Amorim DCM, Pimenta AA, Bittencourt JA, Fagundes PR (2011) Long0 before addin medium. https://doi.org/10.1029/2010JA016090
An X, Li J, Bortnik J, Decyk V, Kletzing C, Hospodarsky G (2019) Unified view of nonlinear wave structures associated with whistler-mode chorus. Phys Rev Lett 122:045101. https://doi.org/10.1103/PhysRevLett.122.045101
Article
Google Scholar
Andersson ME, Verronen PT, Marsh DR, Seppälä A, Päivärinta SM, Rodger CJ, Clilverd MA, Kalakoski N, van de Kamp M (2018) Polar ozone response to energetic particle precipitation over decadal time scales: the role of medium-energy electrons. J Geophys Res-Atmos 123:607–622. https://doi.org/10.1002/2017JD027605
Article
Google Scholar
Andersson ME, Verronen PT, Rodger CJ, Clilverd MA, Seppälä A (2014) Missing driver in the Sun–Earth connection from energetic electron precipitation impacts mesospheric ozone. Nat Commun 5(1):5197. https://doi.org/10.1038/ncomms6197
Article
Google Scholar
Angelopoulos V (2008) The THEMIS Mission. Space Sci Rev 141(1–4):5–34. https://doi.org/10.1007/s11214-008-9336-1
Article
Google Scholar
Aulanier G, Démoulin P, Schrijver CJ, Janvier M, Paria E, Schmieder B (2013) The standard flare model in three dimensions. II. Upper limit on solar are energy. Astrophys J 549:A66. https://doi.org/10.1051/0004-6361/201220406
Article
Google Scholar
Aulanier G, Torok T, Demoulin P, DeLuca EE (2010) Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. Astrophys J 708:314–333. https://doi.org/10.1088/0004-637X/708/1/314
Article
Google Scholar
Baker DN, Jaynes AN, Hoxie VC, Thorne RM, Foster JC, Li X, Fennell JF, Wygant JR, Kanekal SG, Erickson PJ, Kurth W, Li W, Ma Q, Schiller Q, Blum L, Malaspina DM, Gerrard A, Lanzerotti LJ (2014) An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts. Nature 515(7528):531–534. https://doi.org/10.1038/nature13956
Article
Google Scholar
Baker DN, Erickson PJ, Fennell JF, Foster JC, Jaynes AN, Verronen PT (2018) Space weather effects in the earth’s radiation belts. Space Sci Rev 214:17. https://doi.org/10.1007/s11214-017-0452-7
Article
Google Scholar
Bamba Y, Kusano K (2018) Evaluation of applicability of a flare trigger model based on a comparison of geometric structures. Astrophys J 856(1):43. https://doi.org/10.3847/1538-4357/aaacd1
Article
Google Scholar
Baumgarten K, Gerding M, Baumgarten G, Lübken F-J (2018) Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding. Atmos Chem Phys 18:371–384. https://doi.org/10.5194/acp-18-371-2018
Article
Google Scholar
Beer J, McCracken K (2009) Evidence for solar forcing: Some selected aspects. In: Tsuda T, Fujii R, Shibata K, Geller MA (eds) Climate and Weather of the Sun-Earth System(CAWSES): Selected Papers from the2007 Kyoto Symposium. TERRAPUB, Tokyo, pp 201–216
Google Scholar
Benz AO (2017) Flare observations. Living Rev Sol Phys 14:1. https://doi.org/10.1007/s41116-016-0004-3
Article
Google Scholar
Berger U, Lübken F-J (2015) Trends in mesospheric ice layers in the Northern Hemisphere during 1961–2013. J Geophys Res Atmos 120:11,277–11,298. https://doi.org/10.1002/2015JD023355
Article
Google Scholar
Bhowmik P, Nandy D (2018) Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions. Nat Commun 9:5209. https://doi.org/10.1038/s41467-018-07690-0
Article
Google Scholar
Blanc M, Richmond AD (1980) The ionospheric disturbance dynamo. J Geophys Res 85(16):925
Google Scholar
Bobra MG, Ilonidis S (2016) Predicting coronal mass ejections using machine learning methods. ApJ 798:135. https://doi.org/10.1088/0004-637X/798/2/135.
Article
Google Scholar
Bortnik J, Li W, Thorne RM, Angelopoulos V (2016) A unified approach to inner magnetospheric state prediction. J Geophys Res Space Physics 121:2423–2430. https://doi.org/10.1002/2015JA021733
Article
Google Scholar
Brodrick D, Tingay S, Wieringa M (2005) X-ray magnitude of the 4 November 2003 solar flare inferred from the ionospheric attenuation of the galactic radio background. J Geophys Res 110:A09S36. https://doi.org/10.1029/2004JA010960
Article
Google Scholar
Burch JL, Moore TE, Torbert RB, Giles BL (2016) Magnetospheric multiscale overview and science objectives. Space Sci Rev 199(1–4):5–21. https://doi.org/10.1007/s11214-015-0164-9
Article
Google Scholar
Burton RK, McPherron RL, Russell CT (1975) An empirical relationship between interplanetary conditions and Dst. J Geophys Res 80:4204–4214. https://doi.org/10.1029/JA080i031p04204
Article
Google Scholar
Cameron RH, Jiang J, Schüssler M (2016) Solar cycle 25: another moderate cycle? Astrophys J Lett 823:L22. https://doi.org/10.3847/2041-8205/823/2/L22
Article
Google Scholar
Carter BA, Retterer JM, Yizengaw E, Groves K, Caton R, McNamara L, Bridgwood C, Francis M, Terkildsen M, Norman R, Zhang K (2014) Geomagnetic control of equatorial plasma bubble activity modeled by the TIEGCM with Kp. Geophys Res Lett 41:5331–5339. https://doi.org/10.1002/2014GL060953
Article
Google Scholar
Chae J, Kim YH (2017) Performance of the autoregressive method in long-term prediction of sunspot number. J Korean Astron Soc 50:21–27. https://doi.org/10.5303/JKAS.2017.50.2.21
Article
Google Scholar
Chamberlin PC, Woods TN, Eparvier FG (2008) Flare Irradiance Spectral Model (FISM): flare component algorithms and results. Space Weather 6:S05001. https://doi.org/10.1029/2007SW000372.
Article
Google Scholar
Charbonneau P (2020) Dynamo models of the solar cycle. Living Rev Sol Phys 17:4. https://doi.org/10.1007/s41116-020-00025-6
Article
Google Scholar
Cheng X, Ding MD, Guo Y, Zhang J, Vourlidas A, Liu YD, Olmedo O, Sun JQ, Li C (2014) Tracking the evolution of a coherent magnetic flux rope continuously from the inner to the outer corona. ApJ 780(1):28. https://doi.org/10.1088/0004-637X/780/1/28
Article
Google Scholar
Cho K-S, Marubashi K, Kim R-S, Park S-H, Lim E-K, Kim S-J, Kumar P, Yurchyshyn V, Moon Y-J, Lee J-O (2017) Impact of the ICME-Earth geometry of the strength of the associated geomagnetic storm: the September 2014 and March 2015 events. J Korean Astronomical Socy 50:29–39. https://doi.org/10.5303/JKAS.2017.50.2.29
Article
Google Scholar
Clette F, Berghmans D, Vanlommel P, Van der Linden RAM, Koeckelenbergh A, Wauters L (2007) From the Wolf number to the International Sunspot Index: 25 years of SIDC. Adv Space Res 40:919–928. https://doi.org/10.1016/j.asr.2006.12.045.
Article
Google Scholar
Clette F, Svalgaard L, Vaquero JM, Cliver EW (2014) Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci Rev 186:35–103. https://doi.org/10.1007/s11214-014-0074-2
Article
Google Scholar
Cliver EW, Clette F, Svalgaard L (2013) Recalibrating the Sunspot Number (SSN): the SSN Workshops. Central Europ Astrophys Bull 37:401–416
Google Scholar
Cnossen I, Richmond AD (2013) Changes in the Earth’s magnetic field over the past century: effects on the ionosphere-thermosphere system and solar quiet (Sq) magnetic variation. J Geophys Res Space Physics 118:849–858. https://doi.org/10.1029/2012JA018447
Article
Google Scholar
Conde M, Craven JD, Immel T, Hoch E, Stenbaek-Nielsen H, Hallinan T, Smith RW, Olson J, Sun W (2001) Assimilated observations of thermospheric winds, the aurora, and ionospheric currents over Alaska. J Geophys Res 106(A6):10493–10508. https://doi.org/10.1029/2000JA000135
Article
Google Scholar
Covas E, Peixinho N, Fernandes J (2019) Neural network forecast of the sunspot butterfly diagram. Sol Phys 294:24. https://doi.org/10.1007/s11207-019-1412-z
Article
Google Scholar
Cullens CY, England SL, Garcia RR (2016) The 11 year solar cycle signature on wave-drivendynamics in WACCM. J Geophys Res Space Physics 121:3484–3496. https://doi.org/10.1002/2016JA022455
Article
Google Scholar
D’Huys E, Seaton DB, De Groof A, Berghmans D, Poedts S (2017) Solar signatures and eruption mechanism of the August 14, 2010 Coronal Mass Ejection (CME). J Space Weather Space Climate 7(March):A7. https://doi.org/10.1051/swsc/2017006
Article
Google Scholar
Daglis IA, Chang L, Dasso S, Gopalswamy N, Khabarova OV, Kilpua E, Lopez R, Marsh D, Matthes K, Nandi D, Seppälä A, Shiokawa K, Thiéblemont R, Zong Q (2020) Predictability of the variable solar-terrestrial coupling, submitted to Annales Geophysicae
Google Scholar
Danilov AD (2012) Long-term trends in the upper atmosphere and ionosphere (a review). Geomagn Aeron 52:271–291. https://doi.org/10.1134/S0016793212030036
Article
Google Scholar
Desai M, Giacalone J (2016) Large gradual solar energetic particle events. Living Rev Solar Phys 13(1):3. https://doi.org/10.1007/s41116-016-0002-5
Article
Google Scholar
Dierckxsens M, Tziotziou K, Dalla S, Patsou I, Marsh MS, Crosby NB, Malandraki O, Tsiropoula G (2015) Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Sol Phys 290:841–874. https://doi.org/10.1007/s11207-014-0641-4
Article
Google Scholar
Dissauer K, Veronig AM, Temmer M, Podladchikova T (2019) Statistics of coronal dimmings associated with coronal mass ejections. II. Relationship between coronal dimmings and their associated CMEs. Astrophys J 874(April):123. https://doi.org/10.3847/1538-4357/ab0962
Article
Google Scholar
Dissauer K, Veronig AM, Temmer M, Podladchikova T, Vanninathan K (2018a) Statistics of coronal dimmings associated with coronal mass ejections. I. Characteristic dimming properties and flare association. Astrophys J 863(August):169. https://doi.org/10.3847/1538-4357/aad3c6.
Article
Google Scholar
Dissauer K, Veronig AM, Temmer M, Podladchikova T, Vanninathan K (2018b) On the detection of coronal dimmings and the extraction of their characteristic properties. Astrophys J 855:137
Article
Google Scholar
Douma E, Rodger CJ, Clilverd MA, Hendry AT, Engebretson MJ, Lessard MR (2018) Comparison of relativistic microburst activity seen by sampex with ground-based wave measurements at Halley, Antarctica. J Geophys Res Space Physics. https://doi.org/10.1002/2017JA024754
Dresing N, Gómez-Herrero R, Klassen A, Heber B, Kartavykh Y, Dröge W (2012) The large longitudinal spread of solar energetic particles during the 17 January 2010 solar event
Book
Google Scholar
Dröge W, Kartavykh YY, Dresing N, Heber B, Klassen A (2014) Wide longitudinal distribution of interplanetary electrons following the 7 February 2010 solar event: observations and transport modeling. J Geophys Res Space Physics 119:6074–6094. https://doi.org/10.1002/2014JA019933
Article
Google Scholar
Dumbović M, Heber B, Vršnak B, Temmer M, Kirin A (2018) An analytical diffusion–expansion model for forbush decreases caused by flux ropes. Astrophys J 860(1):71. https://doi.org/10.3847/1538-4357/aac2de
Article
Google Scholar
Ebihara Y, Tanaka T (2017) Energy flow exciting field-aligned current at substorm expansion onset. J Geophys Res Space Physics 122:12,288–12,309. https://doi.org/10.1002/2017JA024294
Article
Google Scholar
Echer E, Gonzalez WD, Tsurutani BT (2008) Interplanetary conditions leading to super intense geomagnetic storms (Dst ≤ -250 nT) during solar cycle 23. Geophys Res Lett 35:03–06. https://doi.org/10.1029/2007GL031755
Article
Google Scholar
Egorova T, Rozanov E, Arsenovic P, Peter T, Schmutz W (2018) Contributions of natural and anthropogenic forcing agents to the early 20th century warming. Front Earth Sci 6:UNSP 206. https://doi.org/10.3389/feart.2018.00206
Article
Google Scholar
England SL (2012) Review of the effects of non-migrating atmospheric tides on Earth’s low-latitude ionosphere. Space Sci Rev 168(1–4):211–236. https://doi.org/10.1007/s11214-011-9842-4
Article
Google Scholar
Fennell JF, Claudepierre SG, Blake JB, O’Brien TP, Clemmons JH, Baker DN, Reeves Spence HE., G D, (2015) Van Allen Probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data. Geophys Res Lett 42(5):1283–1289. https://doi.org/10.1002/2014GL062874
Article
Google Scholar
Fok MC, Buzulukova NY, Chen SY, Glocer A, Nagai T, Valek P, Perez JD (2014) The comprehensive inner magnetosphere-ionosphere model. J Geophys Res Space Physics 119:7522–7540. https://doi.org/10.1002/2014JA020239
Article
Google Scholar
Foster JC, Coster AJ, Erickson PJ et al (2005) Redistribution of the stormtime ionosphere and the formation of the plasmaspheric bulge. In: Burch J, Schultz M (eds) New perspectives from imaging. AGU Press, Washington DC, pp 277–289
Google Scholar
Fröhlich C (2009) Total solar irradiance variability: What have we learned about its variability from the record of the last three solar cycles? In: Tsuda T, Fujii R, Shibata K, Geller MA (eds) Climate and Weather of the Sun-Earth System (CAWSES): selected papers from the 2007 Kyoto Symposium. © TERRAPUB, Tokyo, pp 217–230
Google Scholar
Funke B, López-Puertas M, Stiller GP, von Clarmann T (2014) Mesospheric and stratospheric NOy produced by energetic particle precipitation during 2002–2012. J Geophys Res Atmos 119:4429–4446. https://doi.org/10.1002/2013JD021404
Article
Google Scholar
Gabrielse C, Angelopoulos V, Runov A, Turner DL (2014) Statistical characteristics of particle injections throughout the equatorial magnetotail. J Geophys Res Space Physics 119:2512–2535. https://doi.org/10.1002/2013JA019638.
Article
Google Scholar
Gao H, Xu J, Ward W, Smith AK, Chen G-M (2015) Double-layer structure of OH dayglow in the mesosphere. J Geophys Res 120(7):5778–5787. https://doi.org/10.1002/2015JA021208
Article
Google Scholar
Garton TM, Gallagher PT, Murray SA (2018) Automated coronal hole identification via multi-thermal intensity segmentation. J Space Weather Space Climate 8:A02. https://doi.org/10.1051/swsc/2017039
Article
Google Scholar
Georgieva K, Shiokawa K (2018) Variability of the sun and its terrestrial impacts. J Atmos Solar-Terrestrial Phys 180:1–2. https://doi.org/10.1016/j.jastp.2018.09.008
Article
Google Scholar
Ghosh P, Otsuka Y, Mani S, Shinagawa H (2020) Day-to-day variation of pre-reversal enhancement in the equatorial ionosphere based on GAIA model simulations. Earth Planets Space 72:93. https://doi.org/10.1186/s40623-020-01228-9
Article
Google Scholar
Glocer A, Fok M, Meng X, Toth G, Buzulukova N, Chen S, Lin K (2013) CRCM + BATS-R-US two-way coupling: CRCM+BATS-R-US 2-WAY COUPLING. J Geophys Res Space Physics 118(4):1635–1650. https://doi.org/10.1002/jgra.50221
Article
Google Scholar
Gokani SA, Singh R, Cohen MB, Kumar S, Venkatesham K, Maurya AK, Selvakumaran R, Lichtenberger J (2015) Very low latitude (l = 1.08) whistlers and correlation with lightning activity. J Geophys Res Space Physics 120(8):6694–6706
Article
Google Scholar
Goncharenko L, Zhang SR (2008) Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude. Geophys Res Lett 35:L21103. https://doi.org/10.1029/2008GL035684
Article
Google Scholar
Gonzalez WD, de Gonzalez ALC, Dal Lago A, Tsurutani BT, Arballo JK, Lakhina GS, Buti B, Ho CM, Wu S-T (1998) Magnetic cloud field intensities and solar wind velocities. Geophys Res Lett 25:963–966. https://doi.org/10.1029/98GL00703
Article
Google Scholar
Gopalswamy N (2013) Editorial – message from the president. SCOSTEP Newslett 6 https://www.bc.edu/content/dam/bc1/offices/ISR/SCOSTEP/Multimedia/newsletterarchive/SCOSTEP_Newsletter_6_Dec2013.pdf
Gopalswamy N (2016) History and development of coronal mass ejections as a key player in solar terrestrial relationship. Geosci Lett 3:8–26. https://doi.org/10.1186/s40562-016-0039-2
Article
Google Scholar
Gopalswamy N (2018) Part 2: solar origins and statistics of extremes. In: Buzulukova N (ed) Extreme events in geospace. Origins, predictability, and consequences. Elsevier, Amsterdam
Google Scholar
Gopalswamy N, Mӓkelӓ P, Yashiro S, Akiyama S (2018) Long-term solar activity studies using microwave imaging observations and prediction for cycle 25. J Atmos Solar-Terrestrial Phys 176:26–33. https://doi.org/10.1016/j.jastp.2018.04.005
Article
Google Scholar
Gopalswamy N, Tsurutani B, Yan Y (2015a) Short-term variability of the sun-earth system: an overview of progress made during the CAWSES-II period. Prog Earth Planet Sci 2(December):13. https://doi.org/10.1186/s40645-015-0043-8
Article
Google Scholar
Gopalswamy N, Xie H, Akiyama S, Mäkelä P, Yashiro S, Michalek G (2015b) The peculiar behavior of halo coronal mass ejections in solar cycle 24. Astrophys J Lett 804(May):L23. https://doi.org/10.1088/2041-8205/804/1/L23
Article
Google Scholar
Gopalswamy N, Xie H, Akiyama S, Mäkelä PA, Yashiro S (2014) Major solar eruptions and high-energy particle events during solar cycle 24. Earth Planets Space 66(December):104. https://doi.org/10.1186/1880-5981-66-104
Article
Google Scholar
Gopalswamy N, Yashiro S, Akiyama S, Xie H (2017) Estimation of reconnection flux using post-eruption arcades and its relevance to magnetic clouds at 1 AU. Sol Phys 292(April):65. https://doi.org/10.1007/s11207-017-1080-9.
Article
Google Scholar
Gopalswamy N, Yashiro S, Xie H, Akiyama S, Mäkelä P (2015c) Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24. J Geophys Res Space Physics 120(November):9221–9245. https://doi.org/10.1002/2015JA021446
Article
Google Scholar
Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, van Geel B, White W (2010) Solar influences on climate, Rev Geophys 48:RG4001. https://doi.org/10.1029/2009RG000282
Grechnev VV, Kiselev VI, Meshalkina NS, Chertok IM (2015) Relations between microwave bursts and near-earth high-energy proton enhancements and their origin. Solar Phys 290(10):2827–2855. https://doi.org/10.1007/s11207-015-0797-6
Article
Google Scholar
Guennou C, Pariat E, Leake JE, le Vilmer N (2017) Testing predictors of eruptivity using parametric flux emergence simulations. J Space Weather Space Climate 7:A17. https://doi.org/10.1051/swsc/2017015
Article
Google Scholar
Guo J, Dumbović M, Wimmer-Schweingruber RF, Temmer M, Lohf H, Wang Y, Veronig A, Hassler DM, Mays LM, Zeitlin C, Ehresmann B, Witasse O, Freiherr von Forstner JL, Heber B, Holmström M, Posne A (2018) Modeling the evolution and propagation of 10 September 2017 CMEs and SEPs arriving at mars constrained by remote sensing and in situ measurement. Space Weather 16:1156–1169. https://doi.org/10.1029/2018SW001973
Article
Google Scholar
Haigh JD (2009) Mechanisms for solar influence on the Earth’s climate. In: Tsuda T, Fujii R, Shibata K, Geller MA (eds) Climate and Weather of the Sun-Earth System (CAWSES): selected papers from the 2007 Kyoto Symposium. © TERRAPUB, Tokyo, pp 231–256
Google Scholar
Hathaway D, Upton L (2016) Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. J Geophys Res Space Physics 121:10,744–10,753. https://doi.org/10.1002/2016JA023190
Article
Google Scholar
He H-Q, Wan W (2015) Numerical study of the longitudinally asymmetric distribution of solar energetic particles in the heliosphere. Astrophys J Suppl Ser 218(2):17. https://doi.org/10.1088/0067-0049/218/2/17
Article
Google Scholar
He W, Liu YD, Hu H, Wang R, Zhao X (2018) A stealth CME bracketed between slow and fast wind producing unexpected geoeffectiveness. Astrophys J 860:78. https://doi.org/10.3847/1538-4357/aac381
Article
Google Scholar
Heinemann SG, Temmer M, Farrugia CJ, Dissauer K, Kay C, Wiegelmann T, Dumbović M et al (2019) CME–HSS interaction and characteristics tracked from Sun to Earth. Sol Phys 294:121. https://doi.org/10.1007/s11207-019-1515-6
Article
Google Scholar
Heinemann SG, Temmer M, Hofmeister SJ, Veronig AM, Susanne Vennerstrøm S (2018) Three-phase evolution of a coronal hole. I. 360 remote sensing and in situ observations. ApJ 861:151. https://doi.org/10.3847/1538-4357/aac897
Article
Google Scholar
Helal HR, Galal AA (2013) An early prediction of the maximum amplitude of the solar cycle 25. J Adv Res 4:275–278. https://doi.org/10.1016/j.jare.2012.10.002
Article
Google Scholar
Hinterreiter J, Magdalenic J, Temmer M, Verbeke C, Jebaraj IC, Samara E, Asvestari E et al (2019) Assessing the performance of EUHFORIA modeling the background solar wind. Sol Phys 294:170. https://doi.org/10.1007/s11207-019-1558-8
Article
Google Scholar
Holappa L, Mursula K, Asikainen T (2014a) A new method to estimate annual solar wind parameters and contributions of different solar wind structures to geomagnetic activity. J Geophys Res 119:9407–9418
Article
Google Scholar
Holappa L, Mursula K, Asikainen T, Richardson IG (2014b) Annual fractions of high-speed streams from principal component analysis of local geomagnetic activity. J Geophys Res 119:4544–4555
Article
Google Scholar
Houtgast J, van Sluiters A (1948) Statistical investigations concerning the magnetic fields of sunspots I. Bull Astron Inst Netherlands 10:325–333
Google Scholar
Hoyt DV, Schatten KH (1998) Group sunspot numbers: a new solar activity reconstruction. Sol Phys 179:189–219
Article
Google Scholar
Hu Q (2015) Preface to VarSITI special section: Preface: VARSITI SPECIAL COLLECTION. J Geophys Res Space Physics 120(12):10,137–10,138. https://doi.org/10.1002/2015JA021882
Article
Google Scholar
Iijima H, Hotta H, Imada S, Kusano K, Shiota D (2017) Improvement of solar-cycle prediction: plateau of solar axial dipole moment. Astron Astrophys 607:L2. https://doi.org/10.1051/0004-6361/201731813
Article
Google Scholar
Illarionov EA, Tlatov AG (2018) Segmentation of coronal holes in solar disc images with a convolutional neural network. MNRAS 481:5014–5021. https://doi.org/10.1093/mnras/sty2628
Article
Google Scholar
Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, Mende SB et al (2006) Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett 33:L15108. https://doi.org/10.1029/2006GL026161
Article
Google Scholar
Isavnin A (2016) FRiED: a novel three-dimensional model of coronal mass ejections. Astrophys J 833(2):267. https://doi.org/10.3847/1538-4357/833/2/267
Article
Google Scholar
Isono Y, Mizuno A, Nagahama T, Miyoshi Y, Nakamura T, Kataoka R, Tsutsumi M, Ejiri MK, Fujiwara H, Maezawa H, Uemura M (2014) Ground-based observations of nitric oxide in the mesosphere and lower thermosphere over Antarctica in 2012–2013. J Geophys Res Space Physics 119:7745–7761. https://doi.org/10.1002/2014JA0198812014JA019881
Article
Google Scholar
James AW, Green LM, Palmerio E, Valori G, Reid HAS, Baker D, Brooks DH, van Driel-Gesztelyi L, and Kilpua EKJ (2017) On-disc observations of flux rope formation prior to its eruption. Sol Phys 292 (May): 71. https://doi.org/10.1007/s11207-017-1093-4.
Jian LK, Luhmann JG, Russell CT, Galvin AB (2019) Solar terrestrial relations observatory (STEREO) observations of stream interaction regions in 2007–2016: relationship with heliospheric current sheets, solar cycle variations, and dual observations. Sol Phys 294:31. https://doi.org/10.1007/s11207-019-1416-8
Article
Google Scholar
Jiang J, Cameron RH, Schüssler M (2014) Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface. Astrophys J 791(1):5. https://doi.org/10.1088/0004-637X/791/1/5
Article
Google Scholar
Jiang J, Cameron RH, Schüssler M (2015) The cause of the weak solar CYCLE 24. Astrophys J 808(1):L28. https://doi.org/10.1088/2041-8205/808/1/L28
Article
Google Scholar
Jiang J, Wang JX, Jiao QR, Cao JB (2018) Predictability of the solar cycle over one cycle. Astrophys J 863:159. https://doi.org/10.3847/1538-4357/aad197
Article
Google Scholar
Jin H, Miyoshi Y, Fujiwara H, Shinagawa H, Terada K, Terada N, Ishii M, Otsuka Y, Saito A (2011) Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth’s whole atmosphere-ionosphere coupled model. J Geophys Res 116:A01316. https://doi.org/10.1029/2010JA015925
Article
Google Scholar
Jones AD, Kanekal SG, Baker DN, Klecker B, Looper MD, Mazur JE, Schiller Q (2017) SAMPEX observations of the South Atlantic anomaly secular drift during solar cycles 22–24. Space Weather 15:44–52. https://doi.org/10.1002/2016SW001525
Article
Google Scholar
Greeley AD, Kanekal SG, Baker DN, Klecker B, Schiller Q (2019) Quantifying the contribution of microbursts to global electron loss in the radiation belts. J Geophys Res Space Physics 124:1111–1124. https://doi.org/10.1029/2018JA026368
Article
Google Scholar
Jordanova VK, Thorne RM, Li W, Miyoshi Y (2010) Excitation of whistler mode chorus from global ring current simulations: global simulations of chorus waves. J Geophys Res Space Physics 115(A5):n/a-n/a. https://doi.org/10.1029/2009JA014810
Article
Google Scholar
Jordanova VK, Welling DT, Zaharia SG, Chen L, Thorne RM (2012) Modeling ring current ion and electron dynamics and plasma instabilities during a high-speed stream driven storm: ring current dynamics during hss storms. J Geophys Res Space Physics 117(A9). https://doi.org/10.1029/2011JA017433
Kamiya K, Seki K, Saito S, Amano T, Miyoshi Y (2018) Formation of butterfly pitch angle distributions of relativistic electrons in the outer radiation belt with a monochromatic Pc5 wave. J Geophys Res Space Physics 123(6):4679–4691. https://doi.org/10.1002/2017JA024764
Article
Google Scholar
Kanekal SG, Miyoshi Y (2021) Dynamics of the the terrestrial radiation belts: a review of recent results during the VarSITI (Variability of the Sun and Its Terrestrial Impact) era, 2014-2018. Progress in Earth and Planetary Science (this special issue, the paper has no bibliographic information yet)
Kanekal SG, Blum L, Christian ER, Crum G, Desai M, Dumonthier J, Evans A, Greeley AD, Guerro S, Livi S, LLera K, Lucas J, MacKinnon J, Mukherjee J, Ogasawara K, Paschalidis N, Patel D, Pollack E, Riall S et al (2019) The MERiT onboard the CeREs: a novel instrument to study energetic particles in the Earth’s radiation belts. J Geophys Res Space Physics 124(7):5734–5760. https://doi.org/10.1029/2018JA026304
Article
Google Scholar
Karan DK, Pallamraju D (2017) Small-scale longitudinal variations in the daytime equatorial thermospheric wave dynamics as inferred from oxygen dayglow emissions. J Geophys Res Space Physics 122:6528–6542. https://doi.org/10.1002/2017JA023891
Article
Google Scholar
Karan DK, Pallamraju D, Phadke KA, Vijayalakshmi T, Pant TK, Mukherjee S (2016) Electrodynamic influence on the diurnal behavior of neutral daytime airglow emissions. Ann Geophys 34:1019–1030. https://doi.org/10.5194/angeo-34-1019-2016
Article
Google Scholar
Karoff C, Knudsen MF, De Cat P, Bonanno A, Fogtmann-Schulz A, Fu, Jianning Frasca A, Inceoglu F, Olsen J, Zhang Y, Hou Y, Wang Y, Shi J, Zhang W (2016) Observational evidence for enhanced magnetic activity of superflare stars. Nat Commun 7:11058. https://doi.org/10.1038/ncomms11058
Article
Google Scholar
Kasahara S, Miyoshi Y, Yokota S, etal, (2018) Pulsating aurora from electron scattering by chorus waves. Nature 554(7692):337–340. https://doi.org/10.1038/nature25505
Article
Google Scholar
Kay C, Evans RM, Opher M (2015) Global trends of CME deflections based on CME and solar parameters. ApJ 805:168. https://doi.org/10.1088/0004-637X/805/2/168
Article
Google Scholar
Kay C, Gopalswamy N, Reinard A, Opher M (2017) Predicting the magnetic field of Earth-impacting CMEs. Astrophys J 835(2):117. https://doi.org/10.3847/1538-4357/835/2/117
Article
Google Scholar
Kay C, Opher M, Colannino RC, Voulidas A (2016) Using ForeCAT deflections and rotations to constrain the early evolution of CMEs. ApJ 827:70. https://doi.org/10.3847/0004-637X/827/1/70
Article
Google Scholar
Kazachenko MD, Lynch BJ, Welsch BT, Sun X (2017) A database of flare ribbon properties from the solar dynamics observatory. I. Reconnection Flux. Astrophys J 845(August):49. https://doi.org/10.3847/1538-4357/aa7ed6
Article
Google Scholar
Kirby K, Artis D, Bushman S, Butler M, Conde R, Cooper S, Fretz K, Herrmann C, Hill A, Kelley J, Maurer R, Nichols R, Ottman G, Reid M, Rogers G, Srinivasan D, Troll J, Williams B (2013) Radiation belt storm probes—observatory and environments. Space Sci Rev 179(1–4):59–125. https://doi.org/10.1007/s11214-012-9949-2
Article
Google Scholar
Kirov B, Asenovski S, Georgieva K, Obridko VN, Maris-Muntean G (2018) Forecasting the sunspot maximum through an analysis of geomagnetic activity. J Atmos Solar-Terrestrial Phys 176:42–50. https://doi.org/10.1016/j.jastp.2017.12.016
Article
Google Scholar
Kodera K, Kuroda Y (2002) Dynamical response to the solar cycle. J Geophys Res-Atmos 107:4749. https://doi.org/10.1029/2002JD002224
Article
Google Scholar
Kong F-J, Qin G, Wu S-S, Zhang L-H, Wang H-N, Chen T, Sun P (2019) Study of time evolution of the bend-over energy in the energetic particle spectrum at a parallel shock. ApJ 877. https://doi.org/10.3847/1538-4357/ab1b33
Kong F-J, Qin G, Zhang L-H (2017) Numerical simulations of particle acceleration at interplanetary quasi-perpendicular shocks. ApJ 845:43. https://doi.org/10.3847/1538-4357/aa7745
Article
Google Scholar
Kopp G, Lean JL (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38:L01706. https://doi.org/10.1029/2010GL045777
Article
Google Scholar
Kusano K, Iju T, Bamba Y, Inoue S (2020) A physics-based method that can predict imminent large solar flares. Science 369(6503):587–591. https://doi.org/10.1126/science.aaz2511
Article
Google Scholar
Lakhina GS, Tsurutani BT (2018) Supergeomagnetic storms: past, present, and future. In: Buzulukova N (ed) Extreme events in geospace. Origins, predictability, and consequences. Elsevier, Amsterdam
Google Scholar
Lario D, Kwon R-Y, Vourlidas A, Raouafi NE, Haggerty DK, Ho GC, Anderson BJ, Papaioannou A, Gómez-Herrero R, Dresing N, Riley P (2016) Longitudinal properties of a widespread solar energetic particle event on 2014 February 25: evolution of the associated CME shock. ApJ 819(72):23. https://doi.org/10.3847/0004-637X/819/1/72
Article
Google Scholar
Laskar FI, Pallamraju D (2014) Does sudden stratospheric warming induce meridional circulation in the mesosphere thermosphere system? J Geophys Res Space Physics 119(12):10,133–10,143. https://doi.org/10.1002/2014JA020086
Article
Google Scholar
Laskar FI, Pallamraju D, Veenadhari B (2014) Vertical coupling of atmospheres: dependence on strength of sudden stratospheric warming and solar activity. Earth Planets Space 66(1):94. https://doi.org/10.1186/1880-5981-66-94
Article
Google Scholar
Laštovička J (2013) Trends in the upper atmosphere and ionosphere: recent progress. J Geophys Res 118:3924–3935. https://doi.org/10.1002/jgra.50341
Article
Google Scholar
Laštovička J (2017) A review of recent progress in trends in the upper atmosphere. J Atmos Solar-Terrestrial Phys 163:2–13. https://doi.org/10.1016/j.jastp.2017.03.009
Article
Google Scholar
Laštovička J, Lübken F-J (2017) Preface to long-term trends in the upper atmosphere and ionosphere. J Atmos Solar-Terrestrial Phys 163:1. https://doi.org/10.1016/j.jastp.2017.09.020
Article
Google Scholar
Laštovička J, Akmaev RA, Beig G, Bremer J, Emmert JT (2006) Global change in the upper atmosphere. Science 314:1253–1254. https://doi.org/10.1126/science.1135134
Article
Google Scholar
Laštovička J, Akmaev RA, Emmert JT (2009) Long-term changes and trends in the upper atmosphere – an introduction. J Atmos Solar-Terr Phys 71(14–15):1511–1513. https://doi.org/10.1016/j.jastp.2009.06.007
Article
Google Scholar
Laštovička J, Solomon SC, Qian L (2012) Trends in the neutral and ionized upper atmosphere. Space Sci Rev 168:113–145. https://doi.org/10.1007/s11214-011-9799-3
Article
Google Scholar
Laštovička J, Beig G, Marsh DR (2014) Response of the mesosphere-thermosphere-ionosphere system to global change - CAWSES-II contribution. Prog Earth Planet Sci 1:21. https://doi.org/10.1186/s40645-014-0021-6
Article
Google Scholar
Lee CO, Luhmann JG, Odstrcil D, MacNeice PJ, de Pater I, Riley P, Arge CN (2009) The Solar Wind at 1 AU during the declining phase of solar cycle 23: comparison of 3D numerical model results with observations. Sol Phys 254:155–183. https://doi.org/10.1007/s11207-008-9280-y
Article
Google Scholar
Leka KD, Park S-H, Kusano K, Andries J, Barnes G, Bingham S, Bloomfield DS et al (2019) A comparison of flare forecasting methods. II. Benchmarks, metrics, and performance results for operational solar flare forecasting systems. ApJ Supplement Series 243:36. https://doi.org/10.3847/1538-4365/ab2e12
Article
Google Scholar
Li W, Thorne RM, Ma Q, Ni B, Bortnik J, Baker DN, Spence HE, Reeves GD, Kanekal SG, Green JC, Kletzing CA, Kurth WS, Hospodarsky GB, Blake JB, Fennell JF, Claudepierre SG (2014) Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm. J Geophys Res Space Physics 119(6):4681–4693. https://doi.org/10.1002/2014JA019945
Article
Google Scholar
Li X, Selesnick RS, Baker DN, Jaynes AN, Kanekal SG, Schiller Q, Blum L, Fennell J, Blake JB (2015) Upper limit on the inner radiation belt MeV electron intensity. J Geophys Res Space Physics 120(2):1215–1228. https://doi.org/10.1002/2014JA020777
Article
Google Scholar
Liu H (2016) Thermospheric inter-annual variability and its potential connection to ENSO and stratospheric QBO. Earth Planet Sp 68:77. https://doi.org/10.1186/s40623-016-0455-8
Article
Google Scholar
Liu HL, Bardeen CG, Foster BT, Lauritzen PH, Liu J, Lu G, Marsh DR, Maute A, McInerney JM, Pedatella NM, Qian L, Richmond AD, Roble RG, Solomon SC, Vitt FM, Wang W (2018) Development and validation of the Whole Atmosphere Community Climate Model With Thermosphere and Ionosphere Extension (WACCM-X 2.0). J Adv Model Earth Syst 10:381–402. https://doi.org/10.1002/2017MS001232
Article
Google Scholar
Lu G, Richmond AD, Lühr H, Paxton L (2016) High-latitude energy input and its impact on the thermosphere. J Geophys Res Space Phys 121:7108–7124. https://doi.org/10.1002/2015JA022294
Article
Google Scholar
Lu H, Scaife AA, Marshall GJ, Turner J, Gray LJ (2017) Downward wave reflection as a mechanism for the stratosphere-troposphere response to the 11-Yr solar cycle. J Clim 30:2395–2414. https://doi.org/10.1175/JCLI-D-16-0400.1
Article
Google Scholar
Lübken F-J, Berger U, Baumgarten G (2018) On the anthro-pogenic impact on long-term evolu-tion of noctilucent clouds. Geophys Res Lett 45:6681–6689 https://doi-org.ejgw.nul.nagoya-u.ac.jp/10.1029/2018GL077719
Article
Google Scholar
Macalalad EP, Tsai LC, Wu J (2014) Performance evaluation of different ionospheric models in single-frequency code-based differential gps positioning. GPS Solutions. https://doi.org/10.1007/s10291-014-0422-4
Maehara H, Shibayama T, Notsu S, Notsu Y, Nagao T, Kusaba S, Honda S, Nogami D, Shibata K (2012) Superflares on solar-type stars. Nature 485(7399):478–481. https://doi.org/10.1038/nature11063
Article
Google Scholar
Maliniemi V, Asikainen T, Mursula K (2014) Spatial distribution of Northern Hemisphere winter temperatures during different phases of the solar cycle. J Geophys Res Atmos 119. https://doi.org/10.1002/2013JD021343
Maliniemi V, Asikainen T, Mursula K (2016) Effect of geomagnetic activity on the northern annular mode: QBO dependence and the holton-tan relationship. J Geophys Res Atmos 121. https://doi.org/10.1002/2015JD024460
Marsh DR, Mills MJ, Kinnison DE, Lamarque J-F, Calvo N, Polvani LM (2013) Climate change from 1850 to 2005 simulated in CESM1(WACCM). J Climate 26(19):7372–7391. https://doi.org/10.1175/JCLI-D-12-00558.1
Article
Google Scholar
Martinez-Calderon C, Katoh Y, Manninen J, Kasahara Y, Matsuda S, Kumamoto A, Tsuchiya F, Matsuoka A, Shoji M, Teramoto M, Shinohara I, Shiokawa K, Miyoshi Y (2019) Conjugate observations of dayside and nightside VLF chorus and QP emissions between Arase (ERG) and Kannuslehto, Finland. J Geophys Res 124. https://doi.org/10.1029/2019JA026663
Martinez-Calderon C, Shiokawa K, Miyoshi Y, Ozaki M, Schofield I, Connors M (2015a) Polarization analysis of VLF/ELF waves observed at subauroral latitudes during the VLF-CHAIN campaign. Earth Planets Space 67:21. https://doi.org/10.1186/s40623-014-0178-7
Article
Google Scholar
Martinez-Calderon C, Shiokawa K, Miyoshi Y, Ozaki M, Schofield I, Connors M (2015b) Statistical study of ELF/VLF emissions at subauroral latitudes in Athabasca, Canada. J Geophys Res Space Phys 120:8455–8469. https://doi.org/10.1002/2015JA021347
Article
Google Scholar
Martinez-Calderon C et al (2016) ELF/VLF wave propagation at subauroral latitudes: conjugate observation between the ground and Van Allen Probes A. J Geophys Res Space Phys 121:5384–5393. https://doi.org/10.1002/2015JA022264
Article
Google Scholar
Matthes K, Funke B, Andersson ME, Barnard L, Beer J, Charbonneau P, Clilverd MA, de Wit TD, Haberreiter M, Hendry A, Jackman CH, Kretzschmar M, Kruschke T, Kunze M, Langematz U, Marsh DR, Maycock AC, Misios S, Rodger CJ, Scaife AA, Seppala A, Shangguan M, Sinnhuber M, Tourpali K, Usoskin I, De Kamp MV, Verronen PT, Versick S (2017) Solar forcing for CMIP6 (v3.2). Geosci Model Dev 10:2247–2302. https://doi.org/10.5194/gmd-10-2247-2017
Article
Google Scholar
McCormick JC, Cohen MB, Gross NC, Said RK (2018) Spatial and temporal ionospheric monitoring using broadband sferic measurements. J Geophys Res Space Physics 123:3111–3130. https://doi.org/10.1002/2017JA024291
Article
Google Scholar
McGranaghan R et al (2015a) A fast, parameterized model of upper atmospheric ionization rates, chemistry, and conductivity. J Geophys Res Space Physics. https://doi.org/10.1002/2015JA021146,2015JA021146.
McGranaghan R et al (2015b) Modes of high-latitude auroral conductance variability derived from DMSP energetic electron precipitation observations: empirical orthogonal function analysis. J Geophys Res Space Physics. https://doi.org/10.1002/2015JA021828,2015JA021828
McGranaghan R et al (2016a) High-latitude ionospheric conductivity variability in three dimensions. Geophys Res Lett 43:7867–7877. https://doi.org/10.1002/2016GL070253
Article
Google Scholar
McGranaghan R et al (2016b) Optimal interpolation analysis of high-latitude ionospheric Hall and Pedersen conductivities: application to assimilative ionospheric electrodynamics reconstruction. J Geophys Res Space Physics 121:4898–4923. https://doi.org/10.1002/2016JA022486
Article
Google Scholar
Meehl GA, Arblaster JM, Branstator G, van Loon H (2008) A coupled air-sea response mechanism to solar forcing in the pacific region. J Clim 21:2883–2897. https://doi.org/10.1175/2007JCLI1776.1
Article
Google Scholar
Mewaldt R, Cohen C, Mason G, von Rosenvinge T, Li G, Smith CW, Vourlidas A (2015) An investigation of the causes of solar-cycle variations in SEP fluences and composition. 34(July):30 Available at http://adsabs.harvard.edu/abs/2015ICRC...34...30M
Misios S, Mitchell DM, Gray LJ, Tourpali K, Matthes K, Hood L, Schmidt H, Chiodo G, Thieblemont R, Rozanov E, Shindell D, Krivolutsky A (2015) Solar signals in CMIP-5 simulations: effects of atmosphere–ocean coupling. Q J R Meteorol Soc. https://doi.org/10.1002/qj.2695
Misios S, Gray LJ, Knudsen MD, Karoff C, Schmidt H, Haigh JD (2019) Slowdown of the Walker circulation at solar cycle maximum. Proc Natl Acad Sci 116(15):7186–7191. https://doi.org/10.1073/pnas.1815060116
Article
Google Scholar
Mitchell DM, Misios S, Gray LJ, Tourpali K, Matthes K, Hood L, Schmidt H, Chiodo G, Thiéblemont R, Rozanov E, Shindell D, Krivolutsky A (2015) Solar signals in CMIP-5 simulations: the stratospheric pathway: solar signals in CMIP-5. Q J R Meteorol Soc 141:2390–2403. https://doi.org/10.1002/qj.2530
Article
Google Scholar
Miyahara H, Kataoka R, Mikami T, Zaiki M, Hirano J, Yoshimura M, Aono Y, Iwahashi K (2018) Solar rotational cycle in lightning activity in Japan during the 18-19th centuries. Ann Geophys 36:633–640. https://doi.org/10.5194/angeo-36-633-2018
Article
Google Scholar
Miyoshi Y, Shinohara I, Takashima T, Asamura K, Higashio N, Mitani T, Kasahara S, Yokota S, Kazama Y, Wang S-Y, Tam SWY, Ho PTP, Kasahara Y, Kasaba Y, Yagitani S, Matsuoka A, Kojima H, Katoh Y, Shiokawa K, Seki K (2018) Geospace exploration project ERG. Earth Planets Space 70(1):101. https://doi.org/10.1186/s40623-018-0862-0
Article
Google Scholar
Miyoshi Y, Yigit E (2019) Impact of gravity wave drag on the thermospheric circulation: implementation of a nonlinear gravity wave parameterization in a whole-atmosphere model. Ann Geophys 37:955–969. https://doi.org/10.5194/angeo-37-955-2019
Article
Google Scholar
Moral AC, Shiokawa K, Suzuki S, Liu H, Otsuka Y, Yatini CY (2019) Observations of low-latitude traveling ionospheric disturbances by a 630.0-nm airglow imager and the CHAMP satellite over Indonesia. J Geophys Res Space Physics 124. https://doi.org/10.1029/2018JA025634
Möstl C, Rollett T, Frahm RA, Liu YD, Long DM, Colaninno RC, Reiss MA et al (2015) Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars. Nat Commun 6(May):7135. https://doi.org/10.1038/ncomms8135
Article
Google Scholar
Nandy D, Martens PCH, Obridko V, Dash S, Georgieva K (2021) Solar evolution and extrema: current state of understanding. Progress in Earth and Planetary Science (this issue)
Narayanan VL, Shiokawa K, Otsuka Y, Neudegg D (2018) On the role of thermospheric winds and sporadic E layers in the formation and evolution of electrified MSTIDs in geomagnetic conjugate regions. J Geophys Res-Space Phys 123:6957–6980. https://doi.org/10.1029/2018JA025261
Article
Google Scholar
Nelson NJ (2013) Magnetic cycles and buoyant loops in convective dynamos. AAS Meeting #221, id.415.01
Nelson NJ, Brown BP, Brun AS, Miesch MS, Toomre J (2011) Buoyant Magnetic Loops in a global dynamo simulation of a young sun. Astrophys J Lett 739:L38. https://doi.org/10.1088/2041-8205/739/2/L38
Article
Google Scholar
Nelson NJ, Brown BP, Brun AS, Miesch MS, Toomre J (2013) Magnetic wreaths and cycles in convective dynamos. Astrophys J 762:73. https://doi.org/10.1088/0004-637X/762/2/73
Article
Google Scholar
Nishimura Y, Bortnik J, Li W, Liang J, Thorne RM, Angelopoulos V, Le Contel O, Auster U, Bonnell JW (2015) Chorus intensity modulation driven by time-varying field-aligned low-energy plasma. J Geophys Res 120:7433–7446
Article
Google Scholar
Nishioka M, Saito A, Tsugawa T (2008) Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks. J Geophys Res 113:A05301. https://doi.org/10.1029/2007JA012605
Article
Google Scholar
Oberheide J, Shiokawa K, Gurubaran S, Ward WE, Fujiwara H, Kosch MJ, Makela JJ, Takahashi H (2015) The geospace response to variable inputs from the lower atmosphere: a review of the progress made by Task Group 4 of CAWSES-II. Prog Earth Planet Sci 2:2. https://doi.org/10.1186/s40645-014-0031-4
Article
Google Scholar
Obridko V, Georgieva K (2018) Solar activity in the following decades. J Atmos Solar-Terrestrial Phys 176:1–4. https://doi.org/10.1016/j.jastp.2018.08.001
Article
Google Scholar
Otsuka Y (2018) Review of the generation mechanisms of post-midnight irregularities in the equatorial and low-latitude ionosphere. Prog Earth Planet Sci 5:57. https://doi.org/10.1186/s40645-018-0212-7
Article
Google Scholar
Otsuka Y, Shiokawa K, Ogawa T, Wilkinson P (2004) Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers. Geophys Res Lett 31:L15803. https://doi.org/10.1029/2004GL020262
Article
Google Scholar
Ozaki M, Miyoshi Y, Shiokawa K, Hosokawa K, Oyama S-I, Kataoka R, Ebihara Y, Ogawa Y, Kasahara Y, Yagitani S, Kasaba Y, Kumamoto A, Tsuchiya F, Matsuda S, Katoh Y, Hikishima M, Kurita S, Otsuka Y, Moore RC, Tanaka Y, Nosé M, Nagatsuma T, Nishitani N, Kadokura A, Connors M, Inoue T, Matsuoka A, Shinohara I (2019) Visualization of rapid electron precipitation via chorus element wave–particle interactions. Nat Commnun 10:257. https://doi.org/10.1038/s41467-018-07996-z
Article
Google Scholar
Pal S, Gopalswamy N, Nandy D, Akiyama S, Yashiro S, Makela P, Xie H (2017) A Sun-to-Earth analysis of magnetic helicity of the 2013 March 17–18 interplanetary coronal mass ejection. Astrophys J 851(2):123
Article
Google Scholar
Pal S, Nandy D, Srivastava N, Gopalswamy N, Panda S (2018) Dependence of coronal mass ejection properties on their solar source active region characteristics and associated flare reconnection flux. Astrophys J 865(1):4
Article
Google Scholar
Pala Z, Atici R (2019) Forecasting sunspot time series using deep learning methods. Sol Phys 294(5):50. https://doi.org/10.1007/s11207-019-1434-6
Article
Google Scholar
Palmerio E, Kilpua EKJ, James AW, Green LM, Pomoell J, Isavnin A, Valori G (2017) Determining the intrinsic CME flux rope type using remote-sensing solar disk observations. Sol Phys 292(February):39. https://doi.org/10.1007/s11207-017-1063-x
Article
Google Scholar
Park S-H, Leka KD, Kusano K, Andries J, Barnes G, Bingham S, Bloomfield DS et al. (2020) A comparison of flare forecasting methods. IV. Evaluating Consecutive-Day Forecasting Patterns. ArXiv:2001.02808 [Astro-Ph], January. Available at http://arxiv.org/abs/2001.02808.
Book
Google Scholar
Patsourakos S, Georgoulis MK, Vourlidas A, Nindos A, Sarris T, Anagnostopoulos G, Anastasiadis A, Chintzoglou G, Daglis IA, Gontikakis C, Hatzigeorgiu N, Iliopoulos AC, Katsavrias C, Kouloumvakos A, Moraitis K, Nieves-Chinchilla T, Pavlos G, Sarafopoulos D, Syntelis P, Tsironis C, Tziotziou K, Vogiatzis II, Balasis G, Georgiou M, Karakatsanis LP, Malandraki OE, Papadimitriou C, Odstrči DE, Pavlos G, Podlachikova O, Sandberg I et al (2016) The major geoeffective solar eruptions of 2012 March 7: comprehensive Sun-to-Earth analysis. Astrophys J 817(1):14. https://doi.org/10.3847/0004-637X/817/1/14
Article
Google Scholar
Pedatella NM, Liu H-L (2018) The influence of internal atmospheric variability on the ionosphere response to a geo-magnetic storm. Geophys Res Lett 45:4578–4585 https://doi-org.ejgw.nul.nagoya-u.ac.jp/10.1029/2018GL077867
Article
Google Scholar
Pesnell WD (2012) Solar cycle predictions. Sol Phys 281:507–532. https://doi.org/10.1007/s11207-012-9997-5
Article
Google Scholar
Petrovay K (2020) Solar cycle prediction. Living Rev Sol Phys 17:2. https://doi.org/10.1007/s41116-020-0022-z
Article
Google Scholar
Petrovay K, Nagy M, Gerják T, Juhász L (2018) Precursors of an upcoming solar cycle at high latitudes from coronal green line data. J Atmos Solar-Terrestrial Phys 176:15–20. https://doi.org/10.1016/j.jastp.2017.12.011
Article
Google Scholar
Píša D, Hospodarsky GB, Kurth WS, Santolík O, Souček J, Gurnett DA, Masters A, Hill ME (2015) Statistics of Langmuir wave amplitudes observed inside Saturn’s foreshock by the Cassini spacecraft. J Geophys Res Space Physics 120. https://doi.org/10.1002/2014JA020560
Píša D, Santolík O, Hospodarsky GB, Kurth WS, Gurnett DA, Souček J (2016) Spatial distribution of Langmuir waves observed upstream of Saturn’s bow shock by Cassini. J Geophys Res Space Physics 121. https://doi.org/10.1002/2016JA022912
Pomoell J, Poedts S (2018) EUHFORIA: European heliospheric forecasting information asset. J Space Weather Space Climate 8:A35. https://doi.org/10.1051/swsc/2018020
Article
Google Scholar
Popova E, Zharkova V, Shepherd S, Zharkov S (2018) On a role of quadruple component of magnetic field in defining solar activity in grand cycles. J Atmos Solar-Terrestrial Phys 176:61–68. https://doi.org/10.1016/j.jastp.2017.05.006
Article
Google Scholar
Qian L, Laštovička J, Solomon SC, Roble RG (2011) Progress in observations and simulations of global change in the upper atmosphere. J Geophys Res 116:A00H03. https://doi.org/10.1029/2010JA016317
Article
Google Scholar
Qiu J, Hu Q, Howard TA, Yurchyshyn VB (2007) On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. Astrophys J 659(1):758–772. https://doi.org/10.1086/512060
Article
Google Scholar
Reames DV (2015) What are the sources of solar energetic particles? Element abundances and source plasma temperatures. Space Sci Rev 194:303–327. https://doi.org/10.1007/s11214-015-0210-7
Article
Google Scholar
Reeves GD, Friedel RHW, Larsen BA, Skoug RM, Funsten HO, Claudepierre SG, Fennell JF, Turner DL, Denton MH, Spence HE, Blake JB, Baker DN (2016) Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions. J Geophys Res-Space Phys 121:397–412. https://doi.org/10.1002/2015JA021569
Article
Google Scholar
Riley P, Caplan RM, Giacalone J, Lario D, Liu Y (2016) Properties of the fast forward shock driven by the 2012 July 23 extreme coronal mass ejection. Astrophys J 819:57. https://doi.org/10.3847/0004-37X/819/1/57
Article
Google Scholar
Rotter T, Veronig AM, Temmer M, Vršnak B (2012) Relation between coronal hole areas on the sun and the solar wind parameters at 1 AU. Sol Phys 281:793–813. https://doi.org/10.1007/s11207-012-0101-y.
Article
Google Scholar
Rozanov E, Calisto M, Egorova T, Peter T, Schmutz W (2012) Influence of the precipitating energetic particles on atmospheric chemistry and climate. Surv Geophys 33(3–4):483–501. https://doi.org/10.1007/s10712-012-9192-0
Article
Google Scholar
Sabarinath A, Anilkumar AK (2018) Sunspot cycle prediction using multivariate regression and binary mixture of Laplace distribution model. J Earth System Sci 127, 84(6). https://doi.org/10.1007/s12040-018-0987-3
Sarp V, Kilcik A, Yurchyshyn V, Rozelot J-P, Ozguc A (2018) Prediction of solar cycle 25: a non-linear approach. Mon Not R Astron Soc 481(3):2981. https://doi.org/10.1093/mnras/sty2470
Article
Google Scholar
Sato K, Tsutsumi M, Sato T, Nakamura T, Saito A, Tomikawa Y, Nishimura K, Kohma M, Yamagishi H, Yamanouchi T (2014) Program of the Antarctic Syowa MST/IS radar (PANSY). J Atmos Solar-Terrestrial Phys 118:2–15. https://doi.org/10.1016/j.jastp.2013.08.022
Article
Google Scholar
Schaefer BE, King JR, Deliyannis CP (2000) Superflares on ordinary solar-type stars. ApJ 529(2):1026–1030. https://doi.org/10.1086/308325
Article
Google Scholar
Schmieder B (2018) Extreme solar storms based on solar magnetic field. J Atm Solar-Terr Phys 180:46–51. https://doi.org/10.1016/j.jastp.2017.07.018
Article
Google Scholar
Schmieder B, Vincent B, Baumjohann W, Ono T, Basu S, Lean J (2004) Climate and weather of the Sun-Earth system: CAWSES. Adv Space Res 34(2):443–448. https://doi.org/10.1016/j.asr.2003.12.010
Article
Google Scholar
Scolini C, Rodriguez L, Mierla M, Pomoell J, Poedts S (2019) Observation-based modelling of magnetised coronal mass ejections with EUHFORIA. Astron Astrophys 626(June):A122. https://doi.org/10.1051/0004-6361/201935053
Article
Google Scholar
Seif A, Liu J-Y, Mannucci AJ, Carter BA, Norman R, Caton RG, Tsunoda RT (2017) A study of daytime L-band scintillation in association with sporadic E along the magnetic dip equator. Radio Sci 52. https://doi.org/10.1002/2017RS006393
Seif A, Liu J-Y, Mannucci AJ, Carter BA, Norman R, Caton RG, Tsunoda RT (2018) Equatorial ionospheric scintillation during daytime. Eos 99. https://doi.org/10.1029/2018EO106297
Seif A, Tsunoda RT, Abdullah M, Hasbi AM (2015) Daytime gigahertz scintillations near magnetic equator: relationship to blanketing sporadic E and gradient-drift instability. Earth Planets Space J 67(177):1–13. https://doi.org/10.1186/s40623-015-0348-2.67:177
Article
Google Scholar
Seki K, Miyoshi Y, Ebihara Y et al (2018) Theory, modeling, and integrated studies in the Arase (ERG) project. Earth Planets Space 70:17. https://doi.org/10.1186/s40623-018-0785-9
Article
Google Scholar
Seppälä A, Matthes K, Randall CE, Mironova IA (2014) What is the solar influence on climate? Overview of activities during CAWSES-II. Prog Earth Planet Sci 1. article id.24. https://doi.org/10.1186/s40645-014-0024-3
Share GH, Murphy RJ, White SM, Tolbert AK, Dennis BR, Schwartz RA, Smart DF, Shea MA (2018) Characteristics of late-phase > 100 MeV gamma-ray emission in solar eruptive events. ApJ 869:182. https://doi.org/10.3847/1538-4357/aaebf7
Article
Google Scholar
She C-Y, Krueger DA, Yuan T (2015) Long-term midlatitude mesopause region temperature trend deduced from quarter century (1990–2014) Na lidar observations. Ann Geophys 33:363–369 www.ann-geophys.net/33/363/2015/
Article
Google Scholar
Shen F, Feng XS, Wu ST, Xiang CQ, Song WB (2011) Three-dimensional MHD simulation of the evolution of the April 2000 CME event and its induced shocks using a magnetized plasma blob model. J Geophys Res 116(A4). CiteID A04102. https://doi.org/10.1029/2011JA016584
Shen C, Chi Y, Wang Y, Xu M, Wang S (2017) Statistical comparison of the ICME’s geoeffectiveness of different types and different solar phases from 1995 to 2014. J Geophys Res 122:5931–5948
Article
Google Scholar
Shen C, Mengjiao X, Wang Y, Chi Y, Luo B (2018) Why the Shock-ICME complex structure is important: learning from the early 2017 September CMEs. Astrophys J 861(9 pp):28
Article
Google Scholar
Shen F, Shen C, Zhang J, Hess P, Wang Y, Feng X, Cheng H, Yang Y (2014) Evolution of the 12 July 2012 CME from the Sun to the Earth: data-constrained three-dimensional MHD simulations. J Geophys Res 119:7128–7141. https://doi.org/10.1002/2014JA020365.
Article
Google Scholar
Shinagawa H, Jin H, Miyoshi Y, Fujiwara H, Yokoyama T, Otsuka Y (2018) Daily and seasonal variations in the linear growth rate of the Rayleigh-Taylor instability in the ionosphere obtained with GAIA. Prog Earth Planet Sci 5:16. https://doi.org/10.1186/s40645-018-0175-8
Article
Google Scholar
Shinagawa H, Miyoshi Y, Jin H, Fujiwara H (2017) Global distribution of neutral wind shear associated with sporadic E layers derived from GAIA. J Geophys Res Space Physics 122:4450–4465. https://doi.org/10.1002/2016JA023778.
Article
Google Scholar
Shiokawa K, Lu G, Otsuka Y, Ogawa T, Yamamoto M, Nishitani N, Sato N (2007) Ground observation and AMIETIEGCM modeling of a storm-time traveling ionospheric disturbance. J Geophys Res 112:A05308. https://doi.org/10.1029/2006JA011772.
Article
Google Scholar
Shiokawa K, Katoh Y, Hamaguchi Y, etal, (2017) Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network. Earth Planets Space 69:160. https://doi.org/10.1186/s40623-017-0745-9
Article
Google Scholar
Shirokov EA (2018) Application of the method of moments for calculating electrodynamic characteristics of a quasistatic antenna in an anisotropic medium. Radiophys Quantum Electron 61(5):350–361. https://doi.org/10.1007/s11141-018-9896-1
Article
Google Scholar
Shirokov EA, Demekhov AG, Chugunov YV, Larchenko AV (2017) Effective length of a receiving antenna in case of quasi-electrostatic whistler mode waves: application to spacecraft observations of chorus emissions. Radio Sci 52(7):884–895. https://doi.org/10.1002/2016RS006235
Article
Google Scholar
Sindhuja G, Gopalswamy N (2020) A study of the observational properties of coronal mass ejection flux ropes near the Sun, Research Gate. https://doi.org/10.13140/RG.2.2.28853.42725
Book
Google Scholar
Solomon SC, Liu HL, Marsh DR, McInerney JM, Qian L, Vitt FM (2019) Whole atmosphere climatechange: dependence on solar activity. J Geophys Res Space Physics 124:3799–3809. https://doi.org/10.1029/2019JA026678
Article
Google Scholar
Stober G, Chau JL (2015) A multistatic and multifrequency novel approach for specular meteor radars to improve wind measurements in the MLT region. Radio Sci:431–442. https://doi.org/10.1002/2014RS005591
Stober G, Chau JL, Vierinen J, Jacobi C, Wilhelm S (2018) Retrieving horizontally resolved wind fields using multi-static meteor radar observations. Atmos Meas Tech Discuss 11:4891–4907. https://doi.org/10.5194/amt-11-4891-2018
Article
Google Scholar
Stober G, Matthias V, Brown P, Chau JL (2014) Neutral density variation from specular meteor echo observations spanning one solar cycle. Geophys Res Lett 41:6919–6925. https://doi.org/10.1002/2014GL061273
Article
Google Scholar
Svalgaard L, Cliver EW (2007) Long-term geomagnetic indices and their use in inferring solar wind parameters in the past. Adv Space Res 40:1112–1120. https://doi.org/10.1016/j.asr.2007.06.066.
Article
Google Scholar
Takeo D, Shiokawa K, Fujinami H, Otsuka Y, Matsuda TS, Ejiri MK, Nakamura T, Yamamoto M (2017) Sixteen year variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric waves in airglow images at Shigaraki. Japan. J Geophys Res Space Phys 122(8):8770–8780. https://doi.org/10.1002/2017JA023919
Article
Google Scholar
Temmer M, Hinterreiter J, Reiss MA (2018) Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model. J Space Weather Space Climate 8:A18. https://doi.org/10.1051/swsc/2018007
Article
Google Scholar
Temmer M, Thalmann JK, Dissauer K, Veronig AM, Tschernitz J, Hinterreiter J, Rodriguez L (2017) On flare-CME characteristics from Sun to Earth combining remote-densing image data with in situ measurements supported by modeling. Sol Phys 93. https://doi.org/10.1007/s11207-017-1112-5
Teramoto M, Hori T, Saito S, Miyoshi Y, Kurita S, Higashio N, Matsuoka A, Kasahara Y, Kasaba Y, Takashima T, Nomura R, Nosé M, Fujimoto A, Tanaka Y-M, Shoji M, Tsugawa Y, Shinohara M, Shinohara I, Blake JB, Fennell JF, Claudepierre SG, Turner DL, Kletzing CA, Sormakov D, Troshichev O (2019) Remote detection of drift resonance between energetic electrons and ultralow frequency waves: multisatellite coordinated observation by Arase and Van Allen probes. Geophys Res Lett. https://doi.org/10.1029/2019GL084379
Thalmann JK, Veronig A, Su Y (2016) Temporal and spatial relationship of flare signatures and the force-free coronal magnetic field. Astrophys J 826:143
Article
Google Scholar
Thiéblemont R, Matthes K, Omrani N-E, Kodera K, Hansen F (2015) Solar forcing synchronizes decadal North Atlantic climate variability. Nat Commun 6:8268. https://doi.org/10.1038/ncomms9268
Article
Google Scholar
Thomas N, Shiokawa K, Vichare G (2019) Comprehensive study of low-latitude Pi2 pulsations using observations from multi-satellite Swarm mission and global network of ground observatories. J Geophys Res 124. https://doi.org/10.1029/2018JA026094
Thomas N, Vichare G, Sinha AK (2016) Spatial frequencies associated with the latitudinal structures of ionospheric currents seen by CHAMP satellite. Astrophys Space Sci 361:205. https://doi.org/10.1007/s10509-016-2787-z
Article
Google Scholar
Thomas N, Vichare G, Sinha AK, Rawat R (2015) Low-latitude Pi2 oscillations observed by polar low earth orbiting satellite. J Geophys Res Space Physics 120. https://doi.org/10.1002/2014JA020958.
Toriumi S, Wang H (2019) Flare-productive active regions. Living Rev Solar Phys 6(1):3. https://doi.org/10.1007/s41116-019-0019-7
Article
Google Scholar
Toriumi S, Iida Y, Kusano K, Bamba Y, Imada S (2014) Formation of a flare-productive active region: observation and numerical simulation of NOAA AR 11158. Sol Phys 289(9):3351–3369. https://doi.org/10.1007/s11207-014-0502-1
Article
Google Scholar
Toriumi S, Takasao S (2017) Numerical simulations of flare-productive active regions: δ-sunspots, sheared polarity inversion lines, energy storage, and predictions. Astrophys J 850:39. https://doi.org/10.3847/1538-4357/aa95c2
Article
Google Scholar
Trinh QT, Ern M, Doornbos E, Preusse P, Riese M (2018) Satellite observations of middle atmosphere–thermosphere vertical coupling by gravity waves. Ann Geophys 36(2):425–444. https://doi.org/10.5194/angeo-36-425-2018
Article
Google Scholar
Trinh QT, Kalisch S, Preusse P, Chun H-Y, Eckermann SD, Ern M, Riese M (2015) A comprehensive observational filter for satellite infrared limb sounding of gravity waves. Atmos Meas Tech 8(3):1491–1517. https://doi.org/10.5194/amt-8-1491-2015
Article
Google Scholar
Trinh QT, Kalisch S, Preusse P, Ern M, Chun H-Y, Eckermann SD, Kang M-J, Riese M (2016) Tuning of a convective gravity wave source scheme based on HIRDLS ob- servations. Atmos Chem Phys 16(11):7335–7356. https://doi.org/10.5194/acp-16-7335-2016
Article
Google Scholar
Tschernitz J, Veronig AM, Thalmann JK, Hinterreiter J, Pötzi W (2018) Reconnection fluxes in eruptive and confined flares and implications for superflares on the sun. Astrophys J 853(1):41. https://doi.org/10.3847/1538-4357/aaa199.
Article
Google Scholar
Tsuchiya S, Shiokawa K, Fujinami H, Otsuka Y, Nakamura T, Connors M, Schofield I, Shevtsov B, Poddelsky I (2019a) Three-dimensional fourier analysis of the phase velocity distributions of mesospheric and ionospheric waves based on airglow images collected over 10 years: comparison of Magadan, Russia, and Athabasca. Canada. J Geophys Res Space Phys 124(10):8110–8124. https://doi.org/10.1029/2019JA026783
Article
Google Scholar
Tsuchiya S, Shiokawa K, Otsuka Y, Nakamura T, Yamamoto M, Connors M, Schofield I, Shevtsov B, Poddelsky I (2019b) Wavenumber spectra of atmospheric gravity waves and medium-scale traveling ionospheric disturbances based on more than 10-year airglow images in Japan, Russia, and Canada. J Geophys Res Space Phys 125(3):e26807. https://doi.org/10.1029/2019JA026807
Article
Google Scholar
Tsuda T, Fujii R, Shibata K, Geller MA (eds) (2009) Climate and Weather of the Sun–Earth System (CAWSES) selected papers from the 2007 Kyoto Symposium. TERRAPUB, 2009, Tokyo
Google Scholar
Tsuda T, Shepherd M, Gopalswamy N (2015) Advancing the understanding of the Sun–Earth interaction—the Climate and Weather of the Sun–Earth System (CAWSES) II program. Prog Earth Planet Sci 2(1):28. https://doi.org/10.1186/s40645-015-0059-0
Article
Google Scholar
Tsugawa T, Nishioka M, Ishii M, Hozumi K, Saito S, Shinbori A, Otsuka Y, Saito A, Buhari SM, Abdullah M, Supnithi P (2018) Total electron content observations by dense regional and worldwide international networks of GNSS. J Disaster Res 13:535–545. https://doi.org/10.20965/jdr.2018.p0535
Article
Google Scholar
Tsugawa T, Saito A, Otsuka Y, Nishioka M, Maruyama T, Kato H et al (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku earthquake. Earth Planets Space 63:875–879. https://doi.org/10.5047/eps.2011.06.035
Article
Google Scholar
Tsurutani BT, Gonzalez WD, Lakhina GS, Alex S (2003) The extreme magnetic storm of 1–2 September 1859. J Geophys Res 108:1268. https://doi.org/10.1029/2002JA009504
Article
Google Scholar
Tsurutani BT, Lakhina GS (2014) An extreme coronal mass ejection and consequences for the magnetosphere and Earth. Geophys Res Lett 41:287–292. https://doi.org/10.1002/2013GL058825
Article
Google Scholar
Tulasi Ram S, Yokoyama T, Otsuka Y, Shiokawa K, Sripathi S, Veenadhari B, Heelis R, Ajith KK, Gowtam VS, Gurubaran S, Supnithi P, Le Huy M (2015) Duskside enhancement of equatorial zonal electric field response to convection electric fields during the St. Patrick’s Day storm on 17 March 2015. J Geophys Res Space Physics 120. https://doi.org/10.1002/2015JA021932
Turunen E, Kero A, Verronen PT, Miyoshi Y, Oyama SI, Saito S (2016) Mesospheric ozone destruction by high-energy electron precipitation associated with pulsating aurora. J Geophys Res Atmos 121:11,852–11,861. https://doi.org/10.1002/2016JD025015
Article
Google Scholar
Turunen E, Verronen PT, Seppälä A, Rodger CJ, Clilverd MA, Tamminen J, Enell C-F, Ulich T (2009) Impact of different precipitation energies on NOx generation during geomagnetic storms. J Atmos Sol Terr Phys 71:1176–1189. https://doi.org/10.1016/j.jastp.2008.07.005
Article
Google Scholar
Tziotziou K, Georgoulis MK, Raouafi N-E (2012) The magnetic energy-helicity diagram of solar active regions. Astrophys J Lett 759:L4. https://doi.org/10.1088/2041-8205/759/1/L4
Article
Google Scholar
Upton LA, Hathaway DH (2018) An updated solar cycle 25 prediction with AFT: the modern minimum. Geophys Res Lett 45:8091–8095. https://doi.org/10.1029/2018GL078387
Article
Google Scholar
Usoskin IG (2018) Comment on the paper by Popova et al. On a role of quadruple component of magnetic field in defining solar activity in grand cycles. J Atmos Solar-Terrestrial Phys 176:69–71. https://doi.org/10.1016/j.jastp.2017.09.018
Article
Google Scholar
Vadas SL, Becker E (2019) Numerical modeling of the generation of tertiary gravity waves in the mesosphere and thermosphere during strong mountain wave events over the Southern Andes. J Geophys Res-Space Phys 124:7687–7718. https://doi.org/10.1029/2019JA026694
Article
Google Scholar
Vadas SL, Crowley G (2010) Source of the traveling ionospheric disturbances observed by the ionospheric TIDDBIT sounder near Wallops Island on 30 October 2007. J Geophys Res 115:A07324. https://doi.org/10.1029/2009JA015053
Article
Google Scholar
Vadas SL, Xu S, Yue J, Bossert K, Becker E, Baumgarten G (2019) Characteristics of the quiet-time hot spot gravity waves observed by GOCE over the Southern Andes on 5 July 2010. J Geophys Res-Space Phys 124:7034–7061. https://doi.org/10.1029/2019JA026693
Article
Google Scholar
van de Kamp M, Seppälä A, Clilverd MA, Rodger CJ, Verronen PT, Whittaker IC (2016) A model providing long-term data sets of energetic electron precipitation during geomagnetic storms. J Geophys Res Atmos 121:12,520–12,540. https://doi.org/10.1002/2015JD024212
Article
Google Scholar
Vourlidas A, Patsourakos S, Savani NP (2019) Predicting the geoeffective properties of coronal mass ejections: current status, open issues and path forward. Philos Trans R Soc A 377(2148):20180096. https://doi.org/10.1098/rsta.2018.0096
Article
Google Scholar
Vršnak B, Temmer M, Veronig AM (2007) Coronal holes and solar wind high-speed streams: II. forecasting the geomagnetic effects. Sol Phys 240:331–346. https://doi.org/10.1007/s11207-007-0311-x.
Article
Google Scholar
Wang Y, Zhuang B, Hu Q, Liu R, Shen C, Chi Y (2016) On the twists of interplanetary magnetic flux ropes observed at 1 AU. J Geophys Res Space Physics 121:9316–9339. https://doi.org/10.1002/2016JA023075.
Article
Google Scholar
Ward W, Seppälä A, Erdal Yigit3, Nakamura T, Stolle C, Laštovička J, Woods TN, Tomikawa Y (2021) Role of the sun and the middle atmosphere/thermosphere/ionosphere in climate (ROSMIC): a retrospective and prospective view. Progress in Earth and Planetary Science (this issue)
Watanabe T, Iyemori T, Shiokawa K, Zhang J, Kanekal SG, Nishitani N (2017) Special issue “Global data systems for the study of solar-terrestrial variability.”. Earth Planets Space 69(1):155. https://doi.org/10.1186/s40623-017-0742-z
Article
Google Scholar
Webb D, Nitta N (2017) Understanding problem forecasts of ISEST campaign flare-CME events. Sol Phys 292:142. https://doi.org/10.1007/s11207-017-1166-4
Article
Google Scholar
Wenzel D, Jakowski N, Berdermann J, Mayer C, Valladares C, Heber B (2016) Global ionospheric flare detection system (GIFDS). J Atm Sol-Terr Phys 138-139:233–242. https://doi.org/10.1016/j.jastp.2015.12.011
Article
Google Scholar
Werner R, Guineva V (2020) Forecasting sunspot number for solar cycle 25 using autoregressive model for both hemispheres of the Sun. C R Acad Bulg Sci 73:82–82. https://doi.org/10.7546/CRABS.2020.01.10
Article
Google Scholar
Wijsen N, Aran A, Pomoell J, Poedts S (2019) Modelling three-dimensional transport of solar energetic protons in a corotating interaction region generated with EUHFORIA. A&A 622:A28. https://doi.org/10.1051/0004-6361/201833958
Article
Google Scholar
Wiltberger M, Rigler EJ, Merkin V, Lyon JG (2017) Structure of high latitude currents in magnetosphere-ionosphere models. Space Sci Rev 206:575–598. https://doi.org/10.1007/s11214-016-0271-2
Article
Google Scholar
Wood BE, Wu C-C, Lepping RP, Nieves-Chinchilla T, Howard RA, Linton MG, Socker DG (2017) A STEREO survey of magnetic cloud coronal mass ejections observed at Earth in 2008–2012. Astrophys J Suppl 229(2):29. https://doi.org/10.3847/1538-4365/229/2/29
Article
Google Scholar
Woods TN, Caspi A, Chamberlin PC, Jones A, Kohnert R, Mason JP, Moore CS, Palo S, Rouleau C, Solomon SC, Machol J, Viereck R (2017) New solar irradiance measurements from the miniature X-ray solar spectrometer cubesat. Astrophys J 835:122. https://doi.org/10.3847/1538-4357/835/2/122
Article
Google Scholar
Xu H, Shiokawa K, Oyama S, Otsuka Y (2019) Thermospheric wind variations observed by a Fabry–Perot interferometer at Tromsø, Norway, at substorm onsets. Earth Planets Space 71:93. https://doi.org/10.1186/s40623-019-1072-0
Article
Google Scholar
Yadav S, Sridharan R, Sunda S (2016) Impact of the 17 March 2015- St. Patrick’s Day storm on the evolutionary pattern of equatorial ionization anomaly over the Indian longitudes using high resolution spatio-temporal TEC maps - new insights. Space Weather 14(10):786–801. https://doi.org/10.1002/2016SW001408
Article
Google Scholar
Yamamoto M, Shiokawa K, Nakamura T, Gopalswamy N (2016) Special issue “International CAWSES-II Symposium.”. Earth Planets Space 68(1):26. https://doi.org/10.1186/s40623-016-0392-6
Article
Google Scholar
Yeo KL, Krivova NA, Solanki SK (2017) EMPIRE: a robust empirical reconstruction of solar irradiance variability. J Geophys Res Space Physics 122:3888–3914. https://doi.org/10.1002/2016JA023733
Article
Google Scholar
Yermolaev YI, Lodkina IG, Nikolaeva NS (2018) Geoeffectiveness of solar and interplanetary structures and generation of strong geomagnetic storms. In: Buzulukova N (ed) Extreme events in geospace. Origins, predictability, and consequences. Elsevier, Amsterdam
Google Scholar
Yiğit E (2018) Dynamics of the atmosphere-ionosphere system meteorological influences, variability, and space weather. In: Atmospheric and space sciences: ionospheres and plasma environments, vol 2. Springer, New York, pp 103–133
Chapter
Google Scholar
Yiğit E, Aylward AD, Medvedev AS (2008) Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: sensitivity study. J Geophys Res 113:D19106. https://doi.org/10.1029/2008JD010135
Article
Google Scholar
Yiğit E, Koucká Knížová P, Georgieva K, Ward W (2016) A review of vertical coupling in the Atmosphere–Ionosphere system: effects of waves, sudden stratospheric warmings, space weather, and of solar activity. J Atmos Solar-Terrestrial Phys 141:1–12. https://doi.org/10.1016/j.jastp.2016.02.011
Article
Google Scholar
Yoshida A (2014) Difference between even- and odd-numbered cycles in the predictability of solar activity and prediction of the amplitude of cycle 25. Ann Geophys 32:1035–1042. https://doi.org/10.5194/angeo-32-1035-2014
Article
Google Scholar
Zhang J, Blanco-Cano X, Nitta N, Srivastava N, Mandrini CH (2018) Editorial: Earth-affecting solar transients. Sol Phys 293(5):80. https://doi.org/10.1007/s11207-018-1302-9
Article
Google Scholar
Zhang J, Richardson IG, Webb DF, Gopalswamy N, Huttunen E, Kasper JC, Nitta NV, Poomvises W, Thompson BJ, Wu C-C, Yashiro S, Zhukov AN (2007) Solar and interplanetary sources of major geomagnetic storms (Dst < 100 nT) during 1996–2005. J Geophys Res 112:A10102. https://doi.org/10.1029/2007JA012321
Article
Google Scholar
Zhang J et al (2021) Earth-affecting solar transients: a review of progress in solar cycle 24. Progress in Earth and Planetary Science (this issue)
Zharkova V, Popova E, Shepherd S, Zharkov S (2018) Reply to comment on the paper “ on a role of quadruple component of magnetic field in defining solar activity in grand cycles” by Usoskin. J Atmos Solar-Terrestrial Phys 176:72–82. https://doi.org/10.1016/j.jastp.2017.09.019
Article
Google Scholar