Akizawa N, Ohara Y, Okino K, Ishizuka O, Yamashita H, Machida S, Sanfilippo A, Basch V, Snow JE, Sen A, Hirauchi K, Michibayashi K, Harigane Y, Fujii M, Asanuma H, Hirata T (2021) Geochemical characteristics of back-arc basin lower crust and upper mantle at final spreading stage of Shikoku Basin: an example of Mado Megamullion. Prog Earth Planet Sci 8:65. https://doi.org/10.1186/s40645-021-00454-3
Article
Google Scholar
Altis S (1999) Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis. Tectonophysics 313:271–292. https://doi.org/10.1016/S0040-1951(99)00204-8
Article
Google Scholar
Anders E, Grevesse N (1989) Abundances of the elements: Meteroritic and solar. Geochim Cosmochim Acta 53:197–214. https://doi.org/10.1016/0016-7037(89)90286-X
Article
Google Scholar
Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationship: Review and interpretation. Chem Geol 59:279–293. https://doi.org/10.1016/0009-2541(94)90066-3
Article
Google Scholar
Armstrong AA (2010) U.S. Extended Continental Shelf Cruise to Map Sections of the Mariana Trench and the Eastern and Southern Insular Margins of Guam and the Northern Mariana Islands. UNH-CCOM/JHC Technical Report 1–45.
Avé Lallemant HG (1975) Mechanisms of preferred orientations in olivine in tectonite peridotites. Geology 3:653–656. https://doi.org/10.1130/0091-7613(1975)3%3C653:MOPOOO%3E2.0.CO;2
Article
Google Scholar
Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107:27–40. https://doi.org/10.1007/BF00311183
Article
Google Scholar
Basch V, Sanfilippo A, Sani C, Ohara Y, Snow J, Ishizuka O, Harigane Y, Michibayashi K, Sen A, Akizawa N, Okino K, Fujii M, Yamashita H (2020) Crustal accretion in a slow spreading back-arc basin: insights from the Mado Megamullion oceanic core complex in the Shikoku Basin. Geohem Geophys Geosyst 21:e2020GC009199. https://doi.org/10.1029/2020GC009199
Article
Google Scholar
Beccaluva L, Maciotta G, Savelli C, Serri G, Zeda O (1980) Geochemistry and K–Ar ages of volcanics dredged in the Philippine Sea (Mariana, Yap, Palau trenches and Parece Vela Basin). In: Hayes DE (ed) The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, AGU Geophys Monogr Ser, 23, pp 247–268.
Bloomer SH, Hawkins JW (1983) Gabbroic and ultramafic rocks from the Mariana Trench: An island arc ophiolite. In: Hayes DE (ed) AGU Geophys Monogr Ser, 27, pp 294–317.
Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454. https://doi.org/10.1038/372452a0
Article
Google Scholar
Bodinier JL, Godard M (2014) Orogenic, ophiolitic, and abyssal peridotites. In: Holland H, Turekian K (eds) Treatise on geochemistry (second edition), vol 3. Elsevier, pp 103–167
Chapter
Google Scholar
Bryndzia LT, Wood BJ (1990) Oxygen thermobarometry of abyssal spinel peridotites: the redox state and C-O-H volatile composition of the Earth’s sub-oceanic upper mantle. Am J Sci 290:1093–1116. https://doi.org/10.2475/ajs.290.10.1093
Article
Google Scholar
Bunge HJ (1982) Texture analysis in materials sciences. Buttleworths, London, p 593
Google Scholar
Cannat M, Mevel C, Maia M, Deplus C, Durand C, Gente P, Agrinier P, Belarouchi A, Dubuisson G, Humler E, Reynolds J (1995) Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N). Geology 23:49–52. https://doi.org/10.1130/0091-7613(1995)023%3C0049:TCUEAR%3E2.3.CO;2
Article
Google Scholar
Chen L, Tang L, Li X, Dong Y, Yu X, Ding W (2019) Geochemistry of peridotites from the Yap Trench, Western Pacific: implications for subduction zone mantle evolution. Int Geol Rev 61:1037–1051. https://doi.org/10.1080/00206814.2018.1484305
Article
Google Scholar
Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76. https://doi.org/10.1007/BF00373711
Article
Google Scholar
Dick HJB, Kvassnes AJS, Robinson PT, MacLeod CJ, Kinoshita H (2019) The Atlatis Bank gabbro massif, Southwest Indian Ridge. Prog Earth Planet Sci 6:64. https://doi.org/10.1186/s40645-019-0307-9
Article
Google Scholar
Escartín J, Smith D, Cann J, Schouten H, Langmuir CH, Escrig S (2008) Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455:790–794. https://doi.org/10.1038/nature07333
Article
Google Scholar
Fryer P, Becker N, Appelgate B, Martinez F, Edwards M, Fryer G (2003) Why is the challenger deep so deep? Earth Planet Sci Lett 211:259–269. https://doi.org/10.1016/S0012-821X(03)00202-4
Article
Google Scholar
Fujioka K, Okino K, Kanamatsu T, Ohara Y (2002) Morphology and origin of the challenger deep in the Southern Mariana Trench. Geophys Res Lett 29:1372. https://doi.org/10.1029/2001GL013595
Article
Google Scholar
Griffin WL, Powell WJ, Pearson NJ, O’Reilly SY (2008) GLITTER: Data reduction software for laser ablation ICP–MS. In: Sylvester P (ed) Laser Ablation ICP–MS in the Earth Sciences: Current practices and outstanding issues. Series 40. Mineralogical Association of Canada, Vancouver BC, pp 308–311.
Harigane Y, Michibayashi K, Ohara Y (2008) Shearing within lower crust during progressive retrogression: structural analyses of gabbroic rocks from the Godzilla Mullion, an oceanic core complex in the Parece Vela backarc basin. Tectonophysics 457:183–196. https://doi.org/10.1016/j.tecto.2008.06.009
Article
Google Scholar
Harigane Y, MichibayashiOhara K (2010) Amphibolitization within the lower crust in the termination area of the Godzilla Megamullion an oceanic core complex in the Parece Vela Basin. Isl Arc 19:718–730. https://doi.org/10.1111/j.1440-1738.2010.00741.x
Article
Google Scholar
Harigane Y, Michibayashi K, Ohara Y (2011a) Relicts of deformed lithospheric mantle within serpentinites and weathered peridotites from the Godzilla Megamullion, Parece Vela Back-arc Basin. Philippine Sea Isl Arc 20:174–187. https://doi.org/10.1111/j.1440-1738.2011.00759.x
Article
Google Scholar
Harigane Y, Michibayashi K, Ohara Y (2011b) Deformation and hydrothermal metamorphism of gabbroic rocks within the Godzilla Megamullion, Parece Vela Basin, Philippine Sea. Lithos 124:185–199. https://doi.org/10.1016/j.lithos.2011.02.001
Article
Google Scholar
Harigane Y, Okamoto A, Morishita T, Snow JE, Tamura A, Yamashita H, Michibayashi K, Ohara Y, Arai S (2019) Melt-fluid infiltration along detachment shear zones in oceanic complexes: insights from amphiboles in gabbro mylonites from the Godzilla Megamullion, Parece Vela Basin, the Philippine Sea. Lithos 344–345:217–231. https://doi.org/10.1016/j.lithos.2019.06.019
Article
Google Scholar
Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8. https://doi.org/10.1007/BF00320827
Article
Google Scholar
Hawkins J, Batiza R (1977) Metamorphic rocks of the Yap arc-trench system. Earth Planet Sci Lett 37:216–229. https://doi.org/10.1016/0012-821X(77)90166-2
Article
Google Scholar
Hellebrand E, Snow JE, Dick JB, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681. https://doi.org/10.1038/35070546
Article
Google Scholar
Holtzman BK, Kohlstedt DL, Zimmerman ME, Heidelbach F, Hiraga T, Hustoft J (2003) Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science 301:1227–1230. https://doi.org/10.1126/science.1087132
Article
Google Scholar
Ishii T, Robinson PT, Maekawa H, Fiske R (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. Proc Ocean Drill Prog Sci Results 125:593–614
Google Scholar
Ishizuka O, Tani K, Reagan MK, Kanayama K, Umino S, Harigane Y, Sakamoto I, Miyajima Y, Yuasa M, Dnkey DJ (2011) The timescales of subduction initiation and subsequent evolution of oceanic island arc. Earth Planet Sci Lett 306:229–240. https://doi.org/10.1016/j.epsl.2011.04.006
Article
Google Scholar
Ishizuka O, Yuasa M, Tamura Y, Shukuno H, Stern RJ, Naka J, Joshima M, Taylor RN (2010) Migrating shoshonitic magmatism tracks Izu–Bonin–Mariana intra-oceanic arc rift propagation. Earth Planet Sci Lett 294:111–122. https://doi.org/10.1016/j.epsl.2010.03.016
Article
Google Scholar
Jung H, Katayama I, Jiang Z, Hiraga T, Karato S (2006) Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics 421:1–22. https://doi.org/10.1016/j.tecto.2006.02.011
Article
Google Scholar
Kakihata Y, Michibayashi K, Dick H (2022) Heterogeneity in texture and crystal-fabric of intensely hydrated ultramylonitic peridotites along a transform fault, Southwest Indian Ridge. Tectonophysics 829:229206. https://doi.org/10.1016/j.tecto.2021.229206
Article
Google Scholar
Kelemen PB, Dick HJB, Quick JE (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358:635–641. https://doi.org/10.1038/358635a0
Article
Google Scholar
Kohli A, Wolfson-Schwehr M, Prigent C, Warren JM (2021) Oceanic transform fault seismicity and slip mode influenced by seawater infiltration. Nat Geosci 14:606–611. https://doi.org/10.1038/s41561-021-00778-1
Article
Google Scholar
Le Roux V, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches AJV (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259:599–612. https://doi.org/10.1016/j.epsl.2007.05.026
Article
Google Scholar
Le Roux V, Tommasi A, Alard VA (2008) Feedback between melt percolation and deformation in an exhumed lithosphere–asthenosphere boundary. Earth Planet Sci Lett 274:401–413. https://doi.org/10.1016/j.epsl.2008.07.053
Article
Google Scholar
Loocke M, Snow JE, Ohara Y (2013) Melt stagnation in peridotites from the Godzilla Megamullion Oceanic Core Complex, Parece Vela Basin, Philippine Sea. Lithos 182–183:1–10. https://doi.org/10.1016/j.lithos.2013.09.005
Article
Google Scholar
MacLeod CJ, Searle RC, Murton BJ, Casey JF, Mallows C, Unsworth SC, Achenbach KL, Harris M (2009) Life cycle of oceanic core complexes. Earth Planet Sci Lett 287:333–344. https://doi.org/10.1016/j.epsl.2009.08.016
Article
Google Scholar
Mainprice D, Nicolas A (1989) Development of shape and lattice preferred orientations: application to the seismic anisotropy of the lower crust. J Struct Geol 11:175–189. https://doi.org/10.1016/0191-8141(89)90042-4
Article
Google Scholar
Mainprice D, Barruol G, Ismaïl WB (2000) The Seismic anisotropy of the Earth’s mantle: from single crystal to polycrystal. In: Karato S, Forte AM, Liebermann RC, Masters G, Stixrude L (eds) Mineral Physics and Seismic Tomography: from Atomic to Global. Geophysical Monograph, American Geophysical Union, 117:237–264.
Mainprice D, Hielscher R, Schaeben H (2011) Calculating anisotropic physical properties from texture data using the MTEX open-source package. In: Prior DJ, Rutter EH, Tatham DJ (eds) Deformation Mechanisms, Rheology and Tectonics: Microstructures, Mechanics and Anisotropy, Geological Society, London, Special Publications, 360, 175–192.
McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253. https://doi.org/10.1016/0009-2541(94)00140-4
Article
Google Scholar
Michibayashi K, Harigane Y, Ohara Y, Muto J, Okamoto A (2014) Rheological properties of the detachment shear zone in an oceanic core complex inferred by plagioclase flow law: Godzilla Megamullion, Parece Vela back-arc basin, Philippine Sea. Earth Planet Sci Lett 408:16–23. https://doi.org/10.1016/j.epsl.2014.10.005
Article
Google Scholar
Michibayashi K, Ina T, Kanagawa K (2006) The effect of dynamic recrystallization on olivine fabric and seismic anisotropy: Insight from a ductile shear zone, Oman ophiolite. Earth Planet Sci Lett 244:695–708. https://doi.org/10.1016/j.epsl.2006.02.019
Article
Google Scholar
Michibayashi K, Mainprice D (2004) The role of pre-existing mechanical anisotropy on shear zone development within Oceanic Mantle Lithosphere: an example from the Oman Ophiolite. J Petrol 45:405–414. https://doi.org/10.1093/petrology/egg099
Article
Google Scholar
Michibayashi K, Tasaka M, Ohara Y, Ishii T, Okamoto A, Fryer P (2007) Variable microstructure of peridotite samples from the southern Mariana Trench: evidence of a complex tectonic evolution. Tectonophysics 444:111–118. https://doi.org/10.1016/j.tecto.2007.08.010
Article
Google Scholar
Michibayashi K, Tominaga M, Ildefonse B, Teagle DAH (2019) What lies beneath: the formation and evolution of oceanic lithosphere. Oceanography 32:138–149. https://doi.org/10.5670/oceanog.2019.136
Article
Google Scholar
Michibayashi K, Ohara Y, Stern RJ, Fryer P, Kimura JI, Tasaka M, Ishii T (2009) Peridotites from a ductile shear zone within back-arc lithospheric mantle, southern Mariana Trench: Results of a Shinkai 6500 dive. Geochem Geophys Geosys 10:1–17. https://doi.org/10.1029/2008GC002197
Article
Google Scholar
Michibayashi K, Mainprice D, Fujii A, Uehara S, Shinkai Y, Kondo Y, Ohara Y, Ishii T, Fryer P, Bloomer SH, Ishiwatari A, Hawkins JW, Ji S (2016a) Natural olivine crystal-fabrics in the western Pacific convergence region: a new method to identify fabric type. Earth Planet Sci Lett 443:70–80. https://doi.org/10.1016/j.epsl.2016.03.019
Article
Google Scholar
Michibayashi K, Watanabe T, Harigane Y, Ohara Y (2016b) The effect of a hydrous phase on seismic anisotropy in the oceanic lower crust: a case study from the Godzilla Megamullion, Philippine Sea. Isl Arc 25:209–219. https://doi.org/10.1111/iar.12132
Article
Google Scholar
Miller MS, Kennett BLN, Toy VG (2006) Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin. J Geophys Res 111:1–14. https://doi.org/10.1029/2005JB003705
Article
Google Scholar
Nicolas A, Boudier F, Boullier AM (1973) Mechanism of flow in naturally and experimentally deformed peridotites. Amer J Sci 273:853–876. https://doi.org/10.2475/ajs.273.10.853
Article
Google Scholar
Nicolas A, Poirier JP (1976) Crystalline plasticity and solid state flow in metamorphic rocks. John Wiley, London, p 444
Google Scholar
Nicolas A (1989) Structure of Ophiolites and Dynamics of Oceanic Lithosphere. Kluwer Academic Publishers, London, p 380
Book
Google Scholar
Ohara Y (2003) Reviews on mantle peridotites from the Philippine Sea backarc spreading systems. Rep Hydrogr Oceanogr Res 39:63–83
Google Scholar
Ohara Y (2016) The Godzilla megamullion, the largest oceanic core complex on the earth: a historical review. Isl Arc 25:193–208. https://doi.org/10.1111/iar.12116
Article
Google Scholar
Ohara Y, Fujioka K, Ishii T, Yurimoto H (2003) Peridotites and gabbros from the Parece Vela backarc basin: unique tectonic window in an extinct backarc spreading ridge. Geochem Geophys Geosyst 4:8611. https://doi.org/10.1029/2002GC000469
Article
Google Scholar
Ohara Y, Fujioka K, Ishizuka O, Ishii T (2002a) Peridotites and volcanics from the Yap arc system: implications for tectonics from the Yap arc system: implications for tectonics of the southern Philippine Sea Plate. Chem Geol 189:35–53. https://doi.org/10.1016/S0009-2541(02)00062-1
Article
Google Scholar
Ohara Y, Ishii T (1998) Peridotite from the southern Mariana forearc: heterogeneous fluid supply in mantle wedge. Isl Arc 7:541–558. https://doi.org/10.1111/j.1440-1738.1998.00209.x
Article
Google Scholar
Ohara Y, Martinez F, Brounce MN, Pujana I, Ishii T, Stern RJ, Ribeiro J, Michibayashi K, Kelly KA, Reagan MK, Watanabe H, Okumura T, Oya S, Mizuno T (2014) The first Shinkai dive study of the southwestern Mariana arc system. AGU Fall Meeting 2014: T53A4651.
Ohara Y, Stern RJ, Ishii T, Yurimoto H, Yamazaki T (2002b) Peridotites from the Mariana Trough: first look at the mantle beneath an active back-arc basin. Contrib Mineral Petrol 143:1–18. https://doi.org/10.1007/s00410-001-0329-2
Article
Google Scholar
Ohara Y, Yoshida T, Kato Y, Kasuga S (2001) Giant Megamullion in the Parece Vela Backarc Basin. Mar Geophys Res 22:47–61. https://doi.org/10.1023/A:1004818225642
Article
Google Scholar
Okino K, Kasuga S, Ohara Y (1998) A new scenario of the Parece Vela Basin genesis. Mar Geophys Res 20:21–40. https://doi.org/10.1023/A:1004377422118
Article
Google Scholar
Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160:409–423. https://doi.org/10.1016/S0009-2541(99)00110-2
Article
Google Scholar
Piccardo GB, Zanetti A, Muntener O (2007) Melt/peridotite interaction in the Southern Lanzo peridotite: field, textural and geochemical evidence. Lithos 94:181–209. https://doi.org/10.1016/j.lithos.2006.07.002
Article
Google Scholar
Rampone E, Piccardo GB, Vannucci R, Bottazzi P (1997) Chemistry and origin of trapped melts in ophiolitic peridotites. Geochim Cosmochim Acta 61:4557–4569. https://doi.org/10.1016/S0016-7037(97)00260-3
Article
Google Scholar
Rampone E, Piccardo GB, Hofmann AW (2008) Multi-stage melt–rock interaction in the Mt. Maggiore (Corsica, France) ophiolitic peridotites: microstructural and geochemical evidence. Contrib Mineral Petrol 156:453–475. https://doi.org/10.1007/s00410-008-0296-y
Article
Google Scholar
Reagan MK, Heywood L, Goff K, Michibayashi K, Foster T Jr, Jicha B, Lapen T, McClelland WC, Ohara Y, Righter M, Scott S, Sims KWW (2018) Geodynamic implications of crustal lithologies from the southeast Mariana forearc. Geosphere. https://doi.org/10.1130/GES01536.1
Article
Google Scholar
Reagan MK, Ishizuka O, Stern RJ, Kelley KA, Ohara Y, Blichert-Toft J, Bloomer SH, Cash J, Fryer P, Hanan BB, Hickey-Vargas R, Ishii T, Kimura J, Peate DW, Rowe MC, Woods M (2010) Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochem Geophys Geosyst. https://doi.org/10.1029/2009GC002871
Article
Google Scholar
Reagan MK, McClelland WC, Girard G, Goff KR, Peate DW, Ohara Y, Stern RJ (2013) The geology of the southern Mariana fore-arc crust: Implications for the scale of Eocene volcanism in the western Pacific. Earth Planet Sci Lett 380:41–51. https://doi.org/10.1016/j.epsl.2013.08.013
Article
Google Scholar
Ribeiro J, Stern RJ, Martinez F, Ishizuka O, Merle SG, Kelley K, Anthony EY, Ren M, Ohara Y, Reagan M, Girard G, Bloomer S (2013a) Geodynamic evolution of a forearc rift in the southernmost Mariana arc. Isl Arc 22:453–476. https://doi.org/10.1111/iar.12039
Article
Google Scholar
Ribeiro J, Stern RJ, Kelly KA, Martinez F, Ishizuka O, Manton WI, Ohara Y (2013b) Nature and distribution of slab-derived fluids and mantle sources beneath the Southeast Mariana forearc rift. Geochm Geophys Geosyst 14:4585–4607. https://doi.org/10.1002/ggge.20244
Article
Google Scholar
Sato M (1978) Oxygen fugacity of basaltic magmas and the role of gasforming elements. Geophys Res Lett 5:447–449. https://doi.org/10.1029/GL005I006P00447
Article
Google Scholar
Sato H, Ishii T (2011) Petrology and mineralogy of mantle peridotites from the southern Marianas. In: Ogawa Y, Anma R, Dilek Y (eds) Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin. Springer Nature, Switzerland, Modern Approaches in Solid Earth Sciences 8:129–148.
Seyler M, Toplis MJ, Lorand JP, Luguet A, Cannat M (2001) Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites. Geology 29:155–158. https://doi.org/10.1130/0091-7613(2001)029%3C0155:CMRIEM%3E2.0.CO;2
Article
Google Scholar
Skemer P, Katayama I, Jiang Z, Karato S (2005) The misorientation index: development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics 411:157–167. https://doi.org/10.1016/j.tectono.2005.08.023
Article
Google Scholar
Sleeper JD, Marinez F, Fryer P, Stern RJ, Kelley KA, Ohara Y (2021) Diffuse spreading, a newly recognized mode of crustal accretion in the southern Mariana Trough backarc basin. Geosphere. https://doi.org/10.1130/GES02360.1
Article
Google Scholar
Stern RJ (2010) The anatomy and ontogeny of modern intra-oceanic arc systems. In: Kusky TM, Zhai MG, Xiao W (eds) The Evolving Continents: Understanding Processes of Continental Growth. Geological Society, London, Special Publications, 338:7–34.
Stern RJ, Ohara Y, Ren M, Leybourne M, Bowers B (2020) Glimpses of oceanic lithosphere of the challenger deep Forearc segment in the Southernmost Marianas: The 143°E Transect, 5800–4200 m. Isl Arc 29:e12359. https://doi.org/10.1111/iar.12359
Article
Google Scholar
Tani K, Dunkley DJ, Ohara Y (2011) Termination of backarc spreading: zircon dating of a giant oceanic core complex. Geology 39:47–50. https://doi.org/10.1130/G31322.1
Article
Google Scholar
Tommasi A, Mainprice D, Canova G, Chastel Y (2000) Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations: implications for the upper mantle seismic anisotropy. J Geophys Res 105:7893. https://doi.org/10.1029/1999JB900411
Article
Google Scholar
Tommasi A, Tikoff B, Vauchez A (1999) Upper mantle tectonics: three-dimensional deformation, olivine crystallographic fabrics and seismic properties. Earth Planet Sci Lett 168:173–186. https://doi.org/10.1016/S0012-821X(99)00046-1
Article
Google Scholar
Tommasi A, Vauchez A, Ionov DA (2008) Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia). Earth Planet Sci Lett 272:65–77. https://doi.org/10.1016/j.epsl.2008.04.020
Article
Google Scholar
Tucholke BE, Lin J, Kleinrock MC (1998) Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J Geophys Res Solid Earth 103:9857–9866. https://doi.org/10.1029/98JB00167
Article
Google Scholar
Yanagida Y, Ishiwatari A, Ishii T (2007) Forearc-backarc mantle exposed on the landward slope of the southern Mariana Trench: a result of the Hakuho-Maru KH03-3 cruise. Chikyu Monthly 29:615–627
Google Scholar
Warren JM, Hirth G, Kelemen PB (2008) Evolution of olivine lattice preferred orientation during simple shear in the mantle. Earth Planet Sci Lett 272:501–512. https://doi.org/10.1016/j.epslo.2008.03.063
Article
Google Scholar
Wheeler J, Prior DJ, Jiang Z, Spiess R, Trimby PW (2001) The petrological significance of misorientations between grains. Contrib Mineral Petrol 141:109–124. https://doi.org/10.1007/s004100000225
Article
Google Scholar
Zhang S, Karato S (1995) Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature 375:774–777. https://doi.org/10.1038/375774a0
Article
Google Scholar
Zhou H, Dick HJB (2013) Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature 494:195–200. https://doi.org/10.1038/nature11842
Article
Google Scholar