Bessho, K, Date K, Hayashi M, Ikeda A, Imai T, Inoue H, Kumagai Y, Miyakawa T, Murata H, Ohno T, Okuyama A, Oyama R, Sasaki Y, Shimazu Y, Shimoji K, Sumida Y, Suzuki M, Taniguchi H, Tsuchiyama H, Uesawa D, Yokota H, Yoshida R (2016) An introduction to Himawari-8/9 –Japan’s new-generation geostationary meteorological satellites. J Meteorol Soc Jpn 94(2):151–183. https://doi.org/10.2151/jmsj.2016-009.

Article
Google Scholar

Bethel, EW, Childs H, Hansen C (2012) High performance visualization: enabling extreme-scale scientific insight. Chapman & Hall/CRC, New York. https://doi.org/10.1201/b12985.

Book
Google Scholar

Bony, S, Stevens B, Frierson DMW, Jakob C, Kageyama M, Pincus R, Shepherd TG, Sherwood SC, Siebesma AP, Sobel AH, Watanabe M, Webb MJ (2015) Clouds, circulation and climate sensitivity. Nat Geosci 8(4):261–268.

Article
Google Scholar

Bretherton, CS, Peters ME, Back LE (2004) Relationships between water vapor path and precipitation over the tropical oceans. J Clim 17(7):1517–1528.

Article
Google Scholar

Bretherton, CS, Khairoutdinov MF (2015) Convective self-aggregation feedbacks in near-global cloud-resolving simulations of an aquaplanet. J Adv Model Earth Syst 7(4):1765–1787.

Article
Google Scholar

Bubnová, R, Hello G, Bénard P, Geleyn J-F (1995) Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the arpege/aladin nwp system. Mon Weather Rev 123(2):515–535.

Article
Google Scholar

Clyne, J, Mininni P, Norton A, Rast M (2007) Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New J Phys 9(8):301.

Article
Google Scholar

Cotton, WR, Tripoli GJ (1978) Cumulus convection in shear flow—three-dimensional numerical experiments. J Atmos Sci 35(8):1503–1521.

Article
Google Scholar

Fudeyasu, H, Wang Y, Satoh M, Nasuno T, Miura H, Yanase W (2008) Global cloud-system-resolving model NICAM successfully simulated the lifecycles of two real tropical cyclones. Geophys Res Lett 35(22):2397–6.

Article
Google Scholar

Hohenegger, C, Kornblueh L, Becker T, Cioni G, Engels JF, Klocke D, Schulzweida U, Stevens B (2019) Convergence of zero order climate statistics in global simulations using explicit convection. J Meteorol Soc Jpn.

Ito, J, Hayashi S, Hashimoto A, Ohtake H, Uno F, Yoshimura H, Kato T, Yamada Y (2017) Stalled improvement in a numerical weather prediction model as horizontal resolution increases to the sub-kilometer scale. SOLA 13(0):151–156.

Article
Google Scholar

Jubair, MI, Alim U, Röber N, Clyne J, Mahdavi-Amiri A (2016) Icosahedral maps for a multiresolution representation of earth data In: VMV ’16 Proceedings of the Conference on Vision, Modeling and Visualization, 161-168, Bayreuth.

Judt, F (2018) Insights into atmospheric predictability through global convection-permitting model simulations. J Atmos Sci 75(5):1477–1497.

Article
Google Scholar

Khairoutdinov, MF, Randall DA (2003) Cloud resolving modeling of the ARM summer 1997 IOP: model formulation, results, uncertainties, and sensitivities. J Atmos Sci 60(4):607–625.

Article
Google Scholar

Klemp, JB, Wilhelmson RB (1978) The simulation of three-dimensional convective storm dynamics. J Atmos Sci 35(6):1070–1096.

Article
Google Scholar

Klocke, D, Brueck M, Hohenegger C, Stevens B (2017) Rediscovery of the doldrums in storm-resolving simulations over the tropical Atlantic. Nat Geosci 183(4):153–7.

Google Scholar

Kodama, C, Noda AT, Satoh M (2012) An assessment of the cloud signals simulated by NICAM using ISCCP, CALIPSO, and CloudSat satellite simulators. J Geophys Res-Atmos 117(D12):1–17.

Article
Google Scholar

Kodama, C, Yamada Y, Noda AT, Kikuchi K, Kajikawa Y, Nasuno T, Tomita T, Yamaura T, Takahashi HG, Hara M, Kawatani Y, Satoh M, Sugi M (2015) A 20-year climatology of a nicam amip-type simulation. J Meteorol Soc Japan 93(4):393–424. https://doi.org/10.2151/jmsj.2015-024.

Article
Google Scholar

Kubota, T, Shige S, Hashizume H, Aonashi K, Takahashi N, Seto S, Hirose M, Takayabu YN, Ushio T, Nakagawa K, Iwanami K, Kachi M, Okamoto K (2007) Global precipitation map using satellite-borne microwave radiometers by the gsmap project: production and validation. IEEE Trans Geosci Remote Sens 45(7):2259–2275. https://doi.org/10.1109/TGRS.2007.895337.

Article
Google Scholar

Langhans, W, Schmidli J, Schär C (2012) Bulk convergence of cloud-resolving simulations of moist convection over complex terrain. J Atmos Sci 69(7):2207–2228.

Article
Google Scholar

Lin, S-J, Rood RB (2004) A “vertically Lagrangian” finite-volume dynamical core for global models. Mon Weather Rev 132(544):2293–307.

Article
Google Scholar

Malardel, S, Wedi N, Deconinck W, Diamantakis M, Kuehnlein C, Mozdzynski G, Hamrud M, Smolarkiewicz P (2016) A new grid for the IFS. ECMWF Newsl 146:23–28. https://doi.org/doi:10.21957/zwdu9u5i.

Google Scholar

Mapes, B, Tulich S, Nasuno T, Satoh M (2008) Predictability aspects of global aqua-planet simulations with explicit convection. J Meteorol Soc Jpn Ser II 86A:175–185.

Article
Google Scholar

Mapes, BE, Chung ES, Hannah WM, Masunaga H, Wimmers AJ, Velden CS (2018) The meandering margin of the meteorological moist tropics. Geophys Res Lett 45(2):1177–1184.

Article
Google Scholar

Marotzke, J, Jakob C, Bony S, Dirmeyer PA, O’Gorman PA, Hawkins E, Perkins-Kirkpatrick S, Le Quere C, Nowicki S, Paulavets K, Seneviratne SI, Stevens B, Tuma M (2017) Climate research must sharpen its view. Nat Clim Chang 7(2):89–91.

Article
Google Scholar

Matsuno, T (2016) Prologue: tropical meteorology 1960–2010—personal recollections. Meteorol Monogr 56. https://journals.ametsoc.org/doi/pdf/10.1175/AMSMONOGRAPHS-D-15-0012.1 https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0012.1.

Mengaldo, G, Wyszogrodzki A, Diamantakis M, Lock S-J, Giraldo FX, Wedi NP (2018) Current and emerging time-integration strategies in global numerical weather and climate prediction. Arch Comput Methods Eng:1–22. https://doi.org/10.1007/s11831-018-9261-8.

Neumann, P, Dueben P, Adamidis P, Bauer P, Brueck M, Kornblueh L, Klocke D, Stevens B, Wedi N, Biercamp J (2019) Assessing the scales in numerical weather and climate predictions: will exascale be the rescue?Phil Trans R Soc 377:20180148. https://doi.org/10.1098/rsta.2018.0148.

Article
Google Scholar

Palmer, TN (2016) A personal perspective on modelling the climate system. Proc R Soc A 472(2188):20150772–14.

Article
Google Scholar

Peters, O, Neelin JD (2006) Critical phenomena in atmospheric precipitation. Nat Phys 2(6):393–396.

Article
Google Scholar

Phillips, NA (1956) The general circulation of the atmosphere: a numerical experiment. QJR Meteorol Soc 82(352):123–164.

Article
Google Scholar

Putman, WM, Lin S-J (2007) Finite-volume transport on various cubed-sphere grids. J Comput Phys 227(1):55–78.

Article
Google Scholar

Putman, WM, Suarez M (2011) Cloud-system resolving simulations with the NASA Goddard Earth Observing System global atmospheric model (GEOS-5). Geophys Res Lett 38(16).

Randall, D, Khairoutdinov M, Arakawa A, Grabowski W (2003) Breaking the cloud parameterization deadlock. Bull Am Meteorol Soc 84(11):1547–1564.

Article
Google Scholar

Roberts, MJ, Vidale PL, Mizielinski MS, Demory M-E, Schiemann R, Strachan J, Hodges K, Bell R, Camp J (2015) Tropical cyclones in the UPSCALE ensemble of high-resolution global climate models*. J Clim 28(2):574–596.

Article
Google Scholar

Rodwell, MJ, Palmer TN (2007) Using numerical weather prediction to assess climate models 133(622):129–146.

Saito, K, Ishida J-I, Aranami K, Hara T, Segawa T, Narita M, Honda Y (2007) Nonhydrostatic Atmospheric Models and Operational Development at JMA. J Meteorol Soc Jpn Ser II 85B:271–304.

Article
Google Scholar

Satoh, M, Tomita H, Miura H, Iga S, Nasuno T (2005) Development of a global cloud resolving model - a multi-scale structure of tropical convections -. J Earth Simul 3:11–19.

Google Scholar

Satoh, M, Matsuno T, Tomita H, Miura H, Nasuno T, Iga S (2008) Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J Comput Phys 227(7):3486–3514.

Article
Google Scholar

Satoh, M, Tomita H, Yashiro H, Miura H, Kodama C, Seiki T, Noda AT, Yamada Y, Goto D, Sawada M, Miyoshi T, Niwa Y, Hara M, Ohno T, Iga S-i, Arakawa T, Inoue T, Kubokawa H (2014) The Non-hydrostatic Icosahedral Atmospheric Model: description and development. Prog Earth Planet Sci 1:18. https://doi.org/10.1186/s40645-014-0018-1.

Article
Google Scholar

Satoh, M, Tomita H, Yashiro H, Kajikawa Y, Miyamoto Y, Yamaura T, Miyakawa T, Nakano M, Kodama C, Noda AT, Nasuno T, Yamada Y, Fukutomi Y (2017) Outcomes and challenges of global high-resolution non-hydrostatic atmospheric simulations using the K computer. Prog Earth Planet Sci 4:13. https://doi.org/10.1186/s40645-017-0127-8.

Article
Google Scholar

Satoh, M, Noda AT, Seiki T, Chen Y-W, Kodama C, Yamada Y, Kuba N, Sato Y (2018) Toward reduction of the uncertainties in climate sensitivity due to cloud processes using a global non-hydrostatic atmospheric model. Prog Earth Planet Sci 5:67. https://doi.org/10.1186/s40645-018-0226-1.

Article
Google Scholar

Satoh, M, Stevens B, JUdt F, Khairoutdinov M, Lin S-J, Putman WM, Düben P (2019) Global cloud resolving models. Curr Clim Change Rep. https://doi.org/10.1007/s40641-019-00131-0.

Skamarock, WC, Klemp JB, Duda MG, Fowler LD, Park S-H, Ringler TD (2012) A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering. Mon Weather Rev 140(9):3090–3105.

Article
Google Scholar

Skamarock, WC, Park S-H, Klemp JB, Snyder C (2014) Atmospheric Kinetic Energy Spectra from Global High-Resolution Nonhydrostatic Simulations. J Atmos Sci 71(11):4369–4381.

Article
Google Scholar

Smagorinsky, J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164.

Article
Google Scholar

Stevens, B, Bony S (2013) What Are Climate Models Missing?Science 340(6136):1053–1054.

Article
Google Scholar

Stevens, B, Ament F, Bony S, Crewell S, Ewald F, Gross S, Hansen A, Hirsch L, Jacob M, Kölling T, Zinner T, Mayer B, Wendisch M, Wolf K, Ehrlich A, Farrell D, Forde M, Jansen F, Konow H, Wing AA, Klingebiel M, Wirth M, Brueck HM, Bauer-Pfundstein M, Delanoë J, Rapp M, Rapp AD, Hagen M, Peters G, Bakan S, Klepp C (2019) A high-altitude long-range aircraft configured as a cloud observatory– the NARVAL expeditions. Bull Amer Meteorol Soc.

Tomita, H, Tsugawa M, Satoh M, Goto K (2001) Shallow Water Model on a Modified Icosahedral Geodesic Grid by Using Spring Dynamics. J Comput Phys 174(2):579–613.

Article
Google Scholar

Tomita, H, Satoh M (2004) A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn Res 34(6):357–400. https://doi.org/10.1016/j.fluiddyn.2004.03.003.

Article
Google Scholar

Tomita, H, Miura H, Iga S, Nasuno T, Satoh M (2005) A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys Res Lett 32(8):3283.

Article
Google Scholar

Voldoire, A, Decharme B, Pianezze J, Lebeaupin Brossier C, Sevault F, Seyfried L, Garnier V, Bielli S, Valcke S, Alias A, et al. (2017) Surfex v8.0 interface with oasis3-mct to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales. Geosci Model Dev 10(11):4207–4227.

Article
Google Scholar

Walters, D, Baran A, Boutle I, Brooks M, Earnshaw P, Edwards J, Furtado K, Hill P, Lock A, Manners J, Morcrette C, Mulcahy J, Sanchez C, Smith C, Stratton R, Tennant W, Tomassini L, Van Weverberg K, Vosper S, Willett M, Browse J, Bushell A, Dalvi M, Essery R, Gedney N, Hardiman S, Johnson B, Johnson C, Jones A, Mann G, Milton S, Rumbold H, Sellar A, Ujiie M, Whitall M, Williams K, Zerroukat M (2017) The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci Model Dev Discuss 2017:1–78.

Article
Google Scholar

Wedi, NP (2014) Increasing horizontal resolution in numerical weather prediction and climate simulations: illusion or panacea?Philos Trans R Soc A Math Phys Eng Sci 372(2018):20130289–20130289.

Article
Google Scholar

Weisman, ML, Skamarock WC, Klemp JB (1997) The Resolution Dependence of Explicitly Modeled Convective Systems. Mon Weather Rev 125(4):527–548.

Article
Google Scholar

Williamson, DL (2005) Moisture and temperature balances at the Atmospheric Radiation Measurement Southern Great Plains Site in forecasts with the Community Atmosphere Model (CAM2). J Geophys Res-Atmos 110(D15):3123–17.

Article
Google Scholar

Williamson, DL (2007) The Evolution of Dynamical Cores for Global Atmospheric Models. J Meteorol Soc Jpn Ser II 85B:241–269.

Article
Google Scholar

Williams, KD, Bodas-Salcedo A, Déqué M, Fermepin S, Medeiros B, Watanabe M, Jakob C, Klein SA, Senior CA, Williamson DL (2013) The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models. J Clim 26(10):3258–3274.

Article
Google Scholar

Wood, N, Staniforth A, White A, Allen T, Diamantakis M, Gross M, Melvin T, Smith C, Vosper S, Zerroukat M, Thuburn J (2013) An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. QJR Meteorol Soc 140(682):1505–1520.

Article
Google Scholar

Zängl, G, Reinert D, Rípodas P, Baldauf M (2014) The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. QJR Meteorol Soc 141(687):563–579.

Article
Google Scholar