Ahlström A, Schurgers G, Arneth A, Smith B (2012) Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ Res Lett 7(4):044008. https://doi.org/10.1088/1748-9326/7/4/044008
Article
Google Scholar
Arakida H, Miyoshi T, Ise T, Shima S, Kotsuki S (2017) Non-Gaussian DA of satellite-based leaf area index observations with an individual-based dynamic global vegetation model. Nonlinear Process Geophys 24(3):553–567. https://doi.org/10.5194/npg-24-553-2017
Article
Google Scholar
Braswell BH, Sacks WJ, Linder E, Schimel DS (2005) Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Glob Chang Biol 11(2):335–355. https://doi.org/10.1111/j.1365-2486.2005.00897.x
Article
Google Scholar
Cheaib A, Badeau V, Boe J, Chuine I, Delire C, Dufrêne E, François C, Gritti ES, Legay M, Pagé C, Thuiller W, Viovy N, Leadley P (2012) Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecol Lett 15(6):533–544. https://doi.org/10.1111/j.1461-0248.2012.01764.x
Article
Google Scholar
Delbart N, Kergoat L, Toan TL, Lhermitte J, Picard G (2005) Determination of phenological dates in boreal regions using normalized difference water index. Remote Sens Environ 97(1):26–38. https://doi.org/10.1016/j.rse.2005.03.011
Article
Google Scholar
Demarty J, Chevallier F, Friend AD, Viovy N, Piao S, Ciais P (2007) Assimilation of global MODIS leaf area index retrievals within a terrestrial biosphere model. Geophys Res Lett 34(15):L15402. https://doi.org/10.1029/2007GL030014
Article
Google Scholar
Eriksson HM, Eklundh L, Kuusk A, Nilson T (2006) Impact of understory vegetation on forest canopy reflectance and remotely sensed LAI estimates. Remote Sens Environ 103(4):408–418. https://doi.org/10.1016/j.rse.2006.04.005
Article
Google Scholar
European Commission, Joint Research Centre (2003) The global land cover map for the year 2000, GLC2000 database. European commision joint research centre https://forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php. Accessed 6 Jan 2017
Fisher RA, Koven CD, Anderegg WRL, Christoffersen BO, Dietze MC, Farrior CE, Holm JA, Hurtt GC, Knox RG, Lawrence PJ, Lichstein JW, Longo M, Matheny AM, Medvigy D, Muller-Landau HC, Powell TL, Serbin SP, Sato H, Shuman JK, Smith B, Trugman AT, Viskari T, Verbeeck H, Weng E, Xu C, Xu X, Zhang T, Moorcroft PR (2017) Vegetation demographics in earth system models: A review of progress and priorities. Glob Chang Biol 24(1):35–54. https://doi.org/10.1111/gcb.13910
Article
Google Scholar
Frankenberg C, Fisher JB, Worden J, Badgley G, Saatchi SS, Lee JE, Toon GC, Butz A, Jung M, Kuze A, Yokota T (2011) New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys Res Lett 38(17):17. https://doi.org/10.1029/2011GL048738
Article
Google Scholar
Friend AD, Lucht W, Rademacher TT, Keribin R, Betts R, Cadule P, Ciais P, Clark DB, Dankers R, Falloon PD, Ito A, Kahana R, Kleidon A, Lomas MR, Nishina K, Ostberg S, Pavlick R, Peylin P, Schaphoff S, Vuichard N, Warszawski L, Wiltshire A, Woodward FI (2014) Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc Natl Acad Sci 111(9):3280–3285. https://doi.org/10.1073/pnas.1222477110
Article
Google Scholar
Gao C, Wang H, Weng E, Lakshmivarahan S, Zhang Y, Luo Y (2011) Assimilation of multiple data sets with the ensemble Kalman filter to improve forecasts of forest carbon dynamics. Ecol Appl 21(5):1461–1473. https://doi.org/10.1890/09-1234.1
Article
Google Scholar
Gordon NJ, Salmond DJ, Smith AFM (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc F 140(2):107–113. https://doi.org/10.1049/ip-f-2.1993.0015
Article
Google Scholar
Iida S, Ohta T, Matsumoto K, Nakai T, Kuwada T, Kononov AV, Maximov TC, van der Molen MK, Dolman H, Tanaka H, Yabuki H (2009) Evapotranspiration from understory vegetation in an eastern Siberian boreal larch forest. Agric Forest Met 149(6-7):1129–1139. https://doi.org/10.1016/j.agrformet.2009.02.003
Article
Google Scholar
Ise T, Ikeda S, Watanabe S, Ichii K (2018) Regional-scale data assimilation of a terrestrial ecosystem model: leaf phenology parameters are dependent on local climatic conditions. Front Environ Sci 6:95. https://doi.org/10.3389/fenvs.2018.00095
Article
Google Scholar
Ito A, Nishina K, Reyer CPO, François L, Henrot AJ, Munhoven G, Jacquemin I, Tian H, Yang J, Pan S, Morfopoulos C, Betts R, Hickler T, Steinkamp J, Ostberg S, Schaphoff S, Ciais P, Chang J, Rafique R, Zeng N, Zhao F (2017) Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact assessment studies. Environ Res Lett 12(8):085001. https://doi.org/10.1088/1748-9326/aa7a19
Article
Google Scholar
Jung M, Reichstein M, Schwalm CR, Huntingford C, Sitch S, Ahlström A, Arneth A, Camps-Valls G, Ciais P, Friedlingstein P, Gans F, Ichii K, Jain AK, Kato E, Papale D, Poulter B, Raduly B, Rödenbeck C, Tramontana G, Viovy N, Wang YP, Weber U, Zaehle S, Zeng N (2017) Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541(7638):516–520. https://doi.org/10.1038/nature20780
Article
Google Scholar
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. B Am Meteorol Soc 77:437–471. http://www.forobs.jrc.ec.europa.eu/products/glc2000/glc2000.php.
Kaminski T, Knorr W, Schürmann G, Scholze M, Rayner PJ, Zaehle S, Blessing S, Dorigo W, Gayler V, Giering R, Gobron N, Grant JP, Heimann M, Hooker-Stroud A, Houweling S, Kato T, Kattge J, Kelley D, Kemp S, Koffi EN, Köstler C, Mathieu P-P, Pinty B, Reick CH, Rödenbeck C, Schnur R, Scipal K, Sebald C, Stacke T, Terwisscha van Scheltinga A, Vossbeck M, Widmann H, Ziehn T (2013) The BETHY/JSBACH Carbon Cycle DA System: experiences and challenges. J Geophys Res Biogeo 118(4):1414–1426. https://doi.org/10.1002/jgrg.20118
Article
Google Scholar
Kato T, Knorr W, Scholze M, Veenendaal E, Kaminski T, Kattge J, Gobron N (2013) Simultaneous assimilation of satellite and eddy covariance data for improving terrestrial water and carbon simulations at a semi-arid woodland site in Botswana. Biogeosciences 10(2):789–802. https://doi.org/10.5194/bg-10-789-2013
Article
Google Scholar
Kitagawa G (1998) A self-organizing state-space model. J Am Stat Assoc 93(443):1203–1215. https://doi.org/10.2307/2669862
Article
Google Scholar
Knorr W, Kattge J (2005) Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling. Glob Chang Biol 11(8):1333–1351. https://doi.org/10.1111/j.1365-2486.2005.00977.x
Article
Google Scholar
Knyazikhin Y, Glassy J, Privette JL, Tian Y, Lotsch A, Zhang Y, Wang Y, Morisette JT, Votava P, Myneni RB, Nemani RR, Running SW (1999) MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) product (MOD15) Algorithm. Theoretical Basis Document. NASA Goddard Space Flight Center, Greenbelt
Google Scholar
Kobayashi H, Delbart N, Suzuki R, Kushida K (2010) A satellite-based method for monitoring seasonality in the overstory leaf area index of Siberian larch forest. J Geophys Res 115(G1):G01002. https://doi.org/10.1029/2009JG000939
Article
Google Scholar
Kobayashi H, Suzuki R, Kobayashi S (2007) Reflectance seasonality and its relation to the canopy leaf area index in an eastern Siberian larch forest: Multi-satellite data and radiative transfer analyses. Remote Sens Environ 106(2):238–252. https://doi.org/10.1016/j.rse.2006.08.011
Article
Google Scholar
Kotani A, Saito A, Kononov AV, Petrov RE, Maximov TC, Iijima Y, Ohta T (2019) Impact of unusually wet permafrost soil on understory vegetation and CO2 exchange in a larch forest in eastern Siberia. Agric Forest Met 265:295–309. https://doi.org/10.1016/j.agrformet.2018.11.025
Article
Google Scholar
Liu YY, van Dijk AIJM, de Jeu RAM, Canadell JG, McCabe MF, Evans JP, Wang G (2015) Recent reversal in loss of global terrestrial biomass. Nat Clim Chang 5(5):470–474. https://doi.org/10.1038/nclimate2581
Article
Google Scholar
Luo Y, Ogle K, Tucker C, Fei S, Gao C, LaDeau S, Clark JS, Schimel DS (2011) Ecological forecasting and DA in a data-rich era. Ecol Appl 21(5):1429–1442. https://doi.org/10.1890/09-1275.1
Article
Google Scholar
MacBean N, Maignan F, Peylin P, Bacour C, Bréon FM, Ciais P (2015) Using satellite data to improve the leaf phenology of a global terrestrial biosphere model. Biogeosciences 12(23):7185–7208. https://doi.org/10.5194/bg-12-7185-2015
Article
Google Scholar
Nakai Y, Matsuura T, Kajimoto T, Abaimov AP, Yamamoto S, Zyryanova OA (2008) Eddy covariance CO2 flux above a Gmelin larch forest on continuous permafrost in central Siberia during a growing season. Theor Appl Climatol 93(3-4):133–147. https://doi.org/10.1007/s00704-007-0337-x
Article
Google Scholar
Ohta T, Hiyama T, Tanaka H, Kuwada T, Maximov TC, Ohata T, Fukushima Y (2001) Seasonal variation in the energy and water exchanges above and below a larch forest in eastern Siberia. Hydrol Process 15(8):1459–1476. https://doi.org/10.1002/hyp.219
Article
Google Scholar
Ohta T, Kotani A, Iijima Y, Maximov TC, Ito S, Hanamura M, Kononov AV, Maximov AP (2014) Effects of waterlogging on water and carbon dioxide fluxes and environmental variables in a Siberian larch forest, 1998–2011. Agric For Meteorol 188:64–75. https://doi.org/10.1016/j.agrformet.2013.12.012
Article
Google Scholar
Ohta T, Maximov TC, Dolman AJ, Nakai T, van der Molen MK, Kononov AV, Maximov AP, Hiyama T, Iijima Y, Moors EJ, Tanaka H, Toba T, Yabuki H (2008) Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998–2006). Agric For Meteorol 148(12):1941–1953. https://doi.org/10.1016/j.agrformet.2008.04.012
Article
Google Scholar
Peng C (2000) From static biogeographical model to dynamic global vegetation model: a global perspective on modelling vegetation dynamics. Ecol Model 135(1):33–54. https://doi.org/10.1016/S0304-3800(00)00348-3
Article
Google Scholar
Peng C, Guiot J, Wu H, Jiang H, Luo Y (2011) Integrating models with data in ecology and palaeoecology: advances towards a model–data fusion approach. Ecol Lett 14(5):522–536. https://doi.org/10.1111/j.1461-0248.2011.01603.x
Article
Google Scholar
Ponomarev EI, Kharuk VI, Ranson KJ (2016) Wildfires dynamics in Siberian larch forests. Forests 7(12):125. https://doi.org/10.3390/f7060125
Article
Google Scholar
Rayner PJ, Scholze M, Knorr W, Kaminski T, Giering R, Widmann H (2005) Two decades of terrestrial carbon fluxes from a carbon cycle DA system (CCDAS). Global Biogeochem Cy 19(2):GB2026. https://doi.org/10.1029/2004GB002254
Article
Google Scholar
Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11(9):1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x
Article
Google Scholar
Rogers A, Medlyn BE, Dukes JS, Bonan G, von Caemmerer S, Dietze MC, Kattge J, Leakey ADB, Mercado LM, Niinemets Ü, Prentice IC, Serbin SP, Sitch S, Way DA, Zaehle S (2017) A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol 213(1):22–42. https://doi.org/10.1111/nph.14283
Article
Google Scholar
Sato H, Ise T (2012) Effect of plant dynamic processes on African vegetation responses to climate change: Analysis using the spatially explicit individual-based dynamic global vegetation model (SEIB-DGVM). J Geophys Res 117(G3):G03017. https://doi.org/10.1029/2012JG002056
Article
Google Scholar
Sato H, Itoh A, Kohyama T (2007) SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individualbased approach. Ecol Model 200(3-4):279–307. https://doi.org/10.1016/j.ecolmodel.2006.09.006
Article
Google Scholar
Sato H, Kobayashi H, Delbart N (2010) Simulation study of the vegetation structure and function in eastern Siberian larch forests using the individual-based vegetation model SEIB-DGVM. Forest Ecol Manag 259(3):301–311. https://doi.org/10.1016/j.foreco.2009.10.019
Article
Google Scholar
Sato H, Kobayashi H, Iwahana G, Ohta T (2016) Endurance of larch forest ecosystems in eastern Siberia under warming trends. Ecol Evol 6(16):5690–5704. https://doi.org/10.1002/ece3.2285
Article
Google Scholar
Stöckli R, Rutishauser T, Baker I, Liniger MA, Denning AS (2011) A global reanalysis of vegetation phenology. J Geophys Res 116(G3):G03020. https://doi.org/10.1029/2010JG001545
Article
Google Scholar
Suzuki K, Kubota J, Yabuki H, Ohata T, Vuglinsky V (2007) Moss beneath a leafless larch canopy: influence on water and energy balances in the southern mountainous taiga of eastern Siberia. Hydrol Process 21(15):1982–1991. https://doi.org/10.1002/hyp.6709
Article
Google Scholar
Suzuki R, Yoshikawa K, Maximov TC (2001) Phenological photographs of Siberian larch forest from 1997 to 2000 at Spasskaya Pad, Republic of Sakha, Russia. ACDAP, JAMSTEC, Digital Media, Yokosuka
Google Scholar
Tramontana G, Jung M, Schwalm CR, Ichii K, Camps-Valls G, Ráduly B, Reichstein M, Arain MA, Cescatti A, Kiely G, Merbold L, Serrano-Ortiz P, Sickert S, Wolf S, Papale D (2016) Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13(14):4291–4313. https://doi.org/10.5194/bg-13-4291-2016
Article
Google Scholar
University of East Anglia Climatic Research Unit, Harris IC, Jones PD (2015) CRU TS3.23: Climatic Research Unit (CRU) Time-Series (TS) version 3.23 of high resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2014). Centre for Environmental Data Analysis. https://doi.org/10.5285/4c7fdfa6-f176-4c58-acee-683d5e9d2ed5
Book
Google Scholar
Wang Q, Tenhunen J, Dinh NQ, Reichstein M, Otieno D, Granier A, Pilegarrd K (2005) Evaluation of seasonal variation of MODIS derived leaf area index at two European deciduous broadleaf forest sites. Remote Sens Environ 96(3-4):475–484. https://doi.org/10.1016/j.rse.2005.04.003
Article
Google Scholar
Williams M, Schwarz PA, Law BE, Irvine J, Kurpius MR (2005) An improved analysis of forest carbon dynamics using DA. Glob Chang Biol 11(1):89–105. https://doi.org/10.1111/j.1365-2486.2004.00891.x
Article
Google Scholar
Yan M, Tian X, Li Z, Chen E, Wang X, Han Z, Sun H (2016) Simulation of forest carbon fluxes using model incorporation and DA. Remote Sens 8(7):567. https://doi.org/10.3390/rs8070567
Article
Google Scholar