Acuña, M, Connerney J, Wasilewski P, Lin R, Mitchell D, Anderson K, Carlson C, McFadden J, Remè H, Mazelle C, Vignes D, Bauer S, Cloutier P, Ness N (2001) Magnetic field of mars: Summary of results from the aerobraking and mapping orbits. J Gephys Res 106: 23403–23417.
Article
Google Scholar
Acuña, MH, Connerney JEP, Wasilewski P, Lin RP, Anderson KA, Carlson CW, McFadden J, Curtis DW, Mitchell D, Reme H, Mazelle C, Sauvaud JA, d’Uston C, Cros A, Medale JL, Bauer SJ, Cloutier P, Mayhew M, Winterhalter D, Ness NF (1998) Magnetic field and plasma observations at Mars: Initial results of the Mars global surveyor mission. Science 279: 1676–1680.
Article
Google Scholar
Alboussiére, T, Deguen R, Melzani M (2010) Melting-induced stratification above the Earth’s inner core due to convective translation. Nature 466: 744–747.
Article
Google Scholar
Amit, H, Aubert J, Hulot G (2010a) Stationary, oscillating or drifting mantle-driven geomagnetic flux patchesJ Geophys Res B07108. doi:10.1029/2009JB006542.
Amit, H, Choblet G (2009) Mantle-driven geodynamo features - effects of post-perovskite phase transition. Earth Planets Space 61: 1255–1268.
Article
Google Scholar
Amit, H, Choblet G (2012) Mantle-driven geodynamo features - effects of compositional and narrow d” anomalies. Phys Earth Planet Inter190-191: 34–43.
Article
Google Scholar
Amit, H, Christensen U (2008) Accounting for magnetic diffusion in core flow inversions from geomagnetic secular variation. Geophys J Int 175: 913–924.
Article
Google Scholar
Amit, H, Christensen U, Langlais B (2011a) The influence of degree-1 mantle heterogeneity on the past dynamo of Mars. Phys Earth Planet Inter 189: 63–79.
Article
Google Scholar
Amit, H, Deschamps F, Choblet G (in press) Numerical dynamos with outer boundary heat flux inferred from probabilistic tomography – consequences for latitudinal distribution of magnetic flux. Geophys J Int. doi:10.1093/gji/ggv332.
Amit, H, Korte M, Aubert J, Constable C, Hulot G (2011b) The time-dependence of intense archeomagnetic flux patches. J Geophys Res 116: B12106. doi:10.1029/2011JB008538.
Article
Google Scholar
Amit, H, Leonhardt R, Wicht J (2010b) Polarity reversals from paleomagnetic observations and numerical dynamo simulations. Space Sci Rev 155: 293–335.
Article
Google Scholar
Amit, H, Olson P (2006) Time-average and time-dependent parts of core flow. Phys Earth Planet Inter 155: 120–139.
Article
Google Scholar
Amit, H, Olson P (2015) Lower mantle superplume growth excites geomagnetic reversals. Earth Planet Sci Lett 414: 68–76.
Article
Google Scholar
Anderson, BJ, Johnson CL, Korth H, Purucker ME, Winslow RM, Slavin JA, Solomon SC, McNutt RL, Raines JM, Zurbuchen TH (2012) The global magnetic field of Mercury from MESSENGER orbital observations. Science 333: 1859–1862.
Article
Google Scholar
Arkani-Hamed, J (2012) Life of the Martian dynamo. Phys Earth Planet Inter 196: 83–96.
Article
Google Scholar
Arkani-Hamed, J, Olson P (2010) Giant impact stratification of the Martian core. Geophys Res Lett 37: L02201. doi:10.1029/2009GL041417.
Article
Google Scholar
Aubert, J (2005) Steady zonal flows in spherical shell fluid dynamos. J Fluid Mech 542: 53–67.
Article
Google Scholar
Aubert, J, Amit H, Hulot G (2007) Detecting thermal boundary control in surface flows from numerical dynamos. Phys Earth Planet Inter 160: 143–156.
Article
Google Scholar
Aubert, J, Amit H, Hulot G, Olson P (2008) Thermo-chemical wind flows couple Earth’s inner core growth to mantle heterogeneity. Nature 454: 758–761.
Article
Google Scholar
Aubert, J, Finlay CC, Fournier A (2013) Bottom-up control of geomagnetic secular variation by the Earth’s inner core. Nature 502: 219–223.
Article
Google Scholar
Aubert, J, Labrosse S, Poitou C (2009) Modelling the paleo-evolution of the geodynamo. Geophys J Int 179: 1414–1428.
Article
Google Scholar
Aurnou, J, Andreadis S, Zhu L, Olson P (2003) Experiments on convection in Earth’s core tangent cylinder. Earth Planet Sci Lett 212: 119–134.
Article
Google Scholar
Bello, L, Coltice N, Rolf T, Tackley PJ (2014) On the predictability limit of convection models of the Earth’s mantle. Geochem Geophys Geosys 15. doi:10.1002/2014GC005254.
Benkhoff, J, van Casteren J, Hayakawa H, Fujimoto M, Laakso H, Novara M, Ferri P, Middleton HR, Ziethe R (2010) BepiColombo - Comprehensive exploration of Mercury: Mission overview and science goals. Planet Space Sci58. doi:10.1016/j.pss.2009.09.020.
Bercovici, D, Ricard Y (2014) Plate tectonics, damage and inheritance. Nature 508: 513–516.
Article
Google Scholar
Biggin, AJ, Steinberger B, Aubert J, Suttie N, Holme R, Torsvik TH, van der Meer DG, van Hinsbergen DJJ (2012) Possible links between long-term geomagnetic variations and whole-mantle convection processes. Nature Geosci 5: 526–533.
Article
Google Scholar
Bloxham, J (2002) Time-independent and time-dependent behaviour of high-latitude flux bundles at the core-mantle boundary. Geophys Res Lett 29. doi:10.1029/2001gl014543.
Braginsky, SI, Roberts PH (1995) Equations governing convection in Earth’s core and the geodynamo. Geophys Astrophys Fluid Dyn 79: 1–97.
Article
Google Scholar
Breuer, D, Labrosse S, Spohn T (2010) Thermal evolution and magnetic field generation in terrestrial planets and satellites. Space Sci Rev 152: 449–500.
Article
Google Scholar
Bull, AL, McNamara AK, Ritsema J (2009) Synthetic tomography of plume clusters and thermochemical piles. Earth Planet Sci Lett 278: 152–162.
Article
Google Scholar
Burke, K (2011) Plate tectonics, the Wilson cycle, and mantle plumes: geodynamics from the top. Annu Rev Earth Planet Sci 39: 1–29.
Article
Google Scholar
Burke, K, Steinberger B, Torsvik TH, Smethhurst MA (2008) Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary. Earth Planet Sci Lett 265: 49–60.
Article
Google Scholar
Busse, FH (1970) Thermal instabilities in rapidly rotating systems. J Fluid Mech 44: 441–460.
Article
Google Scholar
Cao, H, Aurnou JM, Wicht J, Dietrich W, Soderlund KM, Russell CT (2014) A dynamo explanation for Mercury’s anomalous magnetic field. Geophys Res Lett 41. doi:10.1002/2014GL060196.
Christensen, U, Aubert J (2006) Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys J Int 166: 97–114.
Article
Google Scholar
Christensen, U, Aubert J, Hulot G (2010) Conditions for Earth-like geodynamo models. Earth Planet Sci Lett 296: 487–496.
Article
Google Scholar
Christensen, U, Olson P (2003) Secular variation in numerical geodynamo models with lateral variations of boundary heat flow. Phys Earth Planet Inter 138: 39–54.
Article
Google Scholar
Christensen, U, Olson P, Glatzmaier G (1998) A dynamo model interpretation of geomagnetic field structures. Geophys Res Lett 25: 1565–1568.
Article
Google Scholar
Christensen, U, Wicht J (2007) Numerical dynamo simulations. In: Olson P (ed)Treatise on Geophysics Vol 8.. Elsevier Science, Amsterdam.
Google Scholar
Cizkova, H, Cadek O, Matyska C, Yuen D (2010) Implications of post-perovskite properties for core-mantle dynamics. Phys Earth Planet Inter 180: 235–243.
Article
Google Scholar
Cobden, L, Mosca I, Trampert JJR (2012) On the likelihood of post-perovskite near the core-mantle boundary: a statistical interpretation of seismic observations. Phys Earth Planet Inter210-211: 21–35.
Article
Google Scholar
Cobden, L, Thomas C (2013) The origin of d” reflections a systematic study of seismic array data sets. Geophys J Int 194: 1091–1118.
Article
Google Scholar
Coe, RS, Hongre L, Glatzmaier GA (2000) An examination of simulated geomagnetic reversals from a palaeomagnetic perspective. Phil Trans R Soc Lond 358: 1141–1170.
Article
Google Scholar
Courtillot, V, Besse J (1987) Magnetic field reversals, polar wander, and core-mantle coupling. Science 237: 1140–1147.
Article
Google Scholar
Davaille, A (1999) Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402: 756–760.
Article
Google Scholar
Davies, CJ, Gubbins D, Willis AP, Jimack PK (2008) Time-averaged paleomagnetic field and secular variation: Predictions from dynamo solutions based on lower mantle seismic tomography. Phys Earth Planet Inter 169: 194–203.
Article
Google Scholar
Deschamps, F, Cobden L, Tackley PJ (2012) The primitive nature of large low shear-wave velocity provinces. Earth Planet Sci Lett349-350: 198–208.
Article
Google Scholar
Deuss, A (2014) Heterogeneity and anisotropy of Earth’s inner core. Ann Rev Earth Planet Sci 42: 103–126.
Article
Google Scholar
Dietrich, W, Wicht J (2013) A hemispherical dynamo model: Implications for the Martian crustal magnetization. Phys Earth Planet Inter 217: 10–21.
Article
Google Scholar
Dougherty, MK, Kellock S, Southwood DJ, Balogh A, Smith EJ, Tsurutani BT, Gerlach B, Glassmeier K-H, Gleim F, Russell CT, Erdos G, Neubauer FM, Cowley SWH (2004) The Cassini magnetic field investigation. Space Sc Rev 114. doi:10.1007/s11214--004--1432--2.
Dziewonski, AM, Lekic V, Romanowicz BA (2010) Mantle anchor structure: an argument for bottom up tectonics. Earth Planet Sci Lett 299: 69–79.
Article
Google Scholar
Elkins-Tanton, LT, Zaranek SE, Parmentier EM, Hess PC (2005) Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet Sci Lett 236: 1–12.
Article
Google Scholar
Gillet, N, Pais MA, Jault D (2009) Ensemble inversion of time-dependent core flow models. Geochem Geophys Geosyst 10. doi:10.1029/2008GC002290.
Glatzmaier, GA (2002) Geodynamo simulations: how realistic are theyAnnu Rev Earth Planet Sci Lett 30: 237–257.
Article
Google Scholar
Glatzmaier, GA, Coe R, Hongre L, Roberts PH (1999) The role of the earth’s mantle in controlling the frequency of geomagnetic reversals. Nature 401: 885–890.
Article
Google Scholar
Glatzmaier, GA, Roberts PH (1995) A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 377: 203–209.
Article
Google Scholar
Glatzmaier, GA, Roberts PH (1997) Simulating the geodynamo. Contemp Phys 38: 269–288.
Article
Google Scholar
Glenn Sterenborg, M, Crowley JW (2013) Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos. Phys Earth Planet Inter 214: 53–73.
Article
Google Scholar
Gradstein, F, Ogg J, Schmitz M, Ogg G (2012) The Geologic Time Scale 2012. Elsevier Science, Amsterdam.
Google Scholar
Grasset, O, Dougherty MK, Coustenis A, Bunce EJ, Erd C, Titov D, Blanc M, Coates A, Drossart P, Fletcher LN, Hussmann H, Jaumann R, Krupp N, Lebreton J-P, Prieto-Ballesteros O, Tortora P, Tosi F, Van Hoolst T (2013) JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet Space Sci 78. doi:10.1016/j.pss.2012.12.002.
Grimm, RE, Solomon SC (1986) Tectonic tests of proposed polar wander paths for Mars and the Moon. Icarus 65: 110–121.
Article
Google Scholar
Gubbins, D (2003) Thermal core-mantle interactions: theory and observations. In: Dehant V, Creager K, Karato S, Zatman S (eds)Earth’s Core: dynamics, structure and rotation. AGU Geodynamics Series American Geophysical Union, Washington DC.
Gubbins, D, Davies CJ (2013) The stratified layer at the core-mantle boundary caused by barodiffusion of oxygen, sulphur and silicon. Phys Earth Planet Inter 215: 21–28.
Article
Google Scholar
Gubbins, D, Sreenivasan B, Mound J, Rost S (2011) Melting of the Earth’s inner core. Nature 473: 361–363.
Article
Google Scholar
Gubbins, D, Willis PW, Sreenivasan B (2007) Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure. Phys Earth Planet Inter 162: 256–260.
Article
Google Scholar
Harder, H, Christensen UR (1996) A one-plume model of Martian mantle convection. Nature 380: 507–509.
Article
Google Scholar
Heimpel, MH, Evans ME (2013) Testing the geomagnetic dipole and reversing dynamo models over Earth’s cooling history. Phys Earth Planet Inter 224: 124–131.
Article
Google Scholar
Hernlund, J, Thomas C, Tackley PJ (2005) A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature 434: 882–886.
Article
Google Scholar
Hoffman, KA (1996) Transitional paleomagnetic field behavior: Preferred paths or patches?Surv Geophys 17: 207–211.
Article
Google Scholar
Holme, R (2007) Large-scale flow in the core. In: Olson P (ed)Treatise on Geophysics, Vol 8.. Elsevier Science, Amsterdam.
Google Scholar
Holme, R, Olsen N (2006) Core surface ow modelling from high-resolution secular variation. Geophys J Int 166: 518–528.
Article
Google Scholar
Hood, LL, Young CN, Richmond NC, Harrison KP (2005) Modeling of major Martian magnetic anomalies: Further evidence for polar reorientations during the Noachian. Icarus 177. doi:10.1016/j.icarus.2005.02.008.
Hori, K, Wicht J (2013) Subcritical dynamos in the early Mars’ core: Implications for cessation of the past Martian dynamo. Phys Earth Planet Inter 219: 21–33.
Article
Google Scholar
Hulot, G, Eymin C, Langlais B, Mandea M, Olsen N (2002) Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data. Nature 416: 620–623.
Article
Google Scholar
Irving, JCE, Deuss A (2011) Hemispherical structure in inner core velocity anisotropy. J Geophys Res 116. doi:10.1029/2010JB007942.
Ishii, M, Tromp J (1999) Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth’s mantle. Science 285: 1231–1236.
Article
Google Scholar
Jackson, A (2003) Intense equatorial flux spots on the surface of the Earth’s core. Nature 424: 760–763.
Article
Google Scholar
Jackson, A, Jonkers ART, Walker MR (2000) Four centuries of geomagnetic secular variation from historical records. Phil Trans R Soc Lond A 358: 957–990.
Article
Google Scholar
Jellinek, AM, Johnson CL, Schubert G (2008) Constraints on the elastic thickness, heat flow, and melt production at early Tharsis from topography and magnetic field observations. J Geophys Res 113: E09004.
Google Scholar
Johnson, CL, Phillips RJ (2005) Evolution of the tharsis region of Mars: insights from magnetic field observations. Earth Planet Sci Lett 230: 241–254.
Article
Google Scholar
Jutzi, M, Asphaug E (2011) Forming the lunar farside highlands by accretion of a companion moon. Nature 476: 69–72.
Article
Google Scholar
Ke, Y, Solomatov VS (2006) Early transient superplumes and the origin of the Martian crustal dichotomy. J Geophys Res 111: 10001.
Article
Google Scholar
Ke, Y, Solomatov VS (2009) Coupled core-mantle thermal evolution of early Mars. J Geophys Res 114: 1–12.
Google Scholar
Kelly, P, Gubbins D (1997) The geomagnetic field over the past 5 million years. Geophys J Int 128: 315–330.
Article
Google Scholar
Korte, M, Donadini F, Constable C (2009) The geomagnetic field for 0-3ka: 2. a new series of time-varying global models. J Geophys Res 10: Q06008. doi:10.1029/2008GC002297.
Korte, M, Holme R (2010) On the persistence of geomagnetic flux lobes in global Holocene field models. Phys Earth Planet Inter 182: 179–186.
Article
Google Scholar
Kuang, W, Jiang W, Roberts J, Frey HV (2014) Could giant basin-forming impacts have killed martian dynamoGeophys Res Lett 41: 8006–8012.
Article
Google Scholar
Kuang, W, Jiang W, Wang T (2008) Sudden termination of Martian dynamo? implications from subcritical dynamo simulations. Geophys Res Lett 35: L14204.
Article
Google Scholar
Kutzner, C, Christensen UR (2002) From stable dipolar towards reversing numerical dynamos. Phys Earth Planet Inter 131: 29–45.
Article
Google Scholar
Kutzner, C, Christensen UR (2004) Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths. Geophys J Int 157: 1105–1118.
Article
Google Scholar
Labrosse, S (2003) Thermal and magnetic evolution of the earth’s core. Phys Earth Planet Inter 140: 127–143.
Article
Google Scholar
Langlais, B, Purucker M (2007) A polar magnetic paleopole associated with Apoolinaris Patera Mars. Planet Space Sci 55: 270–279.
Article
Google Scholar
Langlais, B, Purucker M, Mandea M (2004) Crustal magnetic field of Mars. J Geophys Res 109: E02008.
Google Scholar
Lay, T, Herlund J, Buffett B (2008) Core-mantle boundary heat flow. Nature Geosci 1: 25–32.
Article
Google Scholar
Lay, T, Hernlund J, Garnero EJ, Thorne MS (2006) A post-perovskite lens and D” heat flux beneath the central Pacific. Science 314: 1272–1276.
Article
Google Scholar
Lebrun, T, Massol H, Chassefiére E, Davaille A, Marcq E, Sarda P, Leblanc F, Branedeis G (2013) Thermal evolution of an early magma ocean in interaction with the atmosphere. J Geophys Res 118: 1155–1176.
Article
Google Scholar
Lekic, V, Cottaar S, Dziewonski A, Romanowicz B (2012) Cluster analysis of global lower mantle tomography: A new class of structure and implications for chemical heterogeneity. Earth Planet Sci Lett357-358: 68–77.
Article
Google Scholar
Lhuillier, F, Hulot G, Gallet Y (2013) Statistical properties of reversals and chrons in numerical dynamos and implications for the geodynamo. Phys Earth Planet Inter 220: 19–36.
Article
Google Scholar
Lillis, RJ, Frey HV, Manga M (2008) Rapid decrease in Martian crustal magnetisation in the Noachian era: implications for the dynamo and climate of early mars. Geophys Res Lett 35: L14203.
Article
Google Scholar
Lithgow-Bertelloni, C, Richards MA (1998) Dynamics of cenozoic and mesozoic plate motion. Rev Geophys 36: 27–78.
Article
Google Scholar
Love, JJ (1998). Paleomagnetic volcanic data and geometric regularity of reversals and excursions 103: 12435–12452.
Google Scholar
Manglik, A, Wicht J, Christensen UR (2010) A dynamo model with double diffusive convection for Mercury’s core. Earth Planet Sci Lett 289: 619–628.
Article
Google Scholar
Marinova, MM, Aharonson O, Asphaug E (2008) Mega-impact formation of the Mars hemispheric dichotomy. Nature 453: 1216–219.
Article
Google Scholar
Marinova, MM, Aharonson O, Asphaug E (2011) Geophysical consequences of planetary-scale impacts into a Mars-like planet. Icarus 211: 960–985.
Article
Google Scholar
Masters, G, Laske G, Bolton H, Dziewonski A (2000) The relative behavior of shear velocity, bulk sound velocity, and compressional velocity in the mantle: Implications for chemical and thermal structure. In: Karato S, Forte A, Liebermann R, Masters G, Stixrude L (eds)Earths deep interior, Vol 117.. AGU Monograph, Washington D.C.
Google Scholar
Matsuyama, I, Mitrovica JX, Manga M, Perron JT, Richards MA (2006) Rotational stability of dynamic planets with elastic lithospheres. J Geophys Res 111. doi:10.1029/2005JE002447.
McNamara, A, Garnero E, Rost S (2010) Tracking deep mantle reservoirs with ultra-low velocity zones. Earth Planet Sci Lett 299: 1–9.
Article
Google Scholar
McNamara, A, Zhong S (2005) Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437: 1136–1139.
Article
Google Scholar
Merrill, RT, McElhinny MW, McFadden PL (1998) The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle. Academic Press, San Diego, California, USA.
Google Scholar
Merrill, RT, McFadden PL (1999) Geomagnetic polarity transitions37: 201–226.
Milbury, C, Schubert G, Raymond CA, Smrekar SE, Langlais B (2012) The history of Mars’ dynamo as revealed by modeling magnetic anomalies near Tyrrhenus Mons and Syrtis Major. J Geophys Res 117. doi:10.1029/2012JE004099
Moffatt, HK (1978) Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press, Cambridge, UK.
Google Scholar
Monnereau, M, Calvet M, Margerin L, Souriau A (2010) Lopsided growth of Earth’s inner core. Science 238: 1014–1017.
Article
Google Scholar
Monteux, J, Amit H, Choblet G, Langlais B, Tobie G (2015) Giant impacts, heterogeneous mantle heating and a past hemispheric dynamo on Mars. Phys Earth Planet Inter 240: 114–124.
Article
Google Scholar
Monteux, J, Arkani-Hamed J (2014) Consequences of giant impacts in early Mars: Core merging and Martian dynamo evolution. J Geophys Res 119: 480–505.
Article
Google Scholar
Monteux, J, Coltice N, Dubuffet F, Ricard Y (2007) Thermo-mechanical adjustment after impacts during planetary growth. Geophys Res Lett 34: 24201–24205.
Article
Google Scholar
Monteux, J, Jellinek AM, Johnson CL (2011) Why might planets and moons have early dynamosEarth Planet Sci Lett 310: 349–359.
Article
Google Scholar
Monteux, J, Jellinek AM, Johnson CL (2013) Dynamics of core merging after a mega-impact with applications to Mars’ early dynamo. Icarus 226: 20–32.
Article
Google Scholar
Monteux, J, Schaeffer N, Amit H, Cardin P (2012) Can a sinking metallic diapir generate a dynamoJ Geophys Res 117: E10005. doi:10.1029/2012JE004075.
Article
Google Scholar
Mosca, I, Cobden L, Deuss A, Ritsema J, Trampert J (2012) Seismic and mineralogical structures of the lower mantle from probabilistic tomography. J Geophys Res 117. doi:10.1029/2011JB008851.
Murakami, M, Hirose K, Sata N, Ohishi Y, Kawamura K (2004) Post-perovskite phase transition in MgSio3. Science 304: 855–858.
Article
Google Scholar
Nakagawa, T, Tackley PJ (2008) Lateral variations in cmb heat flux and deep mantle seismic velocity caused by a thermal-chemical-phase boundary layer in 3d spherical convection. Earth Planet Sci Lett 271: 348–358.
Article
Google Scholar
Nakagawa, T, Tackley PJ (2011) Effects of low-viscosity post-perovskite on thermo-chemical mantle convection in a 3-D spherical shell. Geophys Res Lett 38: L04309.
Article
Google Scholar
Ni, S, Helmberger DV, Tromp J (2005) Three-dimensional structure of the African superplume from waveform modelling. Geophys J Int 161: 283–294.
Article
Google Scholar
Ni, S, Tan E, Gurnis M, Helmberger D (2002) Sharp sides to the African superplume. Science 296: 1850–1852.
Article
Google Scholar
Nimmo, F, Hart SD, Horycansky DG, Agnor CB (2008) Implications of an impact origin for the Martian hemispheric dichotomy. Nature 453: 1220–1223.
Article
Google Scholar
Oganov, A, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSio3 in Earth’s D” layer. Nature 430: 445–448.
Article
Google Scholar
Oliveira, JS, Langlais B, Pais MA, Amit H (2015) A new method to model partially distributed magnetic field measurements, with application to Mercury. J Geophys Res. 120. doi:10.1002/2014JE004734.
Olsen, N, Luehr H, Finlay CC, Sabaka TJ, Michaelis I, Rauberg J, Tøffner-Clausen L (2014) The CHAOS-4 geomagnetic field model. Geophys J Int 197: 815–827.
Article
Google Scholar
Olson, P (2007a) Gravitational dynamos and the low frequency geomagnetic secular variation. Proc Nat Acad Sci 104: 20159–20166.
Article
Google Scholar
Olson, P (2007b) Overview. In: Olson P (ed)Treatise on Geophysics, Vol 8.. Elsevier Science, Amsterdam.
Google Scholar
Olsen, N, Friis-Christensen E, Floberghagen R, Alken P, Beggan CD, Chulliat A, Doornbos E, da Encarnação JT, Hamilton B, Hulot G, van den IJssel J, Kuvshinov A, Lesur V, Lühr H, Macmillan S, Maus S, Noja M, Olsen PEH, Park J, Plank G, Püthe C, Rauberg J, Ritter P, Rother M, Sabaka TJ, Schachtschneider R, Sirol O, Stolle C, Thébault E, Thomson AWP, et al (2013) The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products. Earth, Planets and Space 65(11): 1189–1200. doi:10.5047/eps.2013.07.001.
Article
Google Scholar
Olson, P, Amit H (2014) Magnetic reversal frequency scaling in dynamos with thermochemical convection. Phys Earth Planet Inter 229: 122–133.
Article
Google Scholar
Olson, P, Christensen U (2002) The time averaged magnetic field in numerical dynamos with nonuniform boundary heat flow. Geophys J Int 151: 809–823.
Article
Google Scholar
Olson, P, Christensen U (2006) Dipole moment scaling for convection-driven planetary dynamos. Earth Planet Sci Lett 250: 561–571.
Article
Google Scholar
Olson, P, Christensen UR, Glatzmaier GA (1999) Numerical modeling of the geodynamo: Mechanisms of field generation and equilibration. J Geophys Res 104: 10383–110404.
Article
Google Scholar
Olson, P, Coe RS, Driscoll PE, Glatzmaier GA, Roberts PH (2010) Geodynamo reversal frequency and heterogeneous core-mantle boundary heat flow. Phys Earth Planet Inter 180: 66–79.
Article
Google Scholar
Olson, P, Deguen R (2012) Lopsided inner core growth and eccentricity of the geomagnetic dipole. Nat Geosci 5(8): 565–569.
Article
Google Scholar
Olson, P, Deguen R, Hinnov LA, Zhong S (2013) Controls on geomagnetic reversals and core evolution by mantle convection in the Phanerozoic. Phys Earth Planet Inter 214: 87–103.
Article
Google Scholar
Perron, JT, Mitrovica JX, Manga M, Matsuyama I, Richards MA (2007) Evidence for an ancient Martian ocean in the topography of deformed shorelines. Nature 447: 840–843.
Article
Google Scholar
Pierazzo, E, Vickery AM, Melosh HJ (1997) A reevaluation of impact melt production. Icarus 127: 408–423.
Article
Google Scholar
Pozzo, M, Davies C, Gubbins D, Alfè D (2012) Thermal and electrical conductivity of iron at Earth’s core conditions. Nature 485: 355–358.
Article
Google Scholar
Reese, CC, Orth CP, Solomatov VS (2011) Impact megadomes and the origin of the martian crustal dichotomy. Icarus 213: 433–442.
Article
Google Scholar
Reese, CC, Solomatov VS (2010) Early martian dynamo generation due to giant impacts. Icarus 207: 82–97.
Article
Google Scholar
Reese, CC, Solomatov VS, Baumgardner JR (2002) Survival of impact-induced thermal anomalies in the Martian mantle. J Geophys Res 107: 1–12.
Google Scholar
Ritsema, J, McNamara A, Bull A (2007) Tomographic filtering of geodynamic models: Implications for model interpretation and large-scale mantle structure. J Geophys Res 112: B01303.
Google Scholar
Roberts, JH, Arkani-Hamed J (2012) Impact-induced mantle dynamics on Mars. Icarus 218: 278–289.
Article
Google Scholar
Roberts, JH, Arkani-Hamed J (2014) Impact heating and coupled core cooling and mantle dynamics on Mars. J Geophys Res 119: 729–744.
Article
Google Scholar
Roberts, JH, Barnouin OS (2012) The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury. J Geophys Res 117: E02007.
Google Scholar
Roberts, JH, Lillis RJ, Manga M (2009) Giant impacts on early Mars and the cessation of the Martian dynamo. J Geophys Res 114: E04009. doi:10.1029/2008JE003287.
Google Scholar
Roberts, JH, Zhong S (2006) Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J Geophys Res 111: E06013.
Google Scholar
Roberts, JH, Zhong S (2007) The cause for the north-south orientation of the crustal dichotomy and the equatorial location of Tharsis on Mars. Icarus 190(1): 24–31.
Article
Google Scholar
Rolf, T, Coltice N, Tackley PJ (2012) Linking continental drift, plate tectonics and the thermal state of the Earth’s mantle. Earth Planet Sci Lett. 351–352: 134–146.
Rolf T, Coltice N, Tackley PJ (2014) Statistical cyclicity of the supercontinent cycle. Geophys Res Lett 41. doi:10.1002/2014GL059595.
Romanowicz, B, Gung Y (2002) Superplumes from the core-mantle boundary to the lithosphere: Implications for heat flux. Science 296: 513–516.
Article
Google Scholar
Sakuraba, A, Roberts PH (2009) Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nat Geosci 2: 802–805.
Article
Google Scholar
Schubert, G, Masters G, Olson P, Tackley P (2004) Superplumes or plume clustersPhys Earth Planet Inter 146: 147–162.
Article
Google Scholar
Schubert, G, Spohn T (1990) Thermal history of Mars and the sulfur content of its core. J Geophys Res 95: 14095–14104.
Article
Google Scholar
Scotese, CR (2001) Atlas of Earth history In: PALEOMAP Progress Rep. 90-0497. Dep. of Geol, Univ. of Tex. at Arlington.
Senshu, H, Kuramoto K, Matsui T (2002) Thermal evolution of a growing mars. J Geophys Res 107: 1–13.
Google Scholar
Seton, M, Müller RD, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S, Chandler M (2012) Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci Rev 113: 212–270.
Article
Google Scholar
Shim, S-H, Lay T (2014) Post-perovskite at ten. Nat Geosci 7: 621–623.
Article
Google Scholar
Solomatov, VS (2007) Magma oceans and primordial mantle differentiation. In: Schubert G (ed)Treatise on Geophysics, Vol 9.. Elsevier Science, Amsterdam.
Google Scholar
Srámek, O, Zhong S (2010) Long-wavelength stagnant lid convection with hemispheric variation in lithospheric thickness: link between Martian crustal dichotomy and TharsisJ Geophys Res 115: E09010.
Google Scholar
Srámek, O, Zhong S (2012) Martian crustal dichotomy and Tharsis formation by partial melting coupled to early plume migration. J Geophys Res 117: E01005.
Google Scholar
Sreenivasan, B (2009) On dynamo action produced by boundary thermal coupling. Phys Earth Planet Inter 177: 130–138.
Article
Google Scholar
Sreenivasan, B, Gubbins D (2011) On mantle-induced heat flow variations at the inner core boundary. Phys Earth Planet Inter 187: 336–341.
Article
Google Scholar
Sreenivasan, B, Jellinek AM (2012) Did the tharsis plume terminate the Martian dynamo?Earth Planet Sci Lett 209–217.
Sreenivasan, B, Jones CA (2011) Helicity generation and subcritical behaviour in rapidly rotating dynamos. J Fluid Mech 688: 5–30.
Article
Google Scholar
Stanley, S (2010) A dynamo model for axisymmetrizing Saturn’s magnetic field. Geophys Res Lett 37: 5201.
Article
Google Scholar
Stanley, S, Elkins-Tanton L, Zuber MT, Parmentier EM (2008) Mars’ paleomagnetic field as the result of a single-hemisphere dynamo. Science 321: 1822–1825.
Article
Google Scholar
Stevenson, D (1983) Planetary magnetic fields. Rep Prog Phys 46: 555–620.
Article
Google Scholar
Tackley, P (2002) The strong heterogeneity caused by deep mantle layering. Geophys Geochem Geosyst 3. doi:10.1029/2001GC000167.
Tackley, PJ (2011) Living dead slabs in 3-D: The dynamics of compositionally-stratified slabs entering a ’slab graveyard’ above the core-mantle boundary. Phys Earth Planet Inter 188: 150–162.
Article
Google Scholar
Tackley, PJ, King SD (2003) Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations. Geochem Geophys Geosyst 4. doi:10.1029/2001GC000214.
Takahashi, F (2014) Double diffusive convection in the Earth’s core and the morphology of the geomagnetic field. Phys Earth Planet Inter 226: 83–87.
Article
Google Scholar
Takahashi, F, Tsunakawa H, Matsushima M, Mochizuki N, Honkura Y (2008) Effects of thermally heterogeneous structure in the lowermost mantle on the geomagnetic field strength. Earth Planet Sci Lett 272: 738–746.
Article
Google Scholar
Tan, E, Gurnis M (2007) Compressible thermochemical convection and application to lower mantle structures. J Geophys Res 112. doi:10.1029/2006JB004505.
Tanaka, S, Hamaguchi H (1997) Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)-PKP(DF) times. J Geophys Res 102: 2925–2938.
Article
Google Scholar
To, A, Romanowicz B, Capdeville Y, Takeuchi N (2005) 3D effects of sharp boundaries at the borders of the African and Pacific superplumes: Observation and modeling. Earth Planet Sci Lett 233: 137–153.
Article
Google Scholar
Tonks, WB, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Res 98: 5319–5333.
Article
Google Scholar
Torsvik, TH, Burke K, Steinberger B, Webb SJ, Ashwel LD (2010) Diamonds sampled by plumes from the core-mantle boundary. Nature 466: 352–355.
Article
Google Scholar
Torsvik, TH, Smethhurst MA, Burke K, Steinberger B (2006) Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys J Int 167: 1447–1460.
Article
Google Scholar
Trampert, J, Deschamps F, Resovsky J, Yuen D (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science 306: 853–856.
Article
Google Scholar
Trümper, T, Breuer M, Hansen U (2012) Numerical study on double-diffusive convection in the Earth’s core. Phys Earth Planet Inter 194–195: 55–63.
Wang, Y, Wen L (2007) Geometry and P and S velocity structure of the “African Anomaly”. J Geophys Res 112: B05313.
Google Scholar
Watters, WA, Zuber MT, Hager BH (2009) Thermal perturbations caused by large impacts and consequences for mantle convection. J Geophys Res 114: E02001.
Google Scholar
Wicht, J, Heyner D (2014) Mercury’s magnetic field in the messenger era. In: Shuanggen J (ed)Planetray Geodesy and Remote Sensing.. CRC Press, London.
Google Scholar
Wicht, J, Stellmach S, Harder H (2009) Numerical models of the geodynamo: From fundamental Cartesian models to 3D simulations of field reversals. In: Glassmeier H, Soffel H, Negendank J (eds)Geomagnetic Field Variations - Space-time structure, processes, and effects on system Earth.. Springer, Berlin.
Google Scholar
Wicht, J, Stellmach S, Harder H (2011) Numerical dynamo simulations: From basic concepts to realistic models. In: Freeden W, Nashed M, Sonar T (eds)Handbook of Geomathematics.. Springer, Berlin - Heidelberg - New York.
Google Scholar
Williams, GE (2000) Geological constraints on the Precambrian history of Earth’s rotation and the Moon’s orbit. Rev Geophys 38: 37–59.
Article
Google Scholar
Willis, PW, Sreenivasan B, Gubbins D (2007) Thermal core-mantle interaction: Exploring regimes for ’locked’ dynamo action. Phys Earth Planet Inter 165: 83–92.
Article
Google Scholar
Yoshida, M, Santosh M (2011) Supercontinents, mantle dynamics and plate tectonics: A perspective based on conceptual vs. numerical models. Earth Sci Rev 105: 1–24.
Article
Google Scholar
Zhang, N, Zhong S (2011) Heat fluxes at the Earth’s surface and core-mantle boundary since Pangea formation and their implications for the geomagnetic superchrons. Earth Planet Sci Lett 306: 205–2016.
Article
Google Scholar
Zhang, N, Zhong SJ, Leng W, Li ZX (2010) A model for the evolution of the Earth’s mantle structure since the early Paleozoic. J Geophys Res 115: B06401.
Google Scholar
Zhang, P, Cohen RE, Haule K (2015) Effects of electron correlations on transport properties of iron at Earth’s core conditions. Nature 517: 605–607.
Article
Google Scholar
Zhong, S, Zhang N, Li Z-X, Roberts JH (2007) Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth Planet Sci Lett 261: 551–564.
Article
Google Scholar