Be and paleomagnetic records through the Matuyama–Brunhes boundary. Earth Planet Sci Lett 311:39–52
Article
Google Scholar
Suganuma Y, Yokoyama Y, Yamazaki T, Kawamura K, Horng C-S, Matsuzaki H (2010) 10Be evidence for delayed acquisition of remanent magnetization in marine sediments: Implication for a new age for the Matuyama–Brunhes boundary. Earth Planet Sci Lett 296:443–450
Article
Google Scholar
Sugimoto S, Hanawa K (2009) Decadal and interdecadal variations of the Aleutian low activity and their relation to upper oceanic variations over the North Pacific. J Meteorological Soc Japan 87:601–614. https://doi.org/10.2151/jmsj.87.601
Article
Google Scholar
Takao A, Nakamura K, Takaoka S, Fuse M, Oda Y, Shimano Y, Nishida N, Ito M (2020) Spatial and temporal variations in depositional systems in the Kazusa Group: insights into the origins of deep-water massive sandstones in a Pleistocene forearc basin on the Boso Peninsula, Japan. Prog Earth Planet Sci 7:37
Article
Google Scholar
Takeshita Y, Matsushima N, Teradaira H, Uchiyama T, Kumai H (2016) A marker tephra bed close to the Middle Pleistocene boundary: distribution of the Ontake-Byakubi tephra in central Japan. Quat Int 397:27–38 https://doi.org/10.1016/j.quaint.2015.03.054
Article
Google Scholar
Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300
Article
Google Scholar
Toti F, Bertini A, Girone A, Marino M, Maiorano P, Bassinot F, Combourieu-Nebout N, Nomade S, Buccianti A (2020) Marine and terrestrial climate variability in the western Mediterranean Sea during marine isotope stages 20 and 19. Quat Sci Rev 243:106486
Article
Google Scholar
Trotta S, Marino M, Maiorano P, Girone A (2019) Climate variability through MIS 20-MIS 19 in core KC01B, Ionian Basin (central Mediterranean Sea). Alp Med Quat 32(2):1–15
Google Scholar
Tzedakis PC (2010) The MIS 11–MIS 1 analogy, southern European vegetation atmospheric methane and the early anthropogenic hypothesis. Clim Past 6:131–144
Article
Google Scholar
Tzedakis PC, Channell JET, Hodell DA, Kleiven HF, Skinner LC (2012b) Determining the natural length of the current interglacial. Nat Geosci 5:138–141
Article
Google Scholar
Tzedakis PC, Wolff EW, Skinner LC, Brovkin V, Hodell DA, McManus JF, Raynaud D (2012a) Can we predict the duration of an interglacial? Clim Past 8:1473–1485
Article
Google Scholar
Valet J-P, Bassinot F, Simon Q, Savranskaia T, Thouveny N, Bourlés DL, Villedieu A (2019) Constraining the age of the last geomagnetic reversal from geochemical and magnetic analyses of Atlantic, Indian, and Pacific Ocean sediments. Earth Planet Sci Lett 506:323–331
Article
Google Scholar
van Kolfschoten T (2020) Letter from Professor Thijs van Kolfschoten, President, INQUA to Professor Dr. Qiuming Cheng, President, IUGS; dated January 21, 2020. SQS website, http://quaternary.stratigraphy.org
Vavrus SJ, He F, Kutzbach JE, Ruddiman WF, Tzedakis PC (2018) Glacial inception in Marine Isotope Stage 19: An orbital analog for a natural Holocene climate. Sci Rep 8:10213. https://doi.org/10.1038/s41598-018-28419-5
Article
Google Scholar
Wang Y, Yang X, Hu J (2016) Position variability of the Kuroshio Extension sea surface temperature front. Acta Oceanol Sin 35(7):30–35. https://doi.org/10.1007/s13131-016-0909-7
Article
Google Scholar
Watkins ND (1972) Review of the development of the geomagnetic polarity time scale and discussion of prospects for its finer definition. Geol Soc Am Bull 83:551–574
Article
Google Scholar
Wei Y, Zhang R-H, Wang H (2017) Mesoscale wind stress–SST coupling in the Kuroshio extension and its effect on the ocean. J Oceanogr 73:785–798
Article
Google Scholar
Wennrich V, Minyuk PS, Borkhodoev V, Francke A, Ritter B, Nowaczyk NR, Sauerbrey MA, Brigham-Grette J, Melles M (2014) Pliocene to Pleistocene climate and environmental history of Lake El’gygytgyn, Far East Russian Arctic, based on high-resolution inorganic geochemistry data. Clim Past 10:1381–1399
Article
Google Scholar
Westerhold T, Marwan N, Drury AJ, Liebrand D, Agnini C, Anagnostou E, Barnet JSK, Bohaty SM, De Vleeschouwer D, Florindo F, Frederichs T, Hodell DA, Holbourn AE, Kroon D, Lauretano V, Littler K, Lourens LJ, Lyle M, Pälike H, Röhl U, Tian J, Wilkens RH, Wilson PA, Zachos JC (2020) An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369:1383–1387
Article
Google Scholar
Wie J, Moon B-K, Lee H (2019) Variation of the relationship between Arctic Oscillation and East Asian winter monsoon in CCSM3 simulation. J Korean Earth Sci Soc 40(1):1–8
Article
Google Scholar
Yin QZ (2013) Insolation-induced mid-Brunhes transition in Southern Ocean ventilation and deep-ocean temperature. Nature 494:222–225
Article
Google Scholar
Yin QZ, Berger A (2015) Interglacial analogues of the Holocene and its natural near future. Quat Sci Rev 120:28–46. https://doi.org/10.1016/j.quascirev.2015.04.008
Article
Google Scholar
Yu P, Zhang L, Liu M, Zhong Q, Zhang Y, Li X (2020) A comparison of the strength and position variability of the Kuroshio Extension SST front. Acta Oceanol Sin 39(5):26–34. https://doi.org/10.1007/s13131-020-1567-3
Article
Google Scholar
Zeileis A, Kleiber C, Krämer W, Hornik K (2003) Testing and dating of structural changes in practice. Comput Stat Data Anal 44:109–123
Article
Google Scholar
Zeileis A, Leisch F, Hornik K, Kleiber C (2002) Strucchange: an R package for testing for structural change in linear regression models. J Stat Softw 7:1–38
Article
Google Scholar
Zeuner FE (1935) The Pleistocene chronology of Central Europe. Geol Mag 72:350–376
Article
Google Scholar
Zeuner FE (1945) The Pleistocene Period: Its climate, chronology and faunal successions. Ray Soc London 130:i–xii + 1–322
Google Scholar
Zhang Y, Wu N, Li F, Hao Q, Dong Y, Zhang D, Lu H (2020) Eco-environmental changes in the Chinese Loess Plateau during low-eccentricity interglacial Marine Isotope Stage 19. Sci China Earth Sci 63:1408–1421 https://doi.org/10.1007/s11430-020-9628-5
Article
Google Scholar