Aida N (1997) Paleomagnetic stratigraphy of the type section (proposed site) for the Lower/Middle Pleistocene Boundary Kokumoto Formation. In: Kawamura M, Oka T, Kondo T (eds) Commemorative volume for Professor Makoto Kato, pp 275–282 (in Japanese with English abstract)
Google Scholar
Amit H, Leonhardt R, Wicht J (2010) Polarity reversals from paleomagnetic observations and numerical dynamos simulations. Space Sci Rev 155:293–335. https://doi.org/10.1007/s11214-010-9695-2
Article
Google Scholar
Aoki N (1968) Benthonic foraminifera of Kazusa Group, Boso Peninsula. Trans Proc Palaeontol Soc Japan N S 70:238–266
Google Scholar
Balbas AM, Koppers AAP, Clark PU, Coe RS, Reilly BT, Stoner J, Konrad K (2018) Millennial-scale instability in the geomagnetic field prior to the Matuyama-Brunhes reversal. Geochem Geophys Geosyst 19:952–967. https://doi.org/10.1002/2017GC007404
Article
Google Scholar
Bloemendal J, King JW, Hall FR, Doh S-J (1992) Rock magnetism of late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, diagenetic processes, and sediment lithology. J Geophys Res 97:4361–4375. https://doi.org/10.1029/91JB03068
Article
Google Scholar
Brown LL, Singer BS, Pickens JC, Jicha BR (2004) Paleomagnetic directions and 40Ar/39Ar ages from the Tatara-San Pedro volcanic complex, Chilean Andes: Lava record of a Matuyama-Brunhes precursor? J Geophys Res 109:B12101. https://doi.org/10.1029/2004JB003007
Article
Google Scholar
Channell JET, Guydo Y (2004) The Matuyama chronozone at ODP Site 982 (Rockhall bank): Evidence for decimeter scale magnetization lock-in depths, in Timescales of the Paelomagnetic Field. Geophys Monogr Ser 145:205–219
Google Scholar
Channell JET, Hodell DA, Singer BS, Xuan C (2010) Reconciling astrochronological and 40Ar/39Ar ages for the Matuyama–Brunhes boundary and late Matuyama chron. Geochem Geophys Geosyst 11:Q0AA12. https://doi.org/10.1029/2010GC00320
Article
Google Scholar
Channell JET, Mazaud A, Sullivan P, Turner S, Raymo ME (2002) Geomagnetic excursions and paleointensities in the Matuyama Chron at Ocean Drilling Program Sites 983 and 984 (Iceland Basin). J Geophys Res 107:2114. https://doi.org/10.1029/2001JB000491
Article
Google Scholar
Channell JET, Xuan C, Hodell DA (2009) Stacking paleointensity and oxygen iso-tope data for the last 1.5 Myr (PISO-1500). Earth Planet Sci Lett 283:14–23. https://doi.org/10.1016/j.epsl.2009.03.012
Article
Google Scholar
Cherepanova MV, Pushkar VS, Razjigaeva N, Kumai H, Koizumi I (2002) Diatom biostratigraphy of the Kazusa Group, Boso Peninsula, Honshu, Japan. Quat Res (Daiyonki-Kenkyu) 41:1–10. https://doi.org/10.4116/jaqua.41.1
Article
Google Scholar
Clement BM (1991) Geographical distribution of transitional VGPs: Evidence for non-zonal equatorial symmetry during the Matuyama–Brunhes geomagnetic reversal. Earth Planet Sci Lett 104:48–58. https://doi.org/10.1016/0012-821X(91)90236-B
Article
Google Scholar
Clement BM (2004) Dependence of the duration of geomagnetic polarity reversals on site latitude. Nature 428:637–640. https://doi.org/10.1038/nature02459
Article
Google Scholar
Dreyfus GB, Raisbeck GM, Parrenin F, Jouzel J, Guyodo Y, Nomade S, Mazaud A (2008) An ice core perspective on the age of the Matuyama–Brunhes boundary. Earth Planet Sci Lett 274:151–156. https://doi.org/10.1016/j.epsl.2008.07.008
Article
Google Scholar
Elderfield H, Ferretti P, Greaves M, Crowhurst S, McCave IN, Hodell D, Piotrowski AM (2012) Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337:704–709. https://doi.org/10.1126/science.1221294
Article
Google Scholar
Evans ME, Heller F (2003) Environmental Magnetism, Volume 86: Principals and Applications of Enviromagnetics. Academic Press, Amsterdam
Google Scholar
Frank U, Nowaczyk NR (2008) Mineral magnetic properties of artificial samples systematically mixed from hematite and magnetite. Geophys J Int 175:449–461. https://doi.org/10.1111/j.1365-246X.2008.03821.x
Article
Google Scholar
Gotton MN, Show J, Brown LL (2007) Absolute palaeointensity variation during a precursor to the Matuyama-Brunhes transition recorded in Chilean lavas. Phys Earth Planet Inter 162:61–72. https://doi.org/10.1016/j.pepi.2007.03.003
Article
Google Scholar
Guyodo Y, Valet JP (1999) Global changes in intensity of the Earth’s magnetic field during the past 800 kyr. Nature 399:249–252. https://doi.org/10.1038/20420
Article
Google Scholar
Haneda Y, Okada M, Kubota Y, Suganuma Y (2020) Millennial-scale hydrographic changes in the northwestern Pacific during marine isotope stage 19: teleconnection with ice melt in the North Atlantic. Earth Planet Sci Lett 531:115936. https://doi.org/10.1016/j.epsl.2019.115936
Article
Google Scholar
Harrison CGA (1974) The paleomagnetic record from deep-sea sediment cores. Earth Sci Rev 10:1–36. https://doi.org/10.1016/0012-8252(74)90024-5
Article
Google Scholar
Hartl P, Tauxe L (1996) A precursor to the Matuyama/Brunhes transition-field instability as recorded in pelagic sediments. Earth Planet Sci Lett 138:121–135. https://doi.org/10.1016/0012-821X(95)00231-Z
Article
Google Scholar
Head MJ, Gibbard PL (2015) Early–Middle Pleistocene transitions: linking terrestrial and marine realms. Quarter Int 389:7–46. https://doi.org/10.1016/j.quaint.2015.09.042
Article
Google Scholar
Head MJ, Pillans B, Farquhar S (2008) The EarlyeMiddle Pleistocene Transition: characterization and proposed guide for the defining boundary. Episodes 31:255–259. https://doi.org/10.18814/epiiugs/2008/v31i2/014
Article
Google Scholar
Hyodo M, Bradák B, Okada M, Katoh S, Kitaba I, Dettman DL, Hayashi H, Kumazawa K, Hirose K, Kazaoka O, Shikoku K, Kitamura A (2017) Millennial-scale northern Hemisphere Atlantic-Pacific climate teleconnections in the earliest Middle Pleistocene. Sci Rep 7:10036. https://doi.org/10.1038/s41598-017-10552-2
Article
Google Scholar
Hyodo M, Katoh S, Kitamura A, Takasaki K, Matsushita H, Kitaba I, Tanaka I, Nara M, Matsuzaki M, Dettman DL, Okada M (2016) High resolution stratigraphy across the early-middle Pleistocene boundary from a core of the Kokumoto Formation at Tabuchi, Chiba Prefecture, Japan. Quat Int 397:16–26. https://doi.org/10.1016/j.quaint.2015.03.031
Article
Google Scholar
Kanehara K, Oyama K, Ono A, Ida K, Motojima K, Ishiwada Y, Shinada Y, Makino T, Mitsunashi T, Yasukuni N (1949) Natural gas in the vicinity of Mobara, Chiba-ken. J Jpn Assoc Pet Technol 14:245–274. https://doi.org/10.3720/japt.14.245
Article
Google Scholar
Kawai N (1951) Magnetic polarization of Tertiary rocks in Japan. J Geophys Res 56:73–79. https://doi.org/10.1029/JZ056i001p00073
Article
Google Scholar
Kazaoka O, Suganuma Y, Okada M, Kameo K, Head MJ, Yoshida T, Sugaya M, Kameyama S, Ogitsu I, Nirei H, Aida N, Kumai H (2015) Stratigraphy of the Kazusa Group, Chiba Peninsula, Central Japan: an expanded and highly-resolved marine sedimentary record from the Lower and Middle Pleistocene. Quat Int 383:116–134. https://doi.org/10.1016/j.quaint.2015.02.065
Article
Google Scholar
Kent DV, Opdyke ND (1977) Palaeomagnetic field intensity variation recorded in a Brunhes epoch deep-sea sediment core. Nature 266:156–159. https://doi.org/10.1038/266156a0
Article
Google Scholar
Kirschvink JL (1980) The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J R Astron Soc 62(3):699–718. https://doi.org/10.1111/j.1365-246X.1980.tb02601.x
Article
Google Scholar
Laj C, Mazaud A, Weeks R, Fuller M, Herrero-Bervera E (1991) Geomagnetic reversal paths. Nature 351:447. https://doi.org/10.1038/351447a0
Article
Google Scholar
Liu Q, Roberts AP, Rohling EJ, Zhu R, Sun Y (2008) Post-depositional remanent magnetization lock-in and the location of th Matuyama-Brunhes geomagnetic reversal boundary in marine and chineese loess sequences. Earth Planet Sci Lett 275:102–110
Article
Google Scholar
Macri P, Capraro L, Ferretti P, Scarponi D (2018) A high-resolution record of the Matuyama–Brunhes transition from the Mediterranean region: the Valle di Manche section (Calabria, Southern Italy). Phys Earth Planet Inter 278:1–15. https://doi.org/10.1016/j.pepi.2018.02.005
Article
Google Scholar
Ménabréaz L, Bourlès DL, Thouveny N (2012) Amplitude and timing of the Laschamp geomagnetic dipole low from the global atmospheric 10Be overpro-duction: contribution of authigenic 10Be/9Be ratios in west equatorial Pacific sediments. J Geophys Res 117:B11101
Google Scholar
Mitsunashi T (1954) Geology of the southern distinct of Kinadayama, Boso Peninsula-Notes on the extension of rock facies in time and space. J Geol Soc Jpn 60:461–472 (in Japanese with English abstract)
Article
Google Scholar
Mitsunashi T, Yasukuni N, Shinada Y (1959) Stratigraphical section ofthe Kazusa Group along the shores of the Rivers Yoro and Obitsu. Bull Geol Surv Jpn 10:83–98 (in Japanese, with English abstract)
Google Scholar
Nakagawa H, Niitsuma N, Hayasaka I 1969) Late Cenozoic geomagnetic chronology on the Boso Peninsula. J Geol Soc Jpn 73:267–281 (in Japanese, with English abstract). https://doi.org/10.5575/geosoc.75.267
Article
Google Scholar
Nakajima T (1978) Sedimentary environment of flysch sediments in the Boso Peninsula, Japan -relationship between flysch and its marginal facies of the Kiwada, Kurotaki and Anno Formations. J Geol Soc Jpn 84:645–660 (in Japanese with English abstract)
Article
Google Scholar
Niitsuma N (1971) Detailed study of the sediments recording the Matuyama-Brunhes geomagnetic reversal. Tohoku Univ Sci Rep 2nd Ser (Geol) 43:1–39
Google Scholar
Niitsuma N (1976) Magnetic stratigraphy in the Boso Peninsula. J Geol Soc Jpn 82:163–181 (in Japanese with English abstract)
Article
Google Scholar
Nishida N, Kazaoka O, Izumi K, Suganuma Y, Okada M, Yoshida T, Ogitsu I, Nakazato H, Kameyama S, Kagawa A, Morisaki M, Nirei N (2016) Sedimentary processes and depositional environments of a continuous marine succession across the Lower-Middle Pleistocene boundary: Kokumoto Formation, Kazusa Group, central Japan. Quat Int 397:3–15. https://doi.org/10.1016/j.quaint.2015.06.045
Article
Google Scholar
Oda H, Xuan C (2014) Deconvolution of continuous paleomagnetic data from passthrough magnetometer: a new algorithm to restore geomagnetic and environmental information based on realistic optimization. Geochem Geophys Geosyst 15:3907–3924. https://doi.org/10.1002/2014GC005513
Article
Google Scholar
Oda M (1977) Planktonic foraminiferal biostratigraphy of the Late Cenozoic sedimentary sequences, Central Honshu, Japan. In: Science reports of Tohoku University, 2nd series (geology), vol 48, pp 1–72
Google Scholar
Okada M, Niitsuma N (1989) Detailed paleomagnetic records during the Brunhes–Matuyama geomagnetic reversal and a direct determination of depth lag for magnetization in marine sediments. Phys Earth Planet Inter 56:133–150. https://doi.org/10.1016/0031-9201(89)90043-5
Article
Google Scholar
Okada M, Suganuma Y, Haneda Y, Kazaoka O (2017) Paleomagnetic direction and paleointensity variations during the Matuyama-Brunhes polarity transition from a marine succession in the Chiba composite section of the Boso Peninsula, central Japan. Earth Planets Space 69:45. https://doi.org/10.1186/s40623-017-0627-1
Article
Google Scholar
Olson PL, Glatzmaier GA, Coe RS (2011) Complex polarity reversals in a geodynamo model. Earth Planet Sci Lett 304:168–179. https://doi.org/10.1016/j.epsl.2011.01.031
Article
Google Scholar
Opdyke ND, Glass B, Hays JD, Foster J (1966) Paleomagnetic study of sediments in a revolutionary method of dating events in Earth’s history. Science 154:349–357. https://doi.org/10.1126/science.154.3747.349
Article
Google Scholar
Philippe ÉGH, Valet JP, St-Onge G, Thevarasan A (2018) Are paleomagnetic records from U-channels appropriate for studies of reversals and excursions? Geochem Geophys Geosyst 19:4130–4142. https://doi.org/10.1029/2018GC007803
Article
Google Scholar
Pickering KT, Souter C, Oba T, Taira A, Schaaf M, Platzman E (1999) Glacio-eustatic control on deep-marine clastic forearc sedimentation, Pliocene-mid-Pleistocene(c. 1180imentka)Kazusa Group. SE Japan. J Geol Soc Lond 156:125–136. https://doi.org/10.1144/gsjgs.156.1.0125
Article
Google Scholar
Raisbeck GM, Yiou F, Cattani O, Jouzel J (2006) 10Be evidence for the Matuyama–Brunhes geomagnetic reversal in the EPICA Dome C ice core. Nature 443:82–84. https://doi.org/10.1038/nature05266
Article
Google Scholar
Roberts AP, Tauxe L, Heslop D (2013) Magnetic paleointensity stratigraphy and high-resolution Quaternary geochronology: successes and future challenges. Quat Sci Rev 61:1–16. https://doi.org/10.1016/j.quascirev.2012.10.036
Article
Google Scholar
Sagnotti L, Giaccio B, Liddicoat JC, Nomade S, Renne PR, Scardia G, Sprain CJ (2016) How fast was the Matuyama–Brunhes geomagnetic reversal? A new subcentennial record from the Sulmona Basin, central Italy. Geophys J Int 204:798–812. https://doi.org/10.1093/gji/ggv486
Article
Google Scholar
Sagnotti L, Scardia G, Giaccio B, Liddicoat JC, Nomade S, Renne PR, Sprain CJ (2014) Extremely rapid directional change during Matuyama-Brunhes geomagnetic polarity reversal. Geophys J Int 199:1110–1124. https://doi.org/10.1093/gji/ggu287
Article
Google Scholar
Sato T, Takayama T, Kato M, Kudo T, Kameo K (1988) Calcareous microfossil biostratigraphy of the uppermost Cenozoic formations distributed in the coast of the Japan Sea, part 4: conclusion. J Jpn Assoc Pet Technol 53:474–491 (in Japanese with English abstract)
Google Scholar
Satoguchi Y, Nagahashi Y (2012) Tephrostratigraphy of the Pliocene to Middle Pleistocene Series in Honshu and Kyushu Islands, Japan. Island Arc 21:149–169. https://doi.org/10.1111/j.1440-1738.2012.00816.x
Article
Google Scholar
Shin JY, Yu Y, Kim W (2019) Wavelet-based verification of a relative paleointensity record from the North Pacific. Earth Planet Space 71:88. https://doi.org/10.1186/s40623-019-1067-x
Article
Google Scholar
Shinada Y, Maki S, Takada Y, Omori E (1951) Investigation of iodic brine waters in the vicinity of Kuniyoshi-machi, Chiba Pref. J Jpn Assoc Pet Technol 16:312–326
Article
Google Scholar
Simon Q, Bourlès DL, Thouveny N, Horng CS, Valet JP, Bassinot F, Choy S (2018b) Cosmogenic signature of geomagnetic reversals and excursions from the Réunion event to the Matuyama–Brunhes transition (0.7–2.14 Ma interval). Earth Planet Sci Lett 482:510–524. https://doi.org/10.1016/j.epsl.2017.11.021
Article
Google Scholar
Simon Q, Suganuma Y, Okada M, Haneda Y, ASTER team (2019) High-resolution 10Be and paleomagnetic recording of the last polarity reversal in the Chiba composite section: Age and dynamics of the Matuyama–Brunhes transition. Earth Planet Sci Lett 519:92–100. https://doi.org/10.1016/j.epsl.2019.05.004
Article
Google Scholar
Simon Q, Thouveny N, Bourlès DL, Bassinot F, Savranskaia T, Valet JP (2018a) Increased production of cosmogenic 10Be recorded in oceanic sediment se-quences: information on the age, duration, and amplitude of the geomagnetic dipole moment minimum over the Matuyama–Brunhes transition. Earth Planet Sci Lett 489:191–202. https://doi.org/10.1016/j.epsl.2018.02.036
Article
Google Scholar
Simon Q, Thouveny N, Bourlès DL, Valet JP, Bassinot F, Ménabréaz L, Guillou V, Choy S, Beaufort L (2016) Authigenic 10Be/9Be ratio signatures of the cosmogenic nuclide production linked to geomagnetic dipole moment variation since the Brunhes/Matuyama boundary. J Geophys Res Solid Earth 121:7716–7741. https://doi.org/10.1002/2016JB013335
Article
Google Scholar
Singer BS, Hoffman KA, Coe RS, Brown LL, Jicha BR, Pringle MS, Chauvin A (2005) Structural and temporal requirements for geomagnetic field reversal deduced from lava flows. Nature 434:633–636. https://doi.org/10.1038/nature03431
Article
Google Scholar
Singer BS, Jicha BR, Mochizuki N, Coe RS (2019) Synchronizing volcanic, sedimentary, and ice core records of Earth’s last magnetic polarity reversal. Sci Adv 5:eaaw4621. https://doi.org/10.1126/sciadv.aaw4621
Article
Google Scholar
Suganuma Y, Haneda Y, Kameo K, Kubota Y, Hayashi H, Itaki T, Okuda M, Head MJ, Sugaya M, Nakzato H, Igarashi A, Shikoku K, Hongo M, Watanabe M, Satoguchi Y, Takeshita Y, Nishida N, Izumi K, Kawamura K, Kawamata M, Okuno J, Yoshida T, Ogitsu I, Yabusaki H, Okada M (2018) Paleoclimatic and Paleoceanographic records of Marine Isotope Stage 19 at the Chiba composite section, central Japan: A reference for the Early-Middle Pleisotocene boundary. Quat Sci Rev 191:406–430. https://doi.org/10.1016/j.quascirev.2018.04.022
Article
Google Scholar
Suganuma Y, Okada M, Horie K, Kaiden H, Takehara M, Senda R, Kimura J, Kawamura K, Haneda Y, Kazaoka O, Head MJ (2015) Age of Matuyama–Brunhes boundary constrained by U-Pb zircon dating of a widespread tephra. Geology 43:491–494. https://doi.org/10.1130/G36625.1
Article
Google Scholar
Suganuma Y, Okuno J, Heslop D, Roberts AP, Yamazaki T, Yokoyama Y (2011) Post-depositional remanent magnetization lock-in for marine sediments deduced from 10 Be and paleomagnetic records through the Matuyama–Brunhes boundary. Earth Planet Sci Lett 311:39–52. https://doi.org/10.1016/j.epsl.2011.08.038
Article
Google Scholar
Suganuma Y, Yamazaki T, Kanamatsu T, Hokanishi N (2008) Relative paleointensity record during the last 800 ka from the equatorial Indian Ocean: implication for relationship between inclination and intensity variations. Geochem Geophys Geosyst 9:Q02011. https://doi.org/10.1029/2007GC001723
Article
Google Scholar
Suganuma Y, Yokoyama Y, Yamazaki T, Kawamura K, Horng CS, Matsuzaki H (2010) 10Be evidence for delayed acquisition of remanent magnetization in marine sediments: implication for a new age for the Matuyama–Brunhes boundary. Earth Planet Sci Lett 296:443–450. https://doi.org/10.1016/j.epsl.2010.05.031
Article
Google Scholar
Takeshita Y, Matsushima N, Teradaira H, Uchiyama T, Kumai H (2016) A marker tephra bed close to the Middle Pleistocene boundary: distribution of the Ontake-Byakubi tephra in central Japan. Quat Int 397:27–38. https://doi.org/10.1016/j.quaint.2015.03.054
Article
Google Scholar
Tauxe L (1993) Sedimentary Records of Relative Paleointensity of the Geomagnetic-Field - Theory and Practice. Rev Geophys 31:319–354. https://doi.org/10.1029/93RG01771
Article
Google Scholar
Tauxe L, Pick T, Kok YS (1995) Relative paleointensity in sediments: a Pseudo-Thellier approach. Geophys Res Lett 22:2885–2888. https://doi.org/10.1029/95GL03166
Article
Google Scholar
Tauxe L, Shackleton NJ (1994) Relative paleointensity records from the Ontong-Java Plateau. Geophys J Int 117:769–782. https://doi.org/10.1111/j.1365-246X.1994.tb02469.x
Article
Google Scholar
Tsuji T, Miyata Y, Okada M, Mita I, Nakagawa H, Sato Y, Nakamizu M (2005) Highresolution chronology of the lower Pleistocene Otadai and Umegase Formations of the Kazusa Group, Boso Peninsula, central Japan: chronostratigraphy of the JNOC TR-3 cores based on oxygen isotope, magnetostratigraphy and calcareous nannofossil. J Geol Soc Jpn 111:1–20 (in Japanese with English abstract)
Article
Google Scholar
Tsunakawa H, Okada M, Niitsuma N (1995) About 100 year Directional variation in the Matuyama–Brunhes transitional field inferred from the sedimentary records in the Boso Peninsula, Japan. J Geomagn Geoelectr 47:337–345. https://doi.org/10.5636/jgg.47.337
Article
Google Scholar
Tsunakawa H, Okada M, Niitsuma N (1999) Further application of the deconvolution method of post-depositional DRM to the precise record of the Matuyama-Brunhes reversal in the sediments from the Boso Peninsula, Japan. Earth Planets Space 51:169–173. https://doi.org/10.1186/BF03352221
Article
Google Scholar
Valet JP (2003) Time variations in geomagnetic intensity. Rev Geophys 41:1004. https://doi.org/10.1029/2001RG000104
Article
Google Scholar
Valet JP, Bassinot F, Bouilloux A, Bourlès D, Nomade S, Guillou V, Lopes F, Thouveny N, Dewilde F (2014) Geomagnetic, cosmogenic and climatic changes across the last geomagnetic reversal from Equatorial Indian Ocean sediments. Earth Planet Sci Lett 397:67–79. https://doi.org/10.1016/j.epsl.2014.03.053
Article
Google Scholar
Valet JP, Bassinot F, Simon Q, Savranskaia T, Thouveny N, Bourlés DL, Villedieu A (2019) Constraining the age of the last geomagnetic reversal from geochemical and magnetic analyses of Atlantic, Indian, and Pacific Ocean sediments. Earth Planet Sci Lett 506:323–331. https://doi.org/10.1016/j.epsl.2018.11.012
Article
Google Scholar
Valet JP, Fournier A (2016) Deciphering records of geomagnetic reversals. Rev Geophys 54. https://doi.org/10.1002/2015RG000506
Valet JP, Fournier A, Courtillot V, Herrero-Bervera E (2012) Dynamical similarity of geomagnetic field reversals. Nature 490:89–94. https://doi.org/10.1038/nature11491
Article
Google Scholar
Valet JP, Meynadier L, Guyodo Y (2005) Geomagnetic dipole strength and reversal rate over the past two million years. Nature 435:802–805. https://doi.org/10.1038/nature03674
Article
Google Scholar
Valet JP, Meynadier L, Simon Q, Thouveny N (2016) When and why sediments fail to record the geomagnetic field during polarity reversals? Earth Planet Sci Lett 453:96–107. https://doi.org/10.1016/j.epsl.2016.07.055
Article
Google Scholar
Yamazaki T (1999) Relative paleointensity of the geomagnetic field during Brunhes Chron recorded in North Pacific deep-sea sediment cores: orbital influence? Earth Planet Sci Lett 169:23–35. https://doi.org/10.1016/S0012-821X(99)00064-3
Article
Google Scholar
Yamazaki T, Abdeldayem AL, Ikehara K, (2003) Rock-magnetic changes with reduction diagenesis in Japan Sea sediments and preservation of geomagnetic secular variation in inclination during the last 30,000 years. Earth, Planets and Space 55 (6):327–340.
Article
Google Scholar
Yamazaki T (2008) Magnetostatic interactions in deep-sea sediments inferred from first-order reversal curve diagrams: Implications for relative paleointensity normalization. Geochem Geophys Geosyst 9:Q02005. https://doi.org/10.1029/2007GC001797
Article
Google Scholar
Yamazaki T, Ikehara M (2012) Origin of magnetic mineral concentration variation in the Southern Ocean. Paleoceanography 27:PA2206. https://doi.org/10.1029/2011pa002271
Article
Google Scholar
Yamazaki T, Kanamatsu T (2007) A relative paleointensity record of the geomagnetic field since 1.6 Ma from the North Pacific. Earth Planet Space 59:785–794. https://doi.org/10.1186/BF03352741
Article
Google Scholar
Zijderveld JDA (1967) A.C. demagnetization of rocks: analysis of result. In: Collinson DW, Creer KM, Runcorn SK (eds) Methods in paleomagnetism. Elsevier, New York, pp 254–286
Google Scholar