Skip to main content

Advertisement

Table 1 Summary of dynamo models control parameters, geometry, convection styles and reversibility in the following papers: AC09 (Amit and Choblet 2009), AC12 (Amit and Choblet 2012), ADC15 (Amit et al. in press), ODHZ13 (Olson et al. 2013), AO15 (Amit and Olson 2015), SJ12 (Sreenivasan and Jellinek 2012), KJRF14 (Kuang et al. 2014) and MACLT15 (Monteux et al. 2015). In all papers P r=1. Control parameters correspond to the definitions in this paper (see “Methods” section), so the values may differ from the original papers if different definitions were used (in particular for the Ekman number). Alternative definitions of CMB heat flux heterogeneity amplitudes $q_{\textit {eff}}^{*}$ (termed here effective) include f of SJ12 (12), ε l of KJRF14 (also 12) and ${q_{0}^{r}}$ of MACLT15 (13). The Rayleigh number for SJ12 and KJRF14 is given in terms of the critical value for the onset of convection R a c . The time-dependent inner core size in ODHZ13 is determined based on a core evolution model

From: Towards more realistic core-mantle boundary heat flux patterns: a source of diversity in planetary dynamos

Paper E Ra Pm q $q_{\textit {eff}}^{*}$ r i /r o Conv R e v?
AC09 3·10−4 106 3 0.5 0.35 TC No
AC12 3·10−4 (0.5−1)·106 3−7 0.5−0.8 0.35 TC No
ADC15 3·10−4 (1−3)·106 3−10 0.7−1.34 0.35 TC No
ODHZ13 5.75·10−3 (1.5−4)·104 20 0.67−1.1 Variable C Both
AO15 (1−6)·10−3 (0.6−18)·105 20 0.65−2.22 0.35 C Both
SJ12 5·10−5 12R a c 1 4−29 0.35 TC No
KJRF14 2.6·10−5 R a c 1 0.05−0.3 0.31 T Yes
MACLT15 (1−3)·10−4 (0.735−4)·107 3 0.3−0.8 0.04−0.26 0.2 T Both
  1. Conv convection type, T thermal, TC thermochemical, C chemical, Rev? reversibility