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Abstract

This study examined the regional performance of a data assimilation (DA) system that couples the particle filter and
the Spatially Explicit Individual-based Dynamic Global Vegetation Model (SEIB-DGVM). This DA system optimizes
model parameters of defoliation and photosynthetic rate, which are sensitive to phenology in the SEIB-DGVM, by
assimilating satellite-observed leaf area index (LAI). The experiments without DA overestimated LAIs over Siberia
relative to the satellite-observed LAI, whereas the DA system successfully reduced the error. DA provided improved
analyses for the LAI and other model variables consistently, with better match with satellite observed LAI and with
previous studies for spatial distributions of the estimated overstory LAI, gross primary production (GPP), and
aboveground biomass. However, three main issues still exist: (1) the estimated start date of defoliation for overstory
was about 40 days earlier than the in situ observation, (2) the estimated LAI for understory was about half of the in
situ observation, and (3) the estimated overstory LAI and the total GPP were overestimated compared to the
previous studies. Further DA and modeling studies are needed to address these issues.
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1 Introduction
Terrestrial ecosystem models (TEMs) have been devel-
oped as components of earth system models that simu-
late carbon, water, and energy cycles between the
atmosphere and terrestrial ecosystems (Fisher et al.
2017; Peng 2000). These models are indispensable ele-
ments of procedures aimed at predicting (i) functional
alterations in ecosystems under the changing climate,
and (ii) the resulting changes in feedback processes.
However, different studies used different parameteriza-
tions and climate forcing data and produced diverse
simulation outputs. Such diversity indicates that the

projections of current TEMs have large uncertainties
(Ahlström et al. 2012; Cheaib et al. 2012; Friend et al.
2014; Ito et al. 2017; Rogers et al. 2017).
Recent TEMs have been developed to incorporate

data assimilation (DA) that mitigates such uncertain-
ties by assimilating observations (Luo et al. 2011;
Peng et al. 2011; Kaminski et al. 2013). At the flux
measurement sites, we can use fine-timescale (e.g.,
30-min collection interval) flux data and carbon stock
data. Williams et al. (2005) estimated model parame-
ters and carbon pools of a box-type TEM by assimi-
lating daily averaged carbon flux data collected over
3 years and occasional carbon stock data. Likewise, in
situ measurements have been assimilated into several
TEMs to optimize model parameters which are sensi-
tive to carbon flux, water flux, heat flux, and carbon
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pools (Braswell et al. 2005; Knorr and Kattge 2005;
Gao et al. 2011; Kato et al. 2013).
DA for optimizing phenology-related model parame-

ters is crucial for reducing uncertainties in photosyn-
thetic productivity estimates and water flux estimates.
Satellite-based measurements are available for site scale
to global scale DA for this purpose (Rayner et al. 2005;
Demarty et al. 2007; Stöckli et al. 2011; MacBean et al.
2015; Kato et al. 2013; Yan et al. 2016; Arakida et al.
2017; Ise et al. 2018). For example, the fraction of photo-
synthetically active radiation (fPAR), the normalized
difference vegetation index (NDVI), and the leaf area
index (LAI) have been commonly used for satellite
measurements.
LAI estimated from satellite-measured reflectance

is a cumulative LAI value of overstory and under-
story. Namely, the satellite-derived LAI estimates are
highly affected by understory (forest floor) reflect-
ance (Eriksson et al. 2006). Earlier increment of LAI
before the actual overstory foliation is thought to be
understory LAI (e.g., Kobayashi et al. 2007, 2010).
Therefore, satellite-observed LAI should be assimi-
lated as the total LAI of overstory and understory.
Here, forest structure is needed to be considered
when phenology-related parameters for overstory are
optimized with satellite-observed LAI. Individual-
based dynamic global vegetation models (DGVMs)
simulate vertical forest structure explicitly; under-
story is simulated at the forest floor separately from
overstory. Arakida et al. (2017) developed a DA
system with the Spatially Explicit Individual-based

DGVM (SEIB-DGVM; Sato et al. 2007) for the first
time; it utilizes the satellite-observed LAI effectively
and estimates overstory phenology separately from
understory phenology.
In this study, we extended the previous experiment of

Arakida et al. (2017) to examine the performance of the
DA system at a large spatial domain across Siberia. Since
this is the first regional-scale DA study with the SEIB-
DGVM, we investigate the two research topics: (1)
whether the DA system works well at a large spatial do-
main when frequent observations are available and (2)
how DA estimates the regional distribution of unassimil-
ated variables and model parameters for phenology. The
DA system of Arakida et al. (2017) improved not only
LAI but also other unassimilated variables such as car-
bon flux and biomass at a flux site in Siberia. This study
also explores how assimilating LAI improves those
unassimilated variables at a regional scale.

2 Methods
2.1 Study sites
We selected Siberia as the study area because a single
overstory species larch is distributed over a large area,
and the land use rarely changes for a long time. This
area is suitable for the SEIB-DGVM that does not con-
sider artificial changes in the land use. Siberia is also
suitable for the first DA experiment at a regional scale,
because the vegetation structure in Siberia is simple. We
consider only two PFTs: deciduous needle-leaf tree and
C3 grass.

Fig. 1 Study sites (black circles). Yellow cross shows the Yakutsk larch forest, the study site of Arakida et al. (2017). The vegetation data shown by
red, green, and light-green shades are from the global land cover dataset (GLC2000: European Commission, Joint Research Centre 2003). Gray
areas indicate the planetary continental data provided by Esri, Global Mapping International, US Central Intelligence Agency (The World
Factbook). The same continental data are used in subsequent maps
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The non-overlapping circles in Fig. 1 illustrate the
study sites, which represent the averaged vegetation state
within circles. We first calculated the domain-averaged
ratios of each PFT in each circle using the global land
cover dataset (GLC2000: European Commission, Joint
Research Centre 2003): deciduous needle-leaf forest
(“tree cover, needle-leaved, deciduous”), evergreen
needle-leaf forest (“tree cover, needle-leaved evergreen”),
and broad-leaf forest (“tree cover, broad-leaved, decidu-
ous, closed” + “tree cover, broad-leaved, deciduous,
open” + “tree cover, broad-leaved, evergreen”). Next, we
selected study sites covered mostly (≥ 50% cover) by de-
ciduous needle leaf forest. Sites with > 10% cover of
evergreen needle-leaf forest or broad-leaf forest cover
were excluded. We selected a total of 760 sites (black
circles in Fig. 1).

2.2 The SEIB-DGVM
This study used a particle filter-based DA system with
the SEIB-DGVM (Arakida et al. 2017). Refer to Arakida
et al. (2017) for detailed descriptions. Here, we provide
only a fundamental overview of Arakida et al. (2017) and
additional configuration changes. The simulation started
with bare ground. Forced by climate conditions, the
model simulated the establishment, growth, and decay of
individual trees within a virtual forest (Sato et al. 2007).
Photosynthetically active radiation at the understory was
attenuated by overstory; therefore, the amplitude of
overstory LAI affected understory LAI. Carbon flux,
water flux, heat flux, and vegetation structures (e.g.,
overstory LAI, biomasses of individual organs [leaf, root,
trunk], and soil carbon) were also simulated through
vegetation succession. For most processes, the model
time step was a day. For mortality, establishment, and
some of the adjustments of crown states, the model time
step was a year. We used model version 2.71 (Sato and
Ise 2012) with modifications described by Arakida et al.
(2017). In addition, we corrected coding bugs and

modified some parameters for the experiment presented
here (Table 1).
Among 14 prescribed PFTs, deciduous needle-leaf

trees (“overstory”) and C3 grass (“understory”) were se-
lected for experiments. The major tree species in this
area is larch (Ponomarev et al. 2016), and the forest
understory includes cowberry, grass, shrubs, mosses, and
lichens (Ohta et al. 2014; Suzuki et al. 2007). The SEIB-
DGVM simulates understory as deciduous grass, and the
setting has been used in the previous studies in Siberia
(Sato et al. 2010, 2016). In this study, we also used the
same setting for the DA experiment.

2.3 Climate forcing data
Daily climate forcing data were generated using the
monthly Climate Research Unit observation-based data-
set (CRU-TS3.23 0.5° monthly climate time series: Uni-
versity of East Anglia Climatic Research Unit et al. 2015)
and the daily data at the spatial resolution of T62 with a
Gaussian grid (about 1.9°) from the National Centers for
Environmental Prediction (NCEP)/National Center for
Atmospheric Research (NCAR) reanalysis (Kalnay et al.
1996). We chose a 10-year period from 2003 to 2012 in
which the MODIS LAI observation data for the DA ex-
periment and the data of the previous studies for inter-
comparison were available. As Sato et al. (2007),
interannual differences were not considered in this
study. A yearlong climate forcing data averaged from
2003 and 2012 were used (Table 1) corresponding to the
observation data described in the section “Particle filter-
based data assimilation (DA) and observational data.”
First, we interpolated bilinearly each NCEP/NCAR and

CRU data points into the center of each study site. Air
temperature and cloudiness of NCEP/NCAR reanalysis
data were corrected by CRU data so that the monthly
mean was identical to those of the CRU. Likewise, pre-
cipitation and specific humidity were rescaled so that
the monthly totals matched those of the CRU. In

Table 1 Modifications to the data assimilation (DA) system of Arakida et al. (2017)

Modifications This study

Radius of the study
site

10km 30km

Bugfix Bugfix in Appendix A of Arakida et al. (2017) Additional bug fixes, which were found unfixed between ver. 2.71 and ver. 2.82

Parameters Modifications in Appendix A of Arakida et al.
(2017)

Additional modifications, which were found in ver. 3.00 (Sato et al. 2016)
TO_f (year−1) for overstory: turnover rate for foliage = 3.19
Lue0 (mol CO2 mol photon-1) for overstory: control value of light-use efficiency
= 0.041
M2 (dimensionless) for overstory: a parameter for mortality = 1.5

Climate forcing data Interannual data from 2004 to 2007 Averaged data from 2003 to 2012

Observation data Interannual data from 2004 to 2007 Median of the data from 2003 to 2012
LAI which was calculated from insufficient numbers of the observation data
was excluded.
The threshold of standard deviation was set to 0.5.
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contrast, we used the NCEP/NCAR soil temperature and
wind velocity data without scaling. Finally, the climate
observations from 2003 through 2012 were averaged for
each study site to provide daily climate forcing data.

2.4 Particle filter-based data assimilation (DA) and
observational data
Arakida et al. (2017) demonstrated that a well-known
particle filter procedure, sequential importance resam-
pling (SIR: Gordon et al. 1993), performed well as a DA
method for the SEIB-DGVM. Particle filtering is a
Bayesian process that remains robust when an ecological
process such as phenology exhibits non-linearity; e.g.,
the state changes suddenly at the beginning and end of
the leaf-bearing season (Arakida et al. 2017; Ise et al.
2018). In addition, particle filters can handle phase space
variability in an individual-based model, such as occa-
sional establishment or death of a tree. As proposed by
Kitagawa (1998), the probability densities of the state
variables and the model parameters were denoted by
parallel simulations (particles), and the distributions
were updated sequentially when the observational data
were assimilated. The experiments in this study com-
prised three steps: (i) initial perturbation, (ii) spin-up,
and (iii) DA. We used the particle, initial perturbation,
and re-sampling perturbation sizes described by Arakida

et al. (2017). Although the radius of the study sites was
10 km in Arakida et al. (2017), it was increased to 30 km
(Table 1) to reduce the number of sites and therefore,
the computational cost.
First, we created 8000 random combinations of param-

eters from the initial perturbation ranges provided by
Arakida et al. (2017) for the maximum photosynthetic
rate (Pmax; μmol CO2 m

–2 s–1) and the defoliation start
date (DSD; day of year [DOY]) for overstory and under-
story. Figure 2a, b shows the conceptual diagrams for
the parameters. Pmax affects the LAI amplitude, and
DSD affects the start of LAI decay. A larger Pmax pro-
duces a larger LAI, and a later DSD produces a longer
leaf season, and vice versa. The SEIB-DGVM simulates
understory as deciduous grass, but the “defoliation” is
not suitable for non-deciduous vegetation, such as cow-
berry trees and moss. The DA system did not work well
when the understory defoliated earlier than the over-
story. Therefore, DSD for understory was optimized with
overstory to stabilize the DA system.
The initial perturbation ranges were as follows: Pmax

for overstory = [0, 60], Pmax for understory = [0, 15],
DSD for overstory = [200, 300], and DSD for understory
= [200, 300]. Here, [a, b] denotes the uniform distribu-
tion for an interval between a and b. Next, we performed
8000 parallel simulations with these parameter sets over

Fig. 2 The schematic diagram for a Pmax, b DSD, and c model structure

Arakida et al. Progress in Earth and Planetary Science            (2021) 8:52 Page 4 of 15



100 years, in which the averaged forcing climate data for
the period of 2003–2012 were used repeatedly for spin
up. During the spin-up period, the perturbed parameters
led to different leaf season, the amplitude of LAI, and
forest states for each particle. The detailed description
for the spin-up period is shown in the “Discussion”
section.
A yearlong time series of satellite-observed LAI is

prepared for each site; we selected the MODIS LAI
product of MCD15A3 with a 4-day interval (Knyazi-
khin et al. 1999) using the quality-control procedure
described by Arakida et al. (2017). The strict quality-
control makes observation sparse. One of our re-
search goals is to investigate whether the DA system
works well at a large spatial domain when frequent
observations are available. Here, we aggregated the
observation data spatially and temporally. The obser-
vation error standard deviations were assigned to each
pixel of MCD15A3 LAI at the original resolution of
1 km. We used the median of this error as the obser-
vation error. The 4-day-interval LAI data and its error
standard deviations for each study site were calculated
using data for the same DOY in the period of 2003–
2012 as the median for each 30-km radius (Table 1).
The aggregation helped complement the lack of data
due to the strict quality control; however, aggregated
observations with insufficient data tended to produce
erroneous data. To exclude such erroneous data, we
used only observations calculated from one-eighth or
more of the quality-controlled set in each circle at
each time step (Table 1). In addition, LAI data lower
than 0.5 were not assimilated, following the procedure
of Arakida et al. (2017). Observations with small error
standard deviations made the DA system unstable;
therefore, standard deviations lower than 0.5 were
fixed at 0.5 (Table 1).
Finally, DA was performed for four years repeatedly

using the yearlong time series of the satellite-observed
LAI. When an observation was assimilated, the likeli-
hood was calculated for each particle, and the posterior

distribution of the particles was updated with resampling
using likelihood as the weighting factor. We used the re-
sampling perturbation size as described by Arakida et al.
(2017) to avoid particle degeneracy.

2.5 Assessment of the DA results
To assess the impact of DA, an experiment without
DA (“NODA” hereafter) was also performed with the
parameter sets which were used for the initial per-
turbations. The experiments with DA (“TEST” here-
after) at the fourth year of DA were compared with
NODA at the same period (i.e., the 104th year of
the simulation). TEST for model parameters was
compared with the medians and ranges of the initial
perturbations. NODA and TEST were compared for
total LAI (overstory + understory), overstory LAI,
GPP, and aboveground biomass. These results were
also compared with the existing studies. Other vari-
ables were only compared with the observed LAI to
explore the extent to which DA affected the un-
assimilated state variables. Figure 2c shows the sche-
matic diagram for the relations between LAI and
these variables.
In situ observation was not widely available in Siberia.

Hence, we compared the results with those of existing
studies to investigate the characteristics of the DA sys-
tem (Table 2). The estimated LAI was compared with
assimilated observation data (MODIS LAI: Knyazikhin
et al. 1999) to confirm that the DA system worked prop-
erly. Other estimated variables were compared with
those of existing studies: gross primary production
(GPP) of FLUXCOM (Tramontana et al. 2016; Jung
et al. 2017), overstory LAI (Delbart et al. 2005; Kobaya-
shi et al. 2010), and aboveground biomass (Liu et al.
2015). Supporting information includes more details
about the existing studies.
To compare the results of this study with those of the

earlier works, we consider differences of the spatiotem-
poral resolution. As for the LAI, we used the annual
maximum LAI for cross-comparisons. The spatial

Table 2 Data used for cross-comparisons

Data Period Description References

LAI (MODIS) 2003–
2012

LAI data assimilated in this study. Estimation using a radiative transfer model and satellite-
observed data.

Knyazikhin et al. (1999)

Overstory LAI 2003–
2012

Estimation using a radiative transfer model and satellite-observed data (SPOT-VEGETATION). Delbart et al. (2005);
Kobayashi et al. (2010)

GPP
(FLUXCOM)

2003–
2012

Estimation with three machine learning methods: the artificial neural network (ANN),
multivariate regression splines (MARS), and random forest (RF) using the flux partitioning
method of Reichstein et al. (2005). These machine learning methods make use of in-situ flux
measurements and diverse explanatory variables, such as meteorological data and satellite-
based vegetation indices.

Tramontana et al. (2016);
Jung et al. (2017)

Aboveground
biomass

2003–
2012

Estimation using the relationships between satellite-observed vegetation optical depth and the
aboveground biomass.

Liu et al. (2015)
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resolution of 30 km was identical for the observed LAI
used in the DA experiment and the estimated LAI from
the DA experiment, but the temporal resolution of the
observation was different (i.e., 4 days). Both observed
and estimated LAI reached the maximum value and did
not greatly change in mid-summer. If the observation
was successfully assimilated, the amplitude of LAI for
the DA should have been close to that of the observed
amplitude.
As for GPP, the spatial resolution for GPP of FLUX-

COM was 0.5°, and the temporal resolution was a year.
We first averaged the FLUXCOM data from 2003 to
2012 and multiplied it by 365 to calculate the annual
total. Next, FLUXCOM data were interpolated bilinearly
to the center of each study site. The interpolated GPP of
FLUXCOM were compared to the annual total GPP esti-
mated in this study.
The aboveground biomass of Liu et al. (2015), 0.25°

annual mean data, was averaged from 2003 to 2012.
Next, it was spatially interpolated by the same procedure
used for interpolating FLUXCOM parameters, and
cross-compared with the annual mean aboveground bio-
mass estimated in this study.
The spatial resolution for overstory LAI of Kobayashi

et al. (2010) was 1/112 of a degree, and the temporal
resolution was 10 days. Kobayashi et al. (2010) had a
higher spatial resolution than the one in this study. We
first calculated the average LAI from 2003 to 2012 for
each grid/DOY combination and subsequently calculated
the annual maximum for each grid. Finally, we calcu-
lated the median of the maximum at each study site (i.e.,
within a 30-km radius) for comparison with the annual
maximum overstory LAI that we estimated.
The results for the lower latitudes south of 60° N were

not stable: this will be discussed as “limitations of this
study” in the discussion section. We therefore used re-
sults for latitudes higher than 60° N to construct a scat-
ter plot of the relationships between estimates in this
study and those of previous reports. We used Pearson’s
product-moment correlation coefficient (r) and RMSE to
examine relationships in the data collected for the same
area. P values for r are calculated for reference without
considering spatial autocorrelation. The null hypothesis
is r = 0. Therefore, the results should be interpreted with
caution.

3 Results
3.1 Total LAI
Figure 3a, b displays the spatial distributions of the an-
nual maximum of total LAI (see the median in Figure
S1a). The total LAI for NODA (Fig. 3a) was larger than
the observations across the study sites. In contrast, DA
reduced LAI for TEST (Fig. 3b) and made it closer to
the observed LAI (Fig. 3c). The scatter plot (Fig. 3d)

indicates that DA reduced LAI and raised the correlation
coefficient from 0.46 to 0.99 and reduced RMSE from
1.94 to 0.17. These results indicate at least the necessary
condition that the DA system worked properly.

3.2 Unassimilated state variables
To explore how DA affected unobserved state variables,
we first compared the correlation coefficients with ob-
served LAI. Table 3 shows that the unassimilated vari-
ables estimated by DA are highly correlated with the
observed LAI. Namely, optimizing states and parameters
with respect to LAI impacts the spatial distributions of
carbon flux, water flux, and vegetation structures (over-
story LAI and biomass) simultaneously. For a more de-
tailed assessment of the DA results, we compared
NODA and TEST for overstory LAI, GPP, and above-
ground biomass with the previous studies.
Figure 4a displays the spatial distributions of the an-

nual maximum of overstory LAI (see the median in Fig-
ure S1b, right). The spatial distribution of overstory LAI
for TEST (Fig. 4a) is similarly estimated to that of
Kobayashi et al. (2010) (Fig. 4b), except for higher over-
story LAI for TEST at the middle to southern parts of
Siberia. DA also reduced overstory LAI for TEST (Fig.
4c), and the correlation coefficients between the over-
story LAI of the current study and that of Kobayashi
et al. (2010) increased from 0.53 to 0.81 and RMSE de-
creased from 1.99 to 0.54. Because SEIB-DGVM calcu-
lates the vertical structure of vegetation, understory LAI
is also estimated separately from overstory LAI (not
shown).
GPP and aboveground biomass for TEST were re-

duced by DA (Fig. 5) corresponding to the reduction in
LAI (Fig. 3d). As for GPP, DA increased the correlation
between this study and those of FLUXCOM from 0.45
to 0.88 (artificial neural network: ANN), from 0.51 to
0.82 (multivariate regression splines: MARS), and from
0.58 to 0.92 (random forest: RF). RMSE was also de-
creased from 1109 to 434 (ANN), from 932 to 300
(MARS), and from 959 to 289 (RF). However, TEST in
this study was 2–3 times higher than that of FLUXCOM
at higher GPP. FLUXCOM used only a limited number
of in situ observations and is not used as the verification
truth in this study. Nevertheless, at least notable outliers
were not found in the scatter plot (Fig. 5b). This result
indicates that the DA system estimates GPP similarly to
regional trends in the previous study. As for above-
ground biomass, the correlation coefficient (Fig. 5c, d)
increased from 0.36 (NODA) to 0.72 (TEST) and RMSE
decreased from 17.4 (NODA) to 15.0 (TEST).

3.3 Parameters
Model parameters uniformly distributed for NODA (see
the parameter distributions in Figure S1d-g, left)
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throughout the study sites (not shown). The medians of
overstory Pmax and understory Pmax for NODA were
30 and 7.5, respectively. The median of Pmax for TEST
varied spatially (Fig. 6a,b, left): 23.2 ± 4.3 (mean ± SD)
for overstory Pmax, and 7.1 ± 1.8 for understory Pmax.
Hence, Pmax must be optimized, especially for over-
story, to reproduce the observed LAI, and the optimum
value varies spatially. The 1–99% quantile range for
Pmax was still large for TEST throughout the study area
(Fig. 6a, b, right).
The medians of overstory DSD for NODA were 250

both for overstory and understory. The median of DSD
for TEST also varied spatially (Fig. 6c, d, left): 214.0 ±
6.7 (mean ± SD) for overstory DSD, and 270.3 ± 14.7 for
understory DSD. Overstory DSD for TEST (Fig. 6c, left)
was about 60 days earlier than that of understory (Fig.
6d, left), whereas the initial perturbation sizes for the
overstory and understory DSD were identical. Namely,
the DA system distinguished overstory DSD from under-
story DSD. The particle spread for DSD increased with
latitude (Fig. 6c, d, right). Arakida et al. (2017) showed
that the DA system distinguished overstory and under-
story DSD when consecutive low LAI observations were
available near the observation threshold (LAI = 0.5) at
the start of the growing season and at the end of the
leaf-bearing season. We found that consecutive low LAIs
near the threshold occurred only at the sites where the
annual maximum LAI was relatively large (larger than
2.0), and the particle spread for DSD at those sites was
smaller than those at other sites.

Fig. 3 Total LAI (annual maximum of median). a NODA, b TEST, c
observation, and d scatter plot of simulation results (NODA and
TEST) against observational data. The estimates for sites south of 60°
N were not stable. Only results from sites north of 60° N (latitude
line shown in each map) were used in subsequent scatter plots

Table 3 Correlation coefficients for the spatial relationships
between the variables and observed leaf area indices (LAI;
annual maximum) for NODA and TEST. Asterisk * shows P values
less than 0.01

State variable NODA TEST

Total LAI (annual maximum) 0.46 * 0.99 *

Overstory LAI (annual maximum) 0.53 * 0.98 *

Aboveground biomass (annual mean) 0.38 * 0.93 *

GPP (annual total) 0.52 * 0.99 *

Interception (annual total) 0.68 * 0.89 *

Transpiration (annual total) 0.53 * 0.96 *

Bowen ratio (annual minimum) − 0.41 * − 0.83 *
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Fig. 4 Overstory LAI (annual maximum of median). a This study (TEST), b estimation with three-dimensional radiative transfer model (Delbart
et al. 2005; Kobayashi et al. 2010), and c scatter plot of this study against the estimates from Delbart et al. (2005) and Kobayashi et al. (2010)
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4 Discussion
4.1 Performance of the DA system at regional scales
We applied the DA system with an individual-based
vegetation model and satellite observations to the re-
gional scale for the first time. The results demonstrated
that the satellite-observed LAI was successfully assimi-
lated into the SEIB-DGVM. In addition, the DA system
estimated the spatiotemporal distribution of overstory
LAI separately from that of understory LAI. Kobayashi
et al. (2010) pioneered to estimate the seasonal change
of overstory LAI separately from that of understory LAI
at a regional scale with a three-dimensional radiative
transfer model and satellite-observed data. The correl-
ation coefficients between the overstory LAI of the
current study and that of Kobayashi et al. (2010) in-
creased from 0.53 to 0.81 by DA. This indicated that the
DA system with an individual-based DGVM also func-
tioned well in estimating forest structure at a large
spatial domain. In addition, the DA system affected the

regional estimations of carbon and water fluxes, which
were not simulated by the three-dimensional radiative
transfer model in Kobayashi et al. (2010).
The maximum overstory LAI in the Yakutsk larch for-

est (YLF) was about 1.6 in this study, close to the esti-
mate from 1.6 to 2.0 of in situ observations (Ohta et al.
2008; Iida et al. 2009). On the other hand, the maximum
understory LAI in YLF was about 1.0 in this study, about
half of 2.1 of Iida et al. (2009). The total LAI in this
study was close to the MODIS LAI (Figure S1a),
therefore, the underestimate of the understory LAI
would be caused by the observation bias. The higher
overstory LAI (> 2.0) estimates in this study tended
to exceed those of Kobayashi et al. (2010) (Fig. 4c).
This also may be related to the observation bias.
Further DA studies with LAI products from other
satellite observations (e.g., Kobayashi et al. 2010)
may improve the understanding of the bias in the
observation data.

Fig. 5 Spatial correlation coefficients between this study and the previous studies. The upper panels display the scatter plots of GPP of this study
against that of FLUXCOM for NODA (a) and TEST (b): the artificial neural network (ANN), multivariate regression splines (MARS), and random forest
(RF) (Tramontana et al. 2016; Jung et al. 2017), with the observation threshold of Reichstein et al. (2005). The lower panels display the scatter plots
of aboveground biomass of this study against that of Liu et al. (2015) for NODA (c) and TEST (d)

Arakida et al. Progress in Earth and Planetary Science            (2021) 8:52 Page 9 of 15



DA reduced LAI estimates throughout the study
area, which made the estimated LAI very close to the
observed LAI (Fig. 3d). In addition to the reduction
in LAI, DA reduced values of the unassimilated
variables (Figs. 4c and 5b, d). The resulting spatial

correlations between the estimated variables and the
observed LAI were generally high (Table 3). Hence,
optimization of LAI markedly affected the spatial
distributions of fluxes and vegetation structure at the
regional scale.

Fig. 6 Estimated parameters. Annual means of the median (left) and 1–99% quantile range (right) of the parameters for TEST: a maximum
photosynthetic rate (Pmax) for overstory, b Pmax for understory, c defoliation start date (DSD) for overstory, and d DSD for understory

Arakida et al. Progress in Earth and Planetary Science            (2021) 8:52 Page 10 of 15



The relations between LAI and unassimilated variables
are shown in Fig. 2c. According to the model description
paper of the SEIB-DGVM (Sato et al. 2007), the relation-
ships among Pmax, DSD, GPP, and LAI are explained as
follows. The single-leaf photosynthetic rate under light
saturation is calculated by multiplying Pmax by the coef-
ficients of temperature, CO2 level, and soil water effects.
GPP is calculated using the equation including the light-
saturated photosynthesis rate and LAI. On the other
hand, the leaf mass increment is determined by the dis-
tribution from GPP. Therefore, there is a mutual rela-
tionship between LAI and GPP. In the SEIB-DGVM,
LAI is modeled to decrease linearly from the DSD, and
photosynthesis stops suddenly at the DSD. By assimilat-
ing satellite-observed LAI, DA made overstory DSD earl-
ier and overstory Pmax smaller than those of the median
of the NODA experiment. Therefore, DA shortened the
period for photosynthesis and reduced the photosyn-
thesis rate, which led to the reduction of annual total
GPP. As for water flux, interception and transpiration
are also calculated using LAI in the SEIB-DGVM. Bowen
ratio is affected by those water fluxes. Therefore, the
high correlation between these variables and the LAI is a
natural result if the LAI is properly assimilated. In this
way, our DA system has a significant impact on carbon,
water, and energy fluxes.
Another interesting result is the high correlation

between the aboveground biomass and the observed
LAI (Table 3) and the increase of the correlation with
the previous study (Fig. 5d). Although the above-
ground biomass is not directly calculated from the
LAI, the biomass allometry to each organ (i.e., leaves,
roots, trunk, and storage resources) is parameterized
in the model (Sato et al. 2007). Since the LAI of
leaves corresponds to the leaf biomass, there is a pos-
sibility that the total biomass could be estimated in-
versely by assimilating LAI. Further study for this
issue is needed in future studies.
The estimates obtained in this study were highly cor-

related with those of previous investigations using satel-
lite observations with an optical sensor for FLUXCOM
(Fig. 5b: Tramontana et al. 2016; Jung et al. 2017) and
overstory LAI (Fig. 4c: Delbart et al. 2005; Kobayashi
et al. 2010). The principles of the observations used in
these works were identical to those of this study. There-
fore, the improved correlations and RMSE by DA are a
natural consequence as long as the MODIS LAI is as-
similated correctly. The correlation for aboveground bio-
mass was also improved (Fig. 5d, Liu et al. 2015)
nevertheless they used microwave-based observations,
the principles of the observation are fundamentally dif-
ferent from this study. This improvement suggests that
the DA system worked to optimize not only LAI but also
biomass, as mentioned earlier. The estimated NEE was

within a reasonable range at the two flux sites in Siberia
(not shown), i.e., the Tura (Nakai et al. 2008) and Ya-
kutsk (Ohta et al. 2001, 2008, 2014) larch forests. Add-
itional in situ observations are needed for further
validation.

4.2 Parameter estimation
According to the observations at YLF Asiaflux mixed
forest site in 1997–2000 (Suzuki et al. 2001), the leaf
senescence of birch started at the end of August (DOY
237-242), and that of larch started in mid-September
(DOY around 258). The default SEIB-DGVM identifies
the start date of defoliation when the 10-day running
average of daily mean air temperature is lower than 7 °C,
tuned to coincide with the onset of the leaf senescence
of larch at YLF (Sato et al. 2010). On the other hand,
DSD for TEST in this study was DOY 218, about 40 days
earlier than the observation for larch by Suzuki et al.
2001. Figure 7 shows the two-dimensional kernel density
of the scatter plot of estimated overstory DSD in this
study (TEST) against that in the original SEIB-DGVM.
In general, the estimated overstory DSD in the present
study was about 40 days earlier than that in SEIB-
DGVM. As shown in Figure S1a, the phenology at the
YLF Asiaflux site was well optimized by DA for MODIS
LAI. Overstory DSD was also estimated with a smaller
particle spread at the regional scale (Fig. 6c). Therefore,
such an early DSD was likely caused by the bias of
MODIS itself. Wang et al. (2005) validated seasonal pat-
terns of MODIS LAI at two deciduous forests in Europe,
and they also showed that the start of defoliation in
MODIS LAI was up to 18 days earlier than the local ob-
servation. This suggests that to better estimate the de-
foliation start date, it would be necessary to use
observations that properly reflect phenology.
Since the correlation between the observed and TEST

LAIs was very high in this DA experiment (Fig. 3d), we
can assume that the optimization of Pmax at least con-
tributed to the optimization of the amplitude of LAI.
However, several issues remain: (1) averaged forcing cli-
mate data was used for the DA experiment which affects
photosynthesis rate, (2) the amplitude of LAI was opti-
mized only by Pmax, and (3) the 1–99% quantile range
for Pmax was still large for TEST throughout the study
area. Therefore, a more appropriate DA system is
needed for the optimization of the amplitude of LAI.
The reduction of the particle spread for overstory Pmax
from the initial perturbation was limited, and it did not
greatly improve across the study area, likely due to the
large resampling perturbation size used to avoid particle
degeneracy (Arakida et al. 2017). Our future research
will improve the DA system with a smaller resampling
perturbation size and investigate Pmax more carefully.
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The sensitivity of other parameters to the amplitude of
LAI should also be investigated.

4.3 Limitations
The SEIB-DGVM simulates the understory as deciduous
grass, and this setting was not modified for the DA ex-
periment in this study. For a more realistic simulation in
Siberia, it is necessary to develop a DA system that takes
into account the evergreen understory, because under-
story also highly contributes to GPP (Kotani et al. 2019)
and evapotranspiration (Iida et al. 2009) in Siberia. Fur-
ther study for the underestimation of LAI for the under-
story is also needed. The DA system was unstable in the
study area at latitudes lower than 60° N, and the esti-
mated LAI for understory exceeded that for overstory.
In these unstable cases, apparently, the particles con-
verged to an unrealistic vegetation structure. In these
areas, overstory DSD was later than understory DSD
(Fig. 6c, d, left), and overstory LAI was low (Fig. 4a). To
resolve these contradictions, the DA system must be fur-
ther improved for the lower latitudes. The Larch canopy
in this region is scarce and the understory is dominated
by mosses and lichens (Suzuki et al. 2007). Classification
of understory may be a key to improve the DA system,
especially in this region.
The correlations between TEST and FLUXCOM for

GPP were improved by DA (Fig. 5b), but the estimated

values were overestimated for TEST. We performed a
simple regression analysis with the MODIS LAI (annual
maximum) and GPP (annual total) for further under-
standing. The slope for TEST was 328 and that for
FLUXCOM was 109 for ANN, 82 for MARS, and 149
for RF, which indicates the slope for TEST was from 2.2
to 4 times higher than that of FLUXCOM. This may be
related to the overestimation of the overstory LAI and
the DA setting which optimizes the amplitude of LAI
only by Pmax. Further study is also needed on this
issue.
In the previous studies which have been used the

SEIB-DGVM, spin-up was performed over some thou-
sands of years to simulate soil carbon accumulations
(e.g., Sato et al. 2010). In this study, we used the particle
filter method with 8000 parallel simulations at each loca-
tion. The calculation cost is huge for such a long spin-
up period. Therefore, we only validated aboveground
forest states such as LAI, aboveground biomass, and
GPP with previous studies. We have performed a pre-
liminarily NODA experiment with 100 particles and
confirmed that a spin-up period of 100 years was enough
for saturation of LAI, aboveground biomass, and GPP
for all of the study sites. Only above ground biomass
was decreased after 100 years because of the death of the
trees. Sensitivity to the spin-up period from this aspect
may be needed in future studies.

Fig. 7 Kernel density of the scatter plot of estimates of defoliation start date (DSD) for overstory. The plot shows DSD obtained in this study with
data assimilation (TEST) against the original SEIB-DGVM estimates
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We used averaged forcing climate data corresponding
to the temporal aggregation of the observation data. We
prioritized the stability of the DA system over the real-
ism of the climate forcing data. This averaging may pro-
duce unrealistic conditions, especially for water status. If
more good quality observations are available, it is better
to use year-to-year climate forcing data for spin-up and
DA. In addition, the forcing data with higher spatial
resolution such as ECMWF Reanalysis v5 (ERA5) and
Global Soil Wetness Project Phase 3 (GSWP3) may im-
prove the DA results.

5 Conclusion
We tested the performance of the SEIB-DGVM-based
DA system over Siberia and found that it generally per-
formed well at a large spatial domain. The study re-
vealed that the DA system with an individual-based
DGVM estimates overstory LAI at a regional scale; this
leads to the estimation of spatial distributions of model
parameters for overstory and understory separately. In
addition, this study corroborated the previous DA studies
with vegetation models and showed that LAI was crucial
for the estimation of carbon flux at a regional scale.
Remaining issues for future studies include that the

DA system fails in the southern sectors of Siberia. Im-
provements are required for application to lower lati-
tudes. Second, we assimilated only the satellite-observed
MODIS LAI. Assimilation of other observations along
with LAI would be beneficial such as using microwave-
based aboveground biomass and GPP estimated from
solar-induced chlorophyll fluorescence (e.g., Franken-
berg et al. 2011). We may increase the number of pa-
rameters to estimate by assimilating these additional
observations. LAI products from other satellite data may
also help understand the influence of observation bias
on the DA system.
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