Achille DG, Hynek BM (2010) Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat Geosci 3:459–463
Article
Google Scholar
Ahuir J, Brun AS, Strugarek A (2020) From stellar coronae to gyrochronology: theoretical and observational exploration. Astronomy Astrophysics 635:A170
Article
Google Scholar
Alvarado-Gómez JD, Drake JJ, Garraffo C, Cohen O, Poppenhaeger K, Yadav RK, Moschou SP (2020) An Earth-like stellar wind environment for Proxima Centauri. Astrophys J Lett 902(1):L9. https://doi.org/10.3847/2041-8213/abb885
Article
Google Scholar
Aulanier G, Démoulin P, Schrijver CJ, Janvier M, Paria E, Schmieder B (2013) The standard flare model in three dimensions. II. Upper limit on solar fare energy. Astrophysical J 549:A66
Google Scholar
Babcock HW (1961) The topology of the Sun’s magnetic field and the 22-year cycle. Astrophysical J 133:572. https://doi.org/10.1086/147060
Article
Google Scholar
Barnes SA (2009) Gyrochronology and its usage for main sequence field star ages. IAU Symp 258:345–356
Google Scholar
Basak A, Nandy D (2021) Star planet interaction simulations of the imposed magnetospheres of Mars and Mars-like exoplanets. Monthly Notices R Astronomical Soc 502:3569–3581
Beer J, Tobias SM, Weiss NO (2017) On long-term modulation of the Sun’s magnetic cycle. Monthly Notices Royal Astronomical Soc 473:1596–1602
Article
Google Scholar
Benz, AO (2017) Flare Observations. Living Reviews in Solar Physics 14:2.
Bhowmik P, Nandy D (2018) Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions. Nat Commun 9(1):5209. https://doi.org/10.1038/s41467-018-07690-0
Article
Google Scholar
Brun AS, Garcia RA, Houdek G, Nandy D, Pinsonneault M (2015) The solar-stellar connection. Space Sci Rev 196:303–356
Article
Google Scholar
Brun AS, Miesch MS, Toomre J (2004) Global-scale turbulent convection and magnetic dynamo action in the solar envelope. Astrophysical J 614(2):1073–1098. https://doi.org/10.1086/423835
Article
Google Scholar
Caffee M, Hohenberg C, Swindle T (1987) Evidence in meteorites for an active early Sun. Astrophysical J 313:L31. https://doi.org/10.1086/184826
Article
Google Scholar
Cameron R, Schüssler M (2015) The crucial role of surface magnetic fields for the solar dynamo. Science 347(6228):1333–1335. https://doi.org/10.1126/science.1261470
Article
Google Scholar
Cameron RH, Jiang J, Schüssler M (2016) Solar cycle 25: another moderate cycle? Astrophysical J Lett 823(2):L22. https://doi.org/10.3847/2041-8205/823/2/L22
Article
Google Scholar
Carolan S, Vidotto AA, Loesch C, Coogan P (2019) The evolution of Earth’s magnetosphere during the solar main sequence. Monthly Notices R Astronomical Soc 489:5784–5801, 4. https://doi.org/10.1093/mnras/stz2422
Article
Google Scholar
Charbonneau P (2020) Dynamo models of the solar cycle. Living Rev Solar Phys 17(1):4. https://doi.org/10.1007/s41116-020-00025-6
Article
Google Scholar
Chatterjee P, Nandy D, Choudhuri AR (2004) Full-sphere simulations of a circulation-dominated solar dynamo: exploring the parity issue. Astronomy Astrophysics 427(3):1019–1030. https://doi.org/10.1051/0004-6361:20041199
Article
Google Scholar
Choudhuri AR, Chatterjee P, Jiang J (2007) Predicting solar cycle 24 with a solar dynamo model. Physi Rev Lett 98(13):131103. https://doi.org/10.1103/PhysRevLett.98.131103
Article
Google Scholar
Choudhuri AR, Schüssler M, Dikpati M (1995) The solar dynamo with meridional circulation. Astronomy Astrophysics 303:L29–L32
Google Scholar
Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nature Geosci 7(9):627–637. https://doi.org/10.1038/ngeo2234
Article
Google Scholar
Cranmer S (2017) Mass-loss rates from coronal mass ejections: a predictive theoretical model for solar-type stars. Astrophysical J 840:114–124
Article
Google Scholar
Cranmer SR, Saar SH (2011) Testing a predictive theoretical model for the mass-loss rates of cool stars. Astrophys. J. 741(1):54–76. https://doi.org/10.1088/0004-637X/741/1/54
Article
Google Scholar
Das SB, Basak A, Nandy D, Vaidya B (2019) Modeling Star-Planet Interactions in far-out planetary and exoplanetary systems. Astrophysical J 877(2):80. https://doi.org/10.3847/1538-4357/ab18ad
Article
Google Scholar
Dasi-Espuig M, Solanki SK, Krivova NA, Cameron R, Peñuela T (2010) Sunspot group tilt angles and the strength of the solar cycle. Astronomy Astrophysics 518:A7. https://doi.org/10.1051/0004-6361/201014301
Article
Google Scholar
De Jager C (2005) Solar Forcing of Climate. 1: Solar Variability, vol 120, pp 197–241
Google Scholar
Deeg HJ, Belmonte JA (2018) Handbook of Exoplanets. Springer, Switzerland. https://doi.org/10.1007/978-3-319-55333-7
Book
Google Scholar
DeRosa M, Brun AS, Hoeksema JT (2012) Solar magnetic field reversals and the role of dynamo families. Astrophysical J 757(96):1. https://doi.org/10.1088/0004-637X/757/1/96
Article
Google Scholar
Dikpati M, Charbonneau P (1999) A Babcock-Leighton flux transport dynamo with solar-like differential rotation. Astrophysical J 518(1):508–520. https://doi.org/10.1086/307269
Article
Google Scholar
Dikpati M, de Toma G, Gilman PA (2006) Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys Res Lett 33:5102
Article
Google Scholar
Durney BR (1995) On a Babcock–Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field. Solar Phys 160(2):213–235. https://doi.org/10.1007/BF00732805
Article
Google Scholar
Eddy JA (1976) The Maunder Minimum. Science 192(4245):1189–1202. https://doi.org/10.1126/science.192.4245.1189
Article
Google Scholar
Feulner G (2012) The faint young Sun problem. Revi Geophys 50:RG2006
Google Scholar
Fionnagáin Ó, Vidotto D, Petit AA, Folsom P, Jeffers CP, Marsden SV, Morin SC, do Nascimento J, JD, BCool Collaboration (2019) Monthly Notices of the Royal Astronomical Society. Volume 483:873–886
Google Scholar
Fionnagáin ÓD, Vidotto AA (2018) The solar wind in time: a change in the behavior of older winds? Monthly Notices R Astronomical Soc 476(2):2465–2475. https://doi.org/10.1093/mnras/sty394
Article
Google Scholar
Fröhlich C (2006) Solar irradiance variability since 1978-revision of the PMOD composite during solar cycle 21. Space Sci Rev 125:53–65
Article
Google Scholar
Gaidos EJ, Güdel M, Blake GA (2000) The Faint Young Sun Paradox: an observational test of an alternative solar model. Geophys Res Lett 27(4):501–503. https://doi.org/10.1029/1999GL010740
Article
Google Scholar
Gallet F, Charbonnel C, Amard L, Brun S, Palacios A, Mathis S (2017) Impacts of stellar evolution and dynamics on the habitable zone: the role of rotation and magnetic activity. Astronomy Astrophysics 597:A14. https://doi.org/10.1051/0004-6361/201629034
Article
Google Scholar
Geiss, J, and Bochsler, P (1991), in the Sun in time, ed. Sonnett CP, Giampapa MS, Matthews MS. Tucson: Univ. Arizona Press 98
Ghizaru M, Charbonneau P, Smolarkiewicz PK (2010) Magnetic cycles in global large-eddy simulations of solar convection. Astrophysical J Lett 715(2):L133–L137. https://doi.org/10.1088/2041-8205/715/2/L133
Article
Google Scholar
Gopalswamy N (2016) History and development of coronal mass ejections as a key player in solar terrestrial relationship. Geosci Lett 3(1):8–26. https://doi.org/10.1186/s40562-016-0039-2
Article
Google Scholar
Gopalswamy N (2017) Solar origins and statistics of extremes. In: Buzulukova N (ed) Extreme events in geospace. Origins, predictability, and consequences. Elsevier, Amsterdam
Google Scholar
Graedel TE, Sackmann IJ, Boothroyd AI (1991) Early solar mass loss: a potential solution to the weak sun paradox. Geophysical Res Lett 18(10):1881–1884. https://doi.org/10.1029/91GL02314
Article
Google Scholar
Gronoff G, Arras P, Baraka S, Bell JM, Cessateur G, Cohen O, Curry SM, Drake JJ, Elrod M, Erwin J, Garcia-Sage K, Garraffo C, Glocer A, Heavens NG, Lovato K, Maggiolo R, Parkinson CD, Simon Wedlund C, Weimer DR, Moore WB (2020) Atmospheric escape processes and planetary atmospheric evolution. J Geophysical Res 125:e2019JA027639
Google Scholar
Guerrero G, Gouveia d, Dal Pino EM (2008) Turbulent magnetic pumping in a Babcock–Leighton solar dynamo model. Astronomy Astrophysics 485(1):267–273. https://doi.org/10.1051/0004-6361:200809351
Article
Google Scholar
Guerrero G, Smolarkiewicz PK, Kosovichev AG, Mansour NN (2013) Differential rotation in solar-like stars from global simulations. Astrophysical J 779(2):176. https://doi.org/10.1088/0004-637X/779/2/176
Article
Google Scholar
Guerrero G, Zaire B, Smolarkiewicz PK, de Gouveia Dal Pino EM, Kosovichev AG, Mansour NN (2019) What sets the magnetic field strength and cycle period in solar-type stars? Astrophysical J 880(1):6. https://doi.org/10.3847/1538-4357/ab224a
Article
Google Scholar
Guerrero GA, Muñoz JD (2004) Kinematic solar dynamo models with a deep meridional flow. Monthly Notices R Astronomical Soc 350(1):317–322. https://doi.org/10.1111/j.1365-2966.2004.07655.x
Article
Google Scholar
Guinan, EF, and Engle, SG (2007) Evolution over time of magnetic dynamo driven UV & X-ray emissions of dG-M stars and effects on hosted planets. Oral Contribution to IAU 26th General Assembly Joint Discussion 4 - The Ultraviolet Universe: Stars from Birth to Death (arXiv: 0711.1530)
Haigh JD (2007) The Sun and the Earth’s climate. Living Rev Solar Phys 4:2
Article
Google Scholar
Hale GE, Ellerman F, Nicholson SB, Joy AH (1919) The magnetic polarity of sun-spots. Astrophysical J 49:153. https://doi.org/10.1086/142452
Article
Google Scholar
Hathaway D (2015) The Solar Cycle. Living Rev Solar Phys 7:1
Article
Google Scholar
Hazra S, Brun AS, Nandy D (2020) Does the mean-field α effect have any impact on the memory of the solar cycle? Astronomy Astrophysics 642:A51. https://doi.org/10.1051/0004-6361/201937287
Article
Google Scholar
Hazra S, Nandy D (2016) A proposed paradigm for solar cycle dynamics mediated via turbulent pumping of magnetic flux in Babcock–Leighton-type solar dynamos. Astrophysical J 832(1):9. https://doi.org/10.3847/0004-637X/832/1/9
Article
Google Scholar
Hazra S, Nandy D (2019) The origin of parity changes in the solar cycle. Monthly Notices R Astronomical Soc 489(3):4329–4337. https://doi.org/10.1093/mnras/stz2476
Article
Google Scholar
Hazra S, Passos D, Nandy D (2014) A stochastically forced time delay solar dynamo model: self-consistent recovery from a Maunder-like grand minimum necessitates a mean-field alpha effect. Astrophysical J 789(1):5. https://doi.org/10.1088/0004-637X/789/1/5
Article
Google Scholar
Hotta H, Rempel M, Yokoyama T (2016) Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations. Science 351(6280):1427–1430. https://doi.org/10.1126/science.aad1893
Article
Google Scholar
Iijima H, Hotta H, Imada S, Kusano K, Shiota D (2017) Improvement of solar-cycle prediction: plateau of solar axial dipole moment. Astronomy Astrophysics 607:L2
Article
Google Scholar
Intergovernmental Panel on Climate Change Assessment Report (2013) Climate Change 2013: The Physical Science Basis. Switzerland, IPCC https://www.ipcc.ch/report/ar5/wg1/
Google Scholar
Jiang J, Wang JX, Jiao QR, Cao JB (2018) Predictability of the solar cycle over one cycle. Astrophysical J 863(159):2. https://doi.org/10.3847/1538-4357/aad197
Article
Google Scholar
Jouve L, Proctor MRE, Lesur G (2010) Buoyancy-induced time delays in Babcock–Leighton flux-transport dynamo models. Astronomy Astrophysics 519:A68. https://doi.org/10.1051/0004-6361/201014455
Article
Google Scholar
Käpylä MJ, Käpylä PJ, Olspert N, Brandenburg A, Warnecke J, Karak BB, Pelt J (2016) Multiple dynamo modes as a mechanism for long-term solar activity variations. Astronomy Astrophysics 589:A56. https://doi.org/10.1051/0004-6361/201527002
Article
Google Scholar
Käpylä PJ, Käpylä MJ, Olspert N, Warnecke J, Brandenburg A (2017) Convection-driven spherical shell dynamos at varying Prandtl numbers. Astronomy Astrophysics 599:A4. https://doi.org/10.1051/0004-6361/201628973
Article
Google Scholar
Käpylä PJ, Korpi MJ, Ossendrijver M, Stix M (2006a) Magnetoconvection and dynamo coefficients III. α-effect and magnetic pumping in the rapid rotation regime. Astronomy and Astrophysics 455(2):401–412. https://doi.org/10.1051/0004-6361:20064972
Article
Google Scholar
Käpylä PJ, Korpi MJ, Tuominen I (2006b) Solar dynamo models with α-effect and turbulent pumping from local 3d convection calculations. Astron Nachr 327(9):884. https://doi.org/10.1002/asna.200610636
Article
Google Scholar
Karak BB, Miesch M (2017) Solar cycle variability induced by tilt angle scatter in a Babcock–Leighton solar dynamo model. Astrophysical J 847(69):1. https://doi.org/10.3847/1538-4357/aa8636
Article
Google Scholar
Karak BB, Nandy D (2012) Turbulent pumping of magnetic flux reduces solar cycle memory and thus impacts predictability of the Sun’s activity. Astrophysical J Lett 761(1):L13. https://doi.org/10.1088/2041-8205/761/1/L13
Article
Google Scholar
Kasting JF (1989) Long-term stability of the earth’s climate. Glob Planet Change 1(1-2):83–95. https://doi.org/10.1016/0921-8181(89)90017-9
Article
Google Scholar
Kasting JF (2004) Evolution of Earth’s Atmosphere and Climate. AGU Fall Meeting Abstracts
Google Scholar
Kasting JF, Toon OB, Pollack JB (1988) How climate evolved on the terrestrial planets. Sci Am 258:46–53
Article
Google Scholar
Keppens R, Goedbloed JP (2000) Stellar winds, dead zones, and coronal mass ejections. Astrophysical J 530:1036–1048
Article
Google Scholar
Krivova NA, Balmaceda L, Solanki SK (2007) Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astronomy Astrophysics 467(1):335–346. https://doi.org/10.1051/0004-6361:20066725
Article
Google Scholar
Kumar R, Jouve L, Nandy D (2019) A 3D kinematic Babcock–Leighton solar dynamo model sustained by dynamic magnetic buoyancy and flux transport processes. Astronomy Astrophysics 623:A54. https://doi.org/10.1051/0004-6361/201834705
Article
Google Scholar
Labonville F, Charbonneau P, Lemerle A (2019) A dynamo-based forecast of solar cycle 25. Solar Physics 294(6):82. https://doi.org/10.1007/s11207-019-1480-0
Article
Google Scholar
Lammer H, Güdel M, Kulikov Y, Ribas I, Zaqarashvili TV, Khodachenko ML, Kislyakova KG, Gröller H, Odert P, Leitzinger M, Fichtinger B, Krauss S, Hausleitner W, Holmström M, Sanz-Forcada J, Lichtenegger HIM, Hanslmeier A, Shematovich VI, Bisikalo D, Rauer H, Fridlund M (2012) Variability of solar/stellar activity and magnetic field and its influence on planetary atmosphere evolution. Earth Planet Space 64:13
Article
Google Scholar
Leighton RB (1969) A magneto-kinematic model of the solar cycle. Astrophysical J 156:1. https://doi.org/10.1086/149943
Article
Google Scholar
Lekshmi B, Nandy D, Antia HM (2018) Asymmetry in solar torsional oscillation and the sunspot cycle. Astrophysical J 861:121
Article
Google Scholar
Lekshmi B, Nandy D, Antia HM (2019) Hemispheric asymmetry in meridional flow and the sunspot cycle. Monthly Notices R Astronomical Soc 489(1):714. https://doi.org/10.1093/mnras/stz2168
Article
Google Scholar
Lockwood M, Owens MJ, Barnard L (2014) Centennial variations in sunspot number, open solar flux, and streamer belt width: 1. Correction of the sunspot number record since 1874. J Geophys Res Space Phys 119(7):5172–5182. https://doi.org/10.1002/2014JA019970
Article
Google Scholar
Maehara H, Shibayama T, Notsu S, Notsu Y, Nagao T, Kusaba S, Honda S, Nogami D, Shibata K (2012) Superflares on solar-type stars. Nature 485(7399):478–448. https://doi.org/10.1038/nature11063
Article
Google Scholar
Martens PCH (2017) The Faint Young Sun and Faint Young Stars Paradox. IAU Symp 328:350–355
Google Scholar
McCracken KG (2007) Heliomagnetic field near Earth, 1428–2005. J Geophys Res 112:A09106
Google Scholar
Melendez J, dos Santos LA, Freitas FC (2017) Improved rotation-activity-age relations in Sun-like stars. IAU Symp 328:274–281
Google Scholar
Metcalfe TS, van Saders J (2020) Comment on “The Sun is less active than other solar-like stars”. arXiv:2007.04416
Google Scholar
Mininni PD, Gómez DO, Mindlin GB (2002) Biorthogonal decomposition techniques unveil the nature of the irregularities observed in the solar cycle. Phys Rev Lett 89(6):061101. https://doi.org/10.1103/PhysRevLett.89.061101
Article
Google Scholar
Minton DA, Malhotra R (2007) Assessing the Massive Young Sun Hypothesis to solve the Warm Young Earth Puzzle. Astrophysical J 660(2):1700–1706. https://doi.org/10.1086/514331
Article
Google Scholar
Mishra RK, Marhas KK (2019) Meteoritic evidence of a late superflare as source of 7Be in the early Solar System. Nat Astronomy 3:498–505
Article
Google Scholar
Miyahara H, Kitazawa K, Nagaya K, Yokoyama Y, Matsuzaki H, Masuda K, Nakamura T, Muraki Y (2010) Is the Sun heading for another Maunder minimum? Precursors of the grand solar minima. J Cosmol 8:1970–1982
Google Scholar
Miyahara H, Masuda K, Muraki Y, Furuzawa H, Menjo H, Nakamura T (2004) Cyclicity of solar activity during the Maunder minimum deduced from radiocarbon content. Solar Physics 224(1-2):317–322. https://doi.org/10.1007/s11207-005-6501-5
Article
Google Scholar
Muñoz-Jaramillo A, Dasi-Espuig M, Balmaceda LA, DeLuca EE (2013) Solar cycle propagation, memory, and prediction: insights from a century of magnetic proxies. Astrophysical J Lett 767(2):L25. https://doi.org/10.1088/2041-8205/767/2/L25
Article
Google Scholar
Muñoz-Jaramillo A, Nandy D, Martens PCH (2009) Helioseismic data inclusion in solar dynamo models. Astrophysical J 698(1):461–478. https://doi.org/10.1088/0004-637X/698/1/461
Article
Google Scholar
Muñoz-Jaramillo A, Nandy D, Martens PCH (2011) Magnetic quenching of turbulent diffusivity: reconciling mixing-length theory estimates with kinematic dynamo models of the solar cycle. Astrophysical J Lett 727(1):L23. https://doi.org/10.1088/2041-8205/727/1/L23
Article
Google Scholar
Muñoz-Jaramillo A, Nandy D, Martens PCH, Yeates AR (2010) A double-ring algorithm for modeling solar active regions: unifying kinematic dynamo models and surface flux-transport simulations. Astrophysical J Lett 720(1):L20–L25. https://doi.org/10.1088/2041-8205/720/1/L20
Article
Google Scholar
Mursula K, Usoskin IG, Kovaltsov GA (2001) Persistent 22-year cycle in sunspot activity: evidence for a relic solar magnetic field. Solar Phys 198(1):51–56. https://doi.org/10.1023/A:1005218414790
Article
Google Scholar
Mursula K, Usoskin IG, Maris G (2007) Introduction to space climate. Adv Space Res 40(7):885–887. https://doi.org/10.1016/j.asr.2007.07.046
Article
Google Scholar
Nagy M, Lemerle A, Labonville F, Petrovay K, Charbonneau P (2017) The effect of “rogue” active regions on the solar cycle. Solar Phys 292(11):167. https://doi.org/10.1007/s11207-017-1194-0
Article
Google Scholar
Nandy D (2002) Constraints on the solar internal magnetic field from a buoyancy driven solar dynamo. Astrophys Space Sci 282(1):209–219. https://doi.org/10.1023/A:1021632522168
Article
Google Scholar
Nandy D (2004) Exploring magnetic activity from the Sun to the stars. Solar Phys 224(1-2):161–169. https://doi.org/10.1007/s11207-005-4990-x
Article
Google Scholar
Nandy, D (2021) Progress in solar cycle predictions: sunspot cycles 24-25 in Perspective. Solar Physics, in press (arXiv:2009.01908), 296, 3, doi: 10.1007/s11207-021-01797-2
Nandy D, Bhatnagar A, Pal S (2020) Sunspot cycle 25 is brewing: early signs herald its onset. Res Notes AAS 4(2):30. https://doi.org/10.3847/2515-5172/ab79a1
Article
Google Scholar
Nandy D, Choudhuri AR (2001) Toward a mean-field formulation of the Babcock–Leighton type solar dynamo I. α-coefficient versus Durney’s double-ring approach. Astrophysical Journal 551(1):576–585. https://doi.org/10.1086/320057
Article
Google Scholar
Nandy D, Choudhuri AR (2002) Explaining the latitudinal distribution of sunspots with deep meridional flow. Science 296(5573):1671–1673. https://doi.org/10.1126/science.1070955
Article
Google Scholar
Nandy D, Martens PCH (2007) Space climate and the solar–stellar connection: what can we learn from the stars about long-term solar variability? Adv Space Res 40(7):891–898. https://doi.org/10.1016/j.asr.2007.01.079
Article
Google Scholar
Nandy D, Muñoz-Jaramillo A, Martens PCH (2011) The unusual minimum of sunspot cycle 23 caused by meridional plasma flow variations. Nature 471(7336):80–82. https://doi.org/10.1038/nature09786
Article
Google Scholar
Nelson NJ, Brown BP, Brun AS, Miesch MS, Toomre J (2013) Magnetic wreaths and cycles in convective dynamos. Astrophysical J 762(2):73. https://doi.org/10.1088/0004-637X/762/2/73
Article
Google Scholar
Notsu Y, Maehara H, Honda S, Hawley SL, Davenport JRA, Namekata K, Notsu S, Ikuta K, Nogami D, Shibata K (2019) Do Kepler superflare stars really include slowly rotating sun-like stars?-results using APO 3.5 m telescope spectroscopic observations and Gaia-DR2 data. Astrophysical J 876(1):58–97. https://doi.org/10.3847/1538-4357/ab14e6
Article
Google Scholar
Notsu Y, Shibayama T, Maehara H, Notsu S, Nagao T, Honda S, Ishii TT, Nogami D, Shibata K (2013) Superflares on solar-type stars observed with Kepler ii. photometric variability of superflare-generating stars: a signature of stellar rotation and starspots. Astrophysical J 771(2):127–137. https://doi.org/10.1088/0004-637X/771/2/127
Article
Google Scholar
Obridko V, Georgieva K (2018) Expected evolution of solar activity in the following decades. J Atmospheric Solar-Terrestrial Phys 176:1–82. https://doi.org/10.1016/j.jastp.2018.08.001
Article
Google Scholar
Obridko VN, Sokoloff DD, Shelting BD, Shibalova AS, Livshits IM (2020) Cyclic variations in the main components of the solar large-scale magnetic field. Monthly Notices R Astronomical Soc 492(4):5582–5591. https://doi.org/10.1093/mnras/staa147
Article
Google Scholar
Okamoto, S, Notsu, Y, Maehara, H, Namekata, K, Honda, S, Ikuta, K, Nogami, D, and Shibata, K, (2021) Statistical properties of superflares on solar-type stars: results using all of the Kepler primary mission data. Astrophysical J, in press 906, 2, doi: https://doi.org/10.3847/1538-4357/abc8f5
Owens M, Cliver E, McCracken K, Beer J, Barnard L, Lockwood M, Rouillard A, Passos D, Riley P, Usoskin I, Wang YM (2016) Near-earth heliospheric magnetic field intensity since 1750. Part 1: Sunspot and geomagnetic reconstructions. J Geophys Res 121:6048–6063
Article
Google Scholar
Owens MJ, Lockwood M, Riley P (2017) Global solar wind variations over the last four centuries. Sci Rep 7(1):41548. https://doi.org/10.1038/srep41548
Article
Google Scholar
Pal S, Dash S, Nandy D (2020) Flux erosion of magnetic clouds by reconnection with the Sun’s open flux. Geophys Res Lett 47:e2019GL086372
Google Scholar
Parker EN (1955a) Hydromagnetic dynamo models. Astrophysical J 122:293–314. https://doi.org/10.1086/146087
Article
Google Scholar
Parker EN (1955b) The formation of sunspots from the solar toroidal field. Astrophys J 121:491. https://doi.org/10.1086/146010
Article
Google Scholar
Passos D, Nandy D, Hazra S, Lopes I (2014) A solar dynamo model driven by mean-field alpha and Babcock–Leighton sources: fluctuations, grand-minima-maxima, and hemispheric asymmetry in sunspot cycles. Astronomy Astrophysics 563:A18. https://doi.org/10.1051/0004-6361/201322635
Article
Google Scholar
Paxton B, Bildsten L, Dotter A, Herwig F, Lesaffre P, Timmes F (2011) Modules for Experiments in Stellar Astrophysics (MESA). Astrophysical J Suppl Series 192(1):3–38. https://doi.org/10.1088/0067-0049/192/1/3
Article
Google Scholar
Pesnell WD (2008) Predictions of solar cycle 24. Solar Phys 252(1):209–220. https://doi.org/10.1007/s11207-008-9252-2
Article
Google Scholar
Petrovay K (2020) Solar cycle prediction. Living Rev Solar Phys 17(1):2. https://doi.org/10.1007/s41116-020-0022-z
Article
Google Scholar
Poppenhaeger K, Lenz LF, Reiners A, Schmitt JHMM, Shkolnik E (2011) A search for star-planet interactions in the υ Andromedae system at X-ray and optical wavelengths. Astronomy Astrophysics 528:A58. https://doi.org/10.1051/0004-6361/201016008
Article
Google Scholar
Pulkkinen T (2007) Space weather: the terrestrial perspective. Living Rev Solar Phys 4:1
Article
Google Scholar
Raynaud R, Tobias SM (2016) Convective dynamo action in a spherical shell: symmetries and modulation. J Fluid Mechanics 799:1–12
Article
Google Scholar
Reinhold T, Shapiro AI, Solanki SK, Montet BT, Krivova NA, Cameron RH, Amazo-Gómez EM (2020a) The Sun is less active than other solar-like stars. Science 368:518–521. https://doi.org/10.1126/science.aay3821
Article
Google Scholar
Reinhold T, Shapiro AI, Solanki SK, Montet BT, Krivova, NA, Cameron RH, Amazo-Gómez, EM (2020b) Reply to the comment of T. Metcalfe and J. van Saders on the Science report “The Sun is less active than other solar-like stars”. arXiv:2007.04817
Google Scholar
Rodgers-Lee D, Vidotto AA, Taylor AM, Rimmer PB, Downes TP (2020) The Galactic cosmic ray intensity at the evolving Earth and young exoplanets. Monthly Notices R Astronomical Soc 499(2):2124–2137. https://doi.org/10.1093/mnras/staa2737
Article
Google Scholar
Sackmann J, Boothroyd A (2003) Our Sun. V. A bright young Sun consistent with helioseismology and warm temperatures on ancient Earth and Mars. Astrophysical J 583:1024
Article
Google Scholar
Sakata R, Seki K, Sakai S, Terada N, Shinagawa H, Tanaka T (2020) Effects of an intrinsic magnetic field on ion loss from ancient mars based on multispecies MHD simulations. J Geophys Res 125:e2019JA026945
Article
Google Scholar
Schatten KH, Scherrer PH, Svalgaard L, Wilcox JM (1978) Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys Res Lett 5(5):411–414. https://doi.org/10.1029/GL005i005p00411
Article
Google Scholar
Schmieder B (2018) Extreme solar storms based on solar magnetic field. J Atmospheric Solar-Terrestrial Physics 180:46–51
Article
Google Scholar
Schrijver CJ, Kauristie K, Aylward AD, Denardini CM, Gibson SE, Glover A, Gopalswamy N, Grande M, Hapgood M, Heynderickx D, Jakowski N, Kalegaev VV, Lapenta G, Linker JA, Liu S, Mandrini CH, Mann IR, Nagatsuma T, Nandy D, Obara T, Paul O'Brien T, Onsager T, Opgenoorth HJ, Terkildsen M, Valladares CE, Vilmer N (2015) Understanding space weather to shield society: a global road map for 2015-2025 commissioned by COSPAR and ILWS. Adv Space Res 55:2745–2807
Article
Google Scholar
Schwabe H (1844) Sonnen-Beobachtungen im Jahre 1843, Astron. Nachr. 21:233–236
Article
Google Scholar
Schwenn R (2006) Space weather: the solar perspective. Living Rev Solar Phys 3:2
Article
Google Scholar
Shapiro AV, Shapiro AI, Gizon L, Krivova NA, Solanki SK (2020) Solar-cycle irradiance variations over the last four billion years. Astronomy Astrophysics 636:A83. https://doi.org/10.1051/0004-6361/201937128
Article
Google Scholar
Shibayama T, Maehara H, Notsu S, Notsu Y, Nagao T, Honda S, Ishii TT, Nogami D, Shibata K (2013) Superflares on solar-type stars observed with Kepler. I. Statistical properties of superflares. Astrophysical J Suppl Series 209:1
Article
Google Scholar
Strugarek A (2016) Assessing magnetic torques and energy fluxes in close-in star–planet systems. Astrophysical J 833(140):2. https://doi.org/10.3847/1538-4357/833/2/140
Article
Google Scholar
Strugarek A, Brun AS, Donati JF, Moutou C, Réville V (2019) Chasing Star–Planet Magnetic Interactions: The Case of Kepler-78. Astrophysical J 881, 136(2). https://doi.org/10.3847/1538-4357/ab2ed5
Strugarek A, Brun AS, Matt SP, Réville V (2014) On the diversity of magnetic interactions in close-in star-planet systems. Astrophysical J 795(86):1. https://doi.org/10.1088/0004-637X/795/1/86
Article
Google Scholar
Suzuki T, Imada S, Kataoka R, Kato Y, Matsumoto T, Miyahara H, Tsuneta S (2013) Saturation of stellar winds from young suns. Publ Astron Soc Japan 65(5):98–21. https://doi.org/10.1093/pasj/65.5.98
Article
Google Scholar
Temmer M, Veronig A, Hanslmeier A (2002) Hemispheric sunspot numbers Rn and Rs: catalogue and N-S asymmetry analysis. Astronomy Astrophysics 390(2):707–715. https://doi.org/10.1051/0004-6361:20020758
Article
Google Scholar
Tobias SM (2002) Modulation of solar and stellar dynamos. Astronomische Nachrichten 323(3-4):417–423. https://doi.org/10.1002/1521-3994(200208)323:3/4<417::AID-ASNA417>3.0.CO;2-U
Article
Google Scholar
Tripathi, B, Nandy, D, and Banerjee, S (2021) Stellar mid-life crisis: subcritical magnetic dynamos of solar-like stars and the break-down of gyrochronology. Monthly Notices R Astronomical Soc Lett. in press
Upton LA, Hathaway DH (2018) An updated solar cycle 25 prediction with AFT: the modern minimum. Geophysical Res Lett 45(16):8091–8095. https://doi.org/10.1029/2018GL078387
Article
Google Scholar
Usoskin IG (2017) A history of solar activity over millennia. Living Rev Solar Phys 14(1):3. https://doi.org/10.1007/s41116-017-0006-9
Article
Google Scholar
Usoskin IG, Arlt R, Asvestari E, Hawkins E, Käpylä M, Kovaltsov GA, Krivova N, Lockwood M, Mursula K, O’Reilly J, Owens M, Scott CJ, Sokoloff DD, Solanki SK, Soon W, Vaquero JM (2015) The Maunder minimum (1645–1715) was indeed a grand minimum: a reassessment of multiple datasets. Astronomy Astrophysics A95:581–600
Google Scholar
Usoskin IG, Hulot G, Gallet Y, Roth R, Licht A, Joos F, Kovaltsov GA, Thebault E, Khokhlov A (2014) Evidence for distinct modes of solar activity. Astronomy Astrophysics 562:L10. https://doi.org/10.1051/0004-6361/201423391
Article
Google Scholar
Usoskin IG, Solanki SK, Kovaltsov GA (2007) Grand minima and maxima of solar activity: new observational constraints. Astronomy Astrophysics 471(1):301–309. https://doi.org/10.1051/0004-6361:20077704
Article
Google Scholar
van Saders JL, Ceillier T, Metcalfe TS, Silva Aguirre V, Pinsonneault MH, García RA, Mathur S, Davies GR (2016) Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars. Nature 529(7585):181–184. https://doi.org/10.1038/nature16168
Article
Google Scholar
Velli M, Tenerani A, DeForest C (2016) Inward motions in the outer solar corona between 6 And 12 R: evidence for waves or magnetic reconnection jets? AAS/Solar Phys Div Meet 47:402.05
Google Scholar
Versteegh GJM (2005) Solar Forcing of Climate. 2: Evidence from the Past. Space Sci Rev 120(3-4):243–286. https://doi.org/10.1007/s11214-005-7047-4
Article
Google Scholar
Vidotto AA, Gregory SG, Jardine M, Donati JF, Petit P, Morin J, Folsom CP, Bouvier J, Cameron AC, Hussain G, Marsden S, Waite IA, Fares R, Jeffers S, do Nascimento JD Jr (2014) Stellar magnetism: empirical trends with age and rotation. Monthly Notices R Astronomical Soc 441(3):2361–2374. https://doi.org/10.1093/mnras/stu728
Article
Google Scholar
Vieira LEA, Solanki SK, Krivova NA, Usoskin IG (2011) Evolution of the solar irradiance during the Holocene. Astronomy Astrophysics 531:A6. https://doi.org/10.1051/0004-6361/201015843
Article
Google Scholar
Weiss NO, Tobias SM (2016) Supermodulation of the Sun’s magnetic activity: the effects of symmetry changes. Monthly Notices R Astronomical Soc 456(3):2654–2661. https://doi.org/10.1093/mnras/stv2769
Article
Google Scholar
Willson LA, Bowen GH, Struck-Marcel C (1987) Mass loss on the main sequence. Comments on Modern Phys 12:17–34
Google Scholar
Wilmot-Smith AL, Martens PCH, Nandy D, Priest ER, Tobias SM (2005) Low-order stellar dynamo models. Monthly Notices R Astronomical Soc 363(4):1167–1172. https://doi.org/10.1111/j.1365-2966.2005.09514.x
Article
Google Scholar
Wilmot-Smith AL, Nandy D, Hornig G, Martens PCH (2006) A time delay model for solar and stellar dynamos. Astrophysical J 652(1):696–708. https://doi.org/10.1086/508013
Article
Google Scholar
Wolk SJ, Harnden FR Jr, Flaccomio E, Micela G, Favata F, Shang H, Feigelson (eds) (2005) Stellar activity on the young suns of Orion: COUP Observations of K5-7 Pre-Main-Sequence Stars. Astrophysical J 160(2):423–449. https://doi.org/10.1086/432099
Wood BE, Müller H-R, Zank GP, Linsky JL, Redfield S (2005) New mass-loss measurements from astrospheric Lyman-alpha absorption. Astrophys J Lett 628(2):L143–L146. https://doi.org/10.1086/432716
Article
Google Scholar
Wu CJ, Krivova NA, Solanki SK, Usoskin IG (2018) Solar total and spectral irradiance reconstruction over the last 9000 years. Astronomy Astrophysics 620:A12
Article
Google Scholar
Yeates AR, Muñoz-Jaramillo A (2013) Kinematic active region formation in a three-dimensional solar dynamo model. Monthly Notices R Astronomical Soc 436(4):3366–3379. https://doi.org/10.1093/mnras/stt1818
Article
Google Scholar
Yeates AR, Nandy D, Mackay DH (2008) Exploring the physical basis of solar cycle predictions: flux transport dynamics and persistence of memory in advection- versus diffusion-dominated solar convection zones. Astrophysical J 673(1):544–556. https://doi.org/10.1086/524352
Article
Google Scholar
Yeo KL, Krivova NA, Solanki (2014) Solar cycle variation in solar irradiance. Space Sci Rev 186(1-4):137–167. https://doi.org/10.1007/s11214-014-0061-7
Article
Google Scholar
Yeo KL, Solanki SK, Krivova NA (2020) How faculae and network relate to sunspots, and the implications for solar and stellar brightness variations. Astronomy Astrophysics 639:A139. https://doi.org/10.1051/0004-6361/202037739
Article
Google Scholar