Angel R, Matthies D, Conrad R (2011) Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS ONE 6:20453. https://doi.org/10.1371/journal.pone.0020453
Article
Google Scholar
Bastviken D, Ejlertsson J, Tranvik L (2002) Measurement of methane oxidation in lakes: a comparison of methods. Environ Sci Technol 36:3354–3361. https://doi.org/10.1021/es010311p
Article
Google Scholar
Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 18:GB4009. https://doi.org/10.1029/2004GB002238
Article
Google Scholar
Batista AMM, Woodhouse JN, Grossart HP, Giani A (2019) Methanogenic archaea associated to Microcystis sp. in field samples and in culture. Hydrobiologia 831:163–172. https://doi.org/10.1007/s10750-018-3655-3
Article
Google Scholar
Beaulieu JJ, DelSontro T, Downing JA (2019) Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat Commun 10:1375. https://doi.org/10.1038/s41467-019-09100-5
Article
Google Scholar
Berg A, Lindblad P, Svensson BH (2014) Cyanobacteria as a source of hydrogen for methane formation. World J Microbiol Biotechnol 30:539–545. https://doi.org/10.1007/s11274-013-1463-5
Article
Google Scholar
Bižic M, Klintzsch T, Ionescu D, Hindiyeh MY, Günthel M, Muro-Pastor AM, Eckert W, Urich T, Keppler F, Grossart HP (2020) Aquatic and terrestrial cyanobacteria produce methane. Sci Adv 6:eaax5343. https://doi.org/10.1126/sciadv.aax5343
Article
Google Scholar
Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel JP, Peyret P, Fonty G, Lehours AC (2011) Production and consumption of methane in freshwater lake ecosystems. Res Microbiol 162:832–847. https://doi.org/10.1016/j.resmic.2011.06.004
Article
Google Scholar
Buckles LK, Villanueva L, Weijers JWH, Verschuren D, Damste JSS (2013) Linking isoprenoidal GDGT membrane lipid distributions with gene abundances of ammonia-oxidizing Thaumarchaeota and uncultured crenarchaeotal groups in the water column of a tropical lake (Lake Challa, East Africa). Environ Microbiol 15:2445–2462. https://doi.org/10.1111/1462-2920.12118
Article
Google Scholar
Bukin SV, Pavlova ON, Kalmychkov GV, Ivanov VG, Pogodaeva TV, Galach’Yants YP, Bukin YS, Khabuev AV, Zemskaya TI (2018) Substrate specificity of methanogenic communities from Lake Baikal bottom sediments associated with hydrocarbon gas discharge. Microbiology 87:549–558. https://doi.org/10.1134/s0026261718040045
Article
Google Scholar
Burke RA, Reid DF, Brooks JM, Lavoie DM (1983) Upper water column methane geochemistry in the eastern tropical North Pacific. Limnol Oceanogr 28:19–32. https://doi.org/10.4319/lo.1983.28.1.0019
Article
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303
Article
Google Scholar
Chan OC, Claus P, Casper P, Ulrich A, Lueders T, Conrad R (2005) Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment. Environ Microbiol 7:1139–1149. https://doi.org/10.1111/j.1462-2920.2005.00790.x
Article
Google Scholar
Chen WM, Xie PB, Young CC, Sheu SY (2017) Formosimonas limnophila gen. nov., sp. nov., a new member of the family Burkholderiaceae isolated from a freshwater lake. Int J Syst Evol Microbiol 67:17–24. https://doi.org/10.1099/ijsem.0.001561
Article
Google Scholar
Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185. https://doi.org/10.1007/s10021-006-9013-8
Article
Google Scholar
Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292. https://doi.org/10.1111/j.1758-2229.2009.00038.x
Article
Google Scholar
Damm E, Helmke E, Thoms S, Schauer U, Nöthig E, Bakker K, Kiene RP (2010) Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences 7:1099–1108. https://doi.org/10.5194/bg-7-1099-2010
Article
Google Scholar
de Angelis MA, Lee C (1994) Methane production during zooplankton grazing on marine phytoplankton. Limnol Oceanogr 39:1298–1308. https://doi.org/10.4319/lo.1994.39.6.1298
Article
Google Scholar
Deutzmann JS, Stief P, Brandes J, Schink B (2014) Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. Proc Natl Acad Sci 111:18273–18278. https://doi.org/10.1073/pnas.1411617111
Article
Google Scholar
Diekert G, Konheiser U, Piechulla K, Thauer RK (1981) Nickel requirement and factor F430 content of methanogenic bacteria. J Bacteriol 148:459–464. https://doi.org/10.1128/JB.148.2.459-464.1981
Article
Google Scholar
Donis D, Flury S, Stöckli A, Spangenberg JE, Vachon D, McGinnis DF (2017) Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. Nat Commun 8:1661. https://doi.org/10.1038/s41467-017-01648-4
Article
Google Scholar
Dziallas C, Grossart HP (2012) Microbial interactions with the cyanobacterium Microcystis aeruginosa and their dependence on temperature. Mar Biol 159:2389–2398. https://doi.org/10.1007/s00227-012-1927-4
Article
Google Scholar
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461
Article
Google Scholar
Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438. https://doi.org/10.1126/science.aac7745
Article
Google Scholar
Fernández JE, Peeters F, Hofmann H (2016) On the methane paradox: transport from shallow water zones rather than in situ methanogenesis is the major source of CH4 in the open surface water of lakes. J Geophys Res Biogeosci 121:2717–2726. https://doi.org/10.1002/2016jg003586
Article
Google Scholar
Gantner S, Andersson AF, Alonso-Sáez L, Bertilsson S (2011) Novel primers for 16S rRNA-based archaeal community analyses in environmental samples. J Microbiol Methods 84:12–18. https://doi.org/10.1016/j.mimet.2010.10.001
Article
Google Scholar
Grossart HP, Frindte K, Dziallas C, Eckert W, Tang KW (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Natl Acad Sci 108:19657–19661. https://doi.org/10.1073/pnas.1110716108
Article
Google Scholar
Günthel M, Donis D, Kirillin G, Ionescu D, Bižic M, McGinnis DF, Grossart HP, Tang KW (2019) Contribution of oxic methane production to surface methane emission in lakes and its global importance. Nat Commun 10:5497. https://doi.org/10.1038/s41467-019-13320-0
Article
Google Scholar
Günthel M, Klawonn I, Woodhouse J, Bižić M, Ionescu D, Ganzert L, Kümmel S, Nijenhuis I, Zoccarato L, Grossart HP (2020) Photosynthesis-driven methane production in oxic lake water as an important contributor to methane emission. Limnol Oceanogr 65:2853–2865. https://doi.org/10.1002/lno.11557
Article
Google Scholar
Han J, Jeon B-S, Park H-D (2012) Cyanobacteria cell damage and cyanotoxin release in response to alum treatment. Water Supply 12:549–555. https://doi.org/10.2166/ws.2012.029
Article
Google Scholar
Hirai M, Nishi S, Tsuda M, Sunamura M, Takaki Y, Nunoura T (2017) Library construction from subnanogram DNA for pelagic sea water and deep-sea sediments. Microbes Environ 32:336–343. https://doi.org/10.1264/jsme2.ME17132
Article
Google Scholar
Holgerson MA, Raymond PA (2016) Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat Geosci 9:222–226. https://doi.org/10.1038/ngeo2654
Article
Google Scholar
Inagaki F, Hinrichs K-U, Kubo Y, Bowles MW, Heuer VB, Hong W-L, Hoshino T, Ijiri A, Imachi H, Ito M, Kaneko M, Lever MA, Lin Y-S, Methé BA, Morita S, Morono Y, Tanikawa W, Bihan M, Bowden SA, Elvert M, Glombitza C, Gross D, Harrington GJ, Hori T, Li K, Limmer D, Liu C-H, Murayama M, Ohkouchi N, Ono S, Park Y-S, Phillips SC, Prieto-Mollar X, Purkey M, Riedinger N, Sanada Y, Sauvage J, Snyder G, Susilawati R, Takano Y, Tasumi E, Terada T, Tomaru H, Trembath-Reichert E, Wang DT, Yamada Y (2015) Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science 349:420–424. https://doi.org/10.1126/science.aaa6882
Article
Google Scholar
Isaji Y, Ogawa NO, Takano Y, Ohkouchi N (2020) Quantification and carbon and nitrogen isotopic measurements of heme B in environmental samples. Anal Chem 92:11213–11222. https://doi.org/10.1021/acs.analchem.0c01711
Article
Google Scholar
Itoh M, Kobayashi Y, Chen TY, Tokida T, Fukui M, Kojima H, Miki T, Tayasu I, Shiah FK, Okuda N (2015) Effect of interannual variation in winter vertical mixing on CH4 dynamics in a subtropical reservoir. J Geophys Res Biogeosci 120:1246–1261. https://doi.org/10.1002/2015jg002972
Article
Google Scholar
Iwata H, Hirata R, Takahashi Y, Miyabara Y, Itoh M, Iizuka K (2018) Partitioning eddy-covariance methane fluxes from a shallow lake into diffusive and ebullitive fluxes. Bound-Layer Meteorol 169:413–428. https://doi.org/10.1007/s10546-018-0383-1
Article
Google Scholar
Iwata H, Nakazawa K, Sato H, Itoh M, Miyabara Y, Hirata R, Takahashi Y, Tokida T, Endo R (2020) Temporal and spatial variations in methane emissions from the littoral zone of a shallow mid-latitude lake with steady methane bubble emission areas. Agric Meteorol 295:108184. https://doi.org/10.1016/j.agrformet.2020.108184
Article
Google Scholar
Kaneko M, Takano Y, Chikaraishi Y, Ogawa NO, Asakawa S, Watanabe T, Shima S, Kruger M, Matsushita M, Kimura H, Ohkouchi N (2014) Quantitative analysis of coenzyme F430 in environmental samples: a new diagnostic tool for methanogenesis and anaerobic methane oxidation. Anal Chem 86:3633–3638. https://doi.org/10.1021/ac500305j
Article
Google Scholar
Kaneko M, Takano Y, Ogawa NO, Sato Y, Yoshida N, Ohkouchi N (2016) Estimation of methanogenesis by quantification of coenzyme F430 in marine sediments. Geochem J 50:453–460. https://doi.org/10.2343/geochemj.2.0410
Article
Google Scholar
Kaneko M, Takano Y, Kamo M, Morimoto K, Nunoura T, Ohkouchi N (2021) Insights into the methanogenic population and potential in subsurface marine sediments based on coenzyme F430 as a function-specific compound analysis. J Am Chem Soc Au. https://doi.org/10.1021/jacsau.1c00307
Article
Google Scholar
Khatun S, Iwata T, Kojima H, Fukui M, Aoki T, Mochizuki S, Naito A, Kobayashi A, Uzawa R (2019) Aerobic methane production by planktonic microbes in lakes. Sci Total Environ 696:133916. https://doi.org/10.1016/j.scitotenv.2019.133916
Article
Google Scholar
Kim M, Shin B, Lee J, Park HY, Park W (2019) Culture-independent and culture-dependent analyses of the bacterial community in the phycosphere of cyanobloom-forming Microcystis aeruginosa. Sci Rep 9:20416. https://doi.org/10.1038/s41598-019-56882-1
Article
Google Scholar
Kojima H, Tokizawa R, Kogure K, Kobayashi Y, Itoh M, Shiah FK, Okuda N, Fukui M (2014) Community structure of planktonic methane-oxidizing bacteria in a subtropical reservoir characterized by dominance of phylotype closely related to nitrite reducer. Sci Rep 4:5728. https://doi.org/10.1038/srep05728
Article
Google Scholar
Li M, Nkrumah PN, Xiao M (2014) Biochemical composition of Microcystis aeruginosa related to specific growth rate: insight into the effects of abiotic factors. Inland Waters 4:357–362. https://doi.org/10.5268/IW-4.4.710
Article
Google Scholar
Li C, Hambright KD, Bowen HG, Trammell MA, Grossart HP, Burford MA, Hamilton DP, Jiang H, Latour D, Meyer EI (2021) Global co-occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates. Environ Microbiol. https://doi.org/10.1111/1462-2920.15691
Article
Google Scholar
Luton P, Wayne J, Sharp R, Riley P (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530. https://doi.org/10.1099/00221287-148-11-3521
Article
Google Scholar
Magen C, Lapham LL, Pohlman JW, Marshall K, Bosman S, Casso M, Chanton JP (2014) A simple headspace equilibration method for measuring dissolved methane. Limnol Oceanogr Methods 12:637–650. https://doi.org/10.4319/lom.2014.12.637
Article
Google Scholar
Mayr S, Latkoczy C, Krüger M, Günther D, Shima S, Thauer RK, Widdel F, Jaun B (2008) Structure of an F430 variant from archaea associated with anaerobic oxidation of methane. J Am Chem Soc 130:10758–10767. https://doi.org/10.1021/ja802929z
Article
Google Scholar
McGinnis DF, Kirillin G, Tang KW, Flury S, Bodmer P, Engelhardt C, Casper P, Grossart HP (2015) Enhancing surface methane fluxes from an oligotrophic lake: exploring the microbubble hypothesis. Environ Sci Technol 49:873–880. https://doi.org/10.1021/es503385d
Article
Google Scholar
Milkov AV, Sassen R (2002) Economic geology of offshore gas hydrate accumulations and provinces. Mar Petrol Geol 19:1–11. https://doi.org/10.1016/S0264-8172(01)00047-2
Article
Google Scholar
Nakazato R, Hirabayashi K, Okino T (1998) Abundance and seasonal trend of dominant chironomid adults and horizontal distribution of larvae in eutrophic lake Suwa, Japan. Jpn J Limnol (rikusuigaku Zasshi) 59:443–455. https://doi.org/10.3739/rikusui.59.443
Article
Google Scholar
Naudts L, Greinert J, Artemov Y, Staelens P, Poort J, Van Rensbergen P, De Batist M (2006) Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, northwestern Black Sea. Mar Geol 227:177–199. https://doi.org/10.1016/j.margeo.2005.10.005
Article
Google Scholar
Nishiyama T, Ueki A, Kaku N, Ueki K (2009) Clostridium sufflavum sp. nov., isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol 59:981–986. https://doi.org/10.1099/ijs.0.001719-0
Article
Google Scholar
Nunoura T, Takaki Y, Kazama H, Hirai M, Ashi J, Imachi H, Takai K (2012) Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing. Microbes Environ 27:382–390. https://doi.org/10.1264/jsme2.me12032
Article
Google Scholar
Ogawa NO, Nagata T, Kitazato H, Ohkouchi N (2010) Ultra-sensitive elemental analyzer/isotope ratio mass spectrometer for stable nitrogen and carbon isotope analyses. In: Ohkouchi N, Tayasu I, Koba K (eds) Earth, life and isotopes. Kyoto University Press, Kyoto, pp 339–353
Google Scholar
Ohkouchi N, Takano Y (2014) Organic nitrogen: sources, fates, and chemistry, vol. 12, 10: organic geochemistry. In: Birrer B, Falkowski P, Freeman K (eds) Treatise on geochemistry. Elsevier, Amsterdam, pp 251–289. https://doi.org/10.1016/B978-0-08-095975-7.01015-9
Chapter
Google Scholar
Olenina I, Hajdu S, Edler L, Andersson A, Wasmund N, Busch S, Goebel J, Gromisz S, Huseby S, Huttunen M, Jaanus A, Kokkonen P, Ledaine I, Niemkiewicz E (2006) Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM Balt Sea Environ Proc 106:144
Google Scholar
Oremland RS (1979) Methanogenic activity in plankton samples and fish intestines A mechanism for in situ methanogenesis in oceanic surface waters. Limnol Oceanogr 24:1136–1141. https://doi.org/10.4319/lo.1979.24.6.1136
Article
Google Scholar
Park HD, Watanabe MF, Harada KI, Suzuki M, Hayashi H, Okino T (1993) Seasonal variations of Microcystis species and toxic heptapeptide microcystins in Lake Suwa. Environ Toxicol Water Qual 8:425–435. https://doi.org/10.1002/tox.2530080407
Article
Google Scholar
Park HD, Iwami C, Watanabe MF, Harada KI, Okino T, Hayashi H (1998) Temporal variabilities of the concentrations of intra- and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environ Toxicol Water Qual 13:61–72. https://doi.org/10.1002/(sici)1098-2256(1998)13:1%3c61::Aid-tox4%3e3.0.Co;2-5
Article
Google Scholar
Ploug H (2008) Cyanobacterial surface blooms formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea: small-scale fluxes, pH, and oxygen microenvironments. Limnol Oceanogr 53:914–921. https://doi.org/10.4319/lo.2008.53.3.0914
Article
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219
Article
Google Scholar
Repeta DJ, Ferrón S, Sosa OA, Johnson CG, Repeta LD, Acker M, DeLong EF, Karl DM (2016) Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat Geosci 9:884–887. https://doi.org/10.1038/ngeo2837
Article
Google Scholar
Reynolds CS (1987) Cyanobacterial water-blooms. In: Callow JA (ed) Advances in botanical research. Academic Press, London, pp 67–143
Google Scholar
Ritt B, Sarrazin J, Caprais J-C, Noël P, Gauthier O, Pierre C, Henry P, Desbruyeres D (2010) First insights into the structure and environmental setting of cold-seep communities in the Marmara Sea. Deep Sea Res Part I Oceanogr Res 57:1120–1136. https://doi.org/10.1016/j.dsr.2010.05.011
Article
Google Scholar
Sakai S, Ehara M, Tseng IC, Yamaguchi T, Bräuer SL, Cadillo-Quiroz H, Zinder SH, Imachi H (2012) Methanolinea mesophila sp. nov., a hydrogenotrophic methanogen isolated from rice field soil, and proposal of the archaeal family Methanoregulaceae fam. nov. within the order Methanomicrobiales. Int J Syst Evol Microbiol 62:1389–1395. https://doi.org/10.1099/ijs.0.035048-0
Article
Google Scholar
Sasakawa M, Tsunogai U, Kameyama S, Nakagawa F, Nojiri Y, Tsuda A (2008) Carbon isotopic characterization for the origin of excess methane in subsurface seawater. J Geophys Res 113:C03012. https://doi.org/10.1029/2007JC004217
Article
Google Scholar
Schirmack J, Mangelsdorf K, Ganzert L, Sand W, Hillebrand-Voiculescu A, Wagner D (2014) Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake. Int J Syst Evol Microbiol 64:522–527. https://doi.org/10.1099/ijs.0.057224-0
Article
Google Scholar
Schmale O, Wäge J, Mohrholz V, Wasmund N, Gräwe U, Rehder G, Labrenz M, Loick-Wilde N (2018) The contribution of zooplankton to methane supersaturation in the oxygenated upper waters of the central Baltic Sea. Limnol Oceanogr 63:412–430. https://doi.org/10.1002/lno.10640
Article
Google Scholar
Sørensen K, Řeháková K, Zapomělová E, Oren A (2009) Distribution of benthic phototrophs, sulfate reducers, and methanogens in two adjacent saltern evaporation ponds in Eilat, Israel. Aquat Microb Ecol 56:275–284. https://doi.org/10.3354/ame01307
Article
Google Scholar
Springer E, Sachs MS, Woese CR, Boone DR (1995) Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcr) as a phylogenetic tool for the family Methanosarcinaceae. Int J Syst Bacteriol 45:554–559. https://doi.org/10.1099/00207713-45-3-554
Article
Google Scholar
Steinberg LM, Regan JM (2008) Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol 74:6663–6671. https://doi.org/10.1128/aem.00553-08
Article
Google Scholar
Suwa Construction Office (2019) Lake bottom survey of Lake Suwa. Lake Suwa Vision Promotion Conference, Nagano Pref
Takano Y, Kaneko M, Kahnt J, Imachi H, Shima S, Ohkouchi N (2013) Detection of coenzyme F430 in deep sea sediments: a key molecule for biological methanogenesis. Org Geochem 58:137–140. https://doi.org/10.1016/j.orggeochem.2013.01.012
Article
Google Scholar
Tang KW, McGinnis DF, Ionescu D, Grossart HP (2016) Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environ Sci Technol Lett 3:227–233. https://doi.org/10.1021/acs.estlett.6b00150
Article
Google Scholar
Tarnovetskii IY, Merkel AY, Kanapatskiy TA, Ivanova EA, Gulin MB, Toshchakov S, Pimenov NV (2018) Decoupling between sulfate reduction and the anaerobic oxidation of methane in the shallow methane seep of the Black sea. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fny235
Article
Google Scholar
Tayasu I, Hirasawa R, Ogawa NO, Ohkouchi N, Yamada K (2011) New organic reference materials for carbon- and nitrogen-stable isotope ratio measurements provided by Center for Ecological Research, Kyoto University, and Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology. Limnology 12:261–266. https://doi.org/10.1007/s10201-011-0345-5
Article
Google Scholar
Thauer RK, Kaster A-K, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591. https://doi.org/10.1038/nrmicro1931
Article
Google Scholar
Urai A, Takano Y, Imachi H, Ishii S, Matsui Y, Ogawara M, Tasumi E, Miyairi Y, Ogawa ON, Yoshimura T, Inagaki F, Yokoyama Y, Kawano K, Murai D, Park HD, Ohkouchi N (2021) Origin of deep methane associated with a unique community of microorganisms in an organic- and iodine-rich aquifer. ACS Earth Space Chem 5:1–11. https://doi.org/10.1021/acsearthspacechem.0c00204
Article
Google Scholar
Valentine DL (2011) Emerging topics in marine methane biogeochemistry. Ann Rev Mar Sci 3:147–171. https://doi.org/10.1146/annurev-marine-120709-142734
Article
Google Scholar
Vu HTL, Yukphan P, Bui VTT, Charoenyingcharoen P, Malimas S, Nguyen LK, Muramatsu Y, Tanaka N, Tanasupawat S, Le BT, Nakagawa Y, Yamada Y (2019) Acetobacter sacchari sp. nov., for a plant growth-promoting acetic acid bacterium isolated in Vietnam. Ann Microbiol 69:1155–1163. https://doi.org/10.1007/s13213-019-01497-0
Article
Google Scholar
Wäge J, Schmale O, Labrenz M (2020) Quantification of methanogenic Archaea within Baltic Sea copepod faecal pellets. Mar Biol 167:1–7. https://doi.org/10.1007/s00227-020-03759-x
Article
Google Scholar
Wang H, Lu J, Wang W, Yang L, Yin C (2006) Methane fluxes from the littoral zone of hypereutrophic Taihu Lake, China. J Geophys Res Atmos 111:D17. https://doi.org/10.1029/2005jd006864
Article
Google Scholar
Wang Q, Dore JE, McDermott TR (2017) Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake. Environ Microbiol 19:2366–2378. https://doi.org/10.1111/1462-2920.13747
Article
Google Scholar
Watanabe K, Park HD, Kumon F (2012) Historical change of phytoplankton in a eutrophic lake in Japan as determined by analysis of photosynthetic pigments in a lakebed sediment core. Environ Earth Sci 66:2293–2300. https://doi.org/10.1007/s12665-011-1452-7
Article
Google Scholar
Watanabe T, Miura A, Iwata T, Kojima H, Fukui M (2017) Dominance of Sulfuritalea species in nitrate-depleted water of a stratified freshwater lake and arsenate respiration ability within the genus. Environ Microbiol Rep 9:522–527. https://doi.org/10.1111/1758-2229.12557
Article
Google Scholar
Xu S, Sun Q, Zhou X, Tan X, Xiao M, Zhu W, Li M (2016) Polysaccharide biosynthesis-related genes explain phenotype-genotype correlation of Microcystis colonies in Meiliang Bay of Lake Taihu, China. Sci Rep 6:35551. https://doi.org/10.1038/srep35551
Article
Google Scholar
Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol 56:1331–1340. https://doi.org/10.1099/ijs.0.64169-0
Article
Google Scholar
Yan X, Xu X, Wang M, Wang G, Wu S, Li Z, Sun H, Shi A, Yang Y (2017) Climate warming and cyanobacteria blooms: looks at their relationships from a new perspective. Water Res 125:449–457. https://doi.org/10.1016/j.watres.2017.09.008
Article
Google Scholar
Yoshida T, Yuki Y, Lei S, Chinen H, Yoshida M, Kondo R, Hiroishi S (2003) Quantitative detection of toxic strains of the cyanobacterial genus Microcystis by competitive PCR. Microb Environ 18:16–23. https://doi.org/10.1264/jsme2.18.16
Article
Google Scholar
Yoshioka T, Wada E, Saijo Y (1988) Isotopic characterization of lake Kizaki and lake Suwa. Jpn J Limnol 49:119–128. https://doi.org/10.3739/rikusui.49.119
Article
Google Scholar
Yoshioka T, Wada E, Hayashi H (1994) A stable isotope study on seasonal food web dynamics in a eutrophic lake. Ecology 75:835–846. https://doi.org/10.2307/1941739
Article
Google Scholar
Zepp Falz K, Holliger C, Großkopf R, Liesack W, Nozhevnikova AN, Müller B, Wehrli B, Hahn D (1999) Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland). Appl Environ Microbiol 65:2402–2408. https://doi.org/10.1128/aem.65.6.2402-2408.1999
Article
Google Scholar
Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620. https://doi.org/10.1093/bioinformatics/btt593
Article
Google Scholar
Zhou Z, Pan J, Wang F, Gu JD, Li M (2018) Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. FEMS Microbiol Rev 42:639–655. https://doi.org/10.1093/femsre/fuy023
Article
Google Scholar
Zhou Z, Liu Y, Lloyd KG, Pan J, Yang Y, Gu JD, Li M (2019) Genomic and transcriptomic insights into the ecology and metabolism of benthic archaeal cosmopolitan, Thermoprofundales (MBG-D archaea). ISME J 13:885–901. https://doi.org/10.1038/s41396-018-0321-8
Article
Google Scholar