Allen RM, Gasparini P, Kamigaichi O, Bose M (2009) The status of earthquake early warning around the world: an introductory overview. Seismol Res Lett 80:682–693. https://doi.org/10.1785/gssrl.80.5.682
Article
Google Scholar
Baba T, Allgeyer S, Hossen J, Cummins PR, Tsushima H, Imai K, Yamashita K, Kato T (2017) Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change. Ocean Modell 111:46–54. https://doi.org/10.1016/j.ocemod.2017.01.002
Article
Google Scholar
Benjamin LR, Flament P, Cheung KF, Luther DS (2016) The 2011 Tohoku tsunami south of Oahu: high-frequency Doppler radio observations and model simulations of currents. J Geophys Res Oceans 121:1133–1144. https://doi.org/10.1002/2015JC011207
Article
Google Scholar
Bernard E, Titov V (2015) Evolution of tsunami warning systems and products. Phil Trans R Soc A 373:20140371. https://doi.org/10.1098/rsta.2014.0371
Article
Google Scholar
Carson-Jackson J (2012) Satellite AIS—developing technology or existing capability? J Nav 65:303–321. https://doi.org/10.1017/S037346331100066X
Article
Google Scholar
Clarizia MP, Ruf C, Cipollini P, Zuffada C (2016) First spaceborne observation of sea surface height using GPS-Reflectometry. Geophys Res Lett 43:767–774. https://doi.org/10.1002/2015GL066624
Article
Google Scholar
Dean RG, Dalrymple RA (1985) Wave forces. In: Water wave mechanics for engineers and scientists. Advanced series on ocean engineering, vol 2. World Scientific Publishing, Singapore, pp 212–260
Earles M, CANEUS Shared Small Satellites CSSP Workshop Committee (2010) International space-based AIS and data extraction backbone, high level requirements. CANEUS International, Montreal
Google Scholar
European Maritime Safety Agency (EMSA) (2017) The world merchant fleet in 2016—statistics from Equasis. http://www.emsa.europa.eu/publications/technical-reports-studies-and-plans/item/472-annual-statistical-report-on-the-world-merchant-statistics-from-equasisics-from-equasis.html. Accessed 15 June 2018
Google Scholar
Falck C, Ramatschi M, Subarya C, Bartsch M, Merx A, Hoeberechts J, Schmidt G (2010) Near real-time GPS applications for tsunami early warning systems. Nat Hazards Earth Sys Sci 10:181–189. https://doi.org/10.5194/nhess-10-181-2010
Article
Google Scholar
Foster JH, Brooks BA, Wang D, Carter GS, Merrifield MA (2012) Improving tsunami warning using commercial ships. Geophys Res Lett 39:L09603. https://doi.org/10.1029/2012GL051367
Article
Google Scholar
Fuji R, Hinata H, Fujii S, Takahashi T (2013) Influences of time integration on the accuracy of inversion based on ocean radar. J Jpn Soc Civil Eng B2 69:I_436-I_440. doi:https://doi.org/10.2208/kaigan.69.I_436 (in Japanese with English abstract)
Fujii Y, Satake K (2007) Tsunami source of the 2004 Sumatra–Andaman earthquake inferred from tide gauge and satellite data. Bull Seismol Soc Am 97:S192–S207. https://doi.org/10.1785/0120050613
Article
Google Scholar
Hamlington BD, Leben RR, Godin OA, Gica E, Titov VV, Haines BJ, Desai SD (2012) Could satellite altimetry have improved early detection and warning of the 2011 Tohoku tsunami? Geophys Res Lett 39:L15605. https://doi.org/10.1029/2012GL052386
Article
Google Scholar
Heo S, Shigihara Y, Tada T, Hayashi K (2015) Hydraulic experiment and verification of numerical simulation for drifting and stranding multiple vessel by tsunami. J Jpn Soc Civil Eng B2 71:I_277-I_282. doi:https://doi.org/10.2208/kaigan.71.I_277 (in Japanese with English abstract)
Hinata H, Fujii S, Furukawa K, Kataoka T, Miyata M, Kobayashi T, Mizutani M, Kokai T, Kanatsu N (2011) Propagating tsunami wave and subsequent resonant response signals detected by HF radar in the Kii Channel, Japan. Estuar Coast Shelf Sci 95:268–273. https://doi.org/10.1016/j.ecss.2011.08.009
Article
Google Scholar
Hirata K, Takayama H, Tsushima H, Hayashi Y, Iwase R, Baba T (2009) Integration of seafloor geodetic observation and offshore tsunami observation—toward researches on tsunami forecast. Proc 21st Ocean Eng Symp, OES21–181, Tokyo
Google Scholar
Hoshiba M, Ozaki T (2014) Earthquake early warning and tsunami warning of the Japan meteorological agency, and their performance in the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0). In: Wenzel F, Zschau J (eds) Early warning for geological disasters. Springer, Heidelberg, pp 1–28. https://doi.org/10.1007/978-3-642-12233-0_1
Google Scholar
Igarashi Y, Hori T, Murata S, Sato K, Baba T, Okada M (2016) Maximum tsunami height prediction using pressure gauge data by a Gaussian process at Owase in the Kii Peninsula, Japan. Mar Geophys Res 37:361–370. https://doi.org/10.1007/s11001-016-9286-z
Article
Google Scholar
Ikeya T, Inagaki S, Asakura R, Fukuyama T, Fujii T, Ohmori M, Takeda T, Yanagisawa K (2006) Experimental and analytical study of impulsive forces by a drifter due to tsunami. J Coast Eng 53:276–280. https://doi.org/10.2208/proce1989.53.276 (in Japanese)
Google Scholar
Inazu D, Waseda T, Hibiya T, Ohta Y (2016) Assessment of GNSS-based height of multiple ships for measuring and forecasting great tsunamis. Geosci Lett 3:25. https://doi.org/10.1186/s40562-016-0059-y
Article
Google Scholar
International Maritime Organization (IMO) (2002) Guidelines for the onboard operational use of shipborne Automatic Identification System (AIS). Resolution A.917(22), London
International Tsunami Information Center (ITIC) (2015) Pacific tsunami warning system: a half-century of protecting the Pacific, 1965–2015, 1st edn. Inoue Regional Center, National Oceanic and Atmospheric Administration, Honolulu
Google Scholar
Kamigaichi O (2009) Tsunami forecasting and warning. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, New York, pp 9592–9618. https://doi.org/10.1007/978-0-387-30440-3_568
Chapter
Google Scholar
Kaneda Y, Kawaguchi K, Araki E, Matsumoto H, Nakamura T, Kamiya S, Ariyoshi K, Hori T, Baba T, Takahashi N (2015) Development and application of an advanced ocean floor network system for megathrust earthquakes and tsunamis. In: Favali P, Beranzoli L, De Santis A (eds) Seafloor observatories. Springer, Berlin, pp 643–662. https://doi.org/10.1007/978-3-642-11374-1_25
Chapter
Google Scholar
Katsumata A, Ueno H, Aoki S, Yoshida Y, Barrientos S (2013) Rapid magnitude determination from peak amplitudes at local stations. Earth Planets Space 65:843–853. https://doi.org/10.5047/eps.2013.03.006
Article
Google Scholar
Kawai H, Satoh M, Kawaguchi K, Seki K (2013) Characteristics of the 2011 Tohoku tsunami waveform acquired around Japan by NOWPHAS equipment. Coast Eng J 55:1350008. https://doi.org/10.1142/S0578563413500083
Article
Google Scholar
Kawamoto S, Ohta Y, Hiyama Y, Todoriki M, Nishimura T, Furuya T, Sato Y, Yahagi T, Miyagawa K (2017) REGARD: a new GNSS-based real-time finite fault modeling system for GEONET. J Geophys Res Solid Earth 122:1324–1349. https://doi.org/10.1002/2016JB013485
Article
Google Scholar
Kawamura K, Laberg JS, Kanamatsu T (2014) Potential tsunamigenic submarine landslides in active margins. Mar Geol 356:44–49. https://doi.org/10.1016/j.margeo.2014.03.007
Article
Google Scholar
Keulegan GH, Carpenter LH (1958) Forces on cylinders and plates in an oscillating fluid. J Res Natl Bur Stand 60. https://doi.org/10.6028/jres.060.043
Kong Q, Allen RM, Schreier L, Kwon Y-W (2016) MyShake: a smartphone seismic network for earthquake early warning and beyond. Sci Adv 2:e1501055. https://doi.org/10.1126/sciadv.1501055
Article
Google Scholar
Lipa B, Isaacson J, Nyden B, Barrick D (2012) Tsunami arrival detection with high frequency (HF) radar. Remote Sens 4:1448–1461. https://doi.org/10.3390/rs4051448
Article
Google Scholar
Liu X, Shiotani S, Sasa K (2015) An analysis of ship behavior induced by the Great East Japan Earthquake Tsunami based on AIS. In: Weintrit A (ed) Activities in navigation, marine navigation and safety of sea transportation. CRC Press, London, pp 119–123. https://doi.org/10.1201/b18513-19
Chapter
Google Scholar
Løvholt F, Pedersen G, Harbitz CB, Glimsdal S, Kim J (2015) On the characteristics of landslide tsunamis. Phil Trans R Soc A 373:20140376. https://doi.org/10.1098/rsta.2014.0376
Article
Google Scholar
Maeda T, Obara K, Shinohara M, Kanazawa T, Uehira K (2015) Successive estimation of a tsunami wavefield without earthquake source data: a data assimilation approach toward real-time tsunami forecasting. Geophys Res Lett 42:7923–7932. https://doi.org/10.1002/2015GL065588
Article
Google Scholar
Makino H (2013) Verification of the time tsunami attacked coasting ships using AIS—case of the 2011 Japan tsunami. J Earth Sci Eng 2:126–130. https://doi.org/10.17265/2159-581X/2013.02.005
Google Scholar
Makinoshima F, Imamura F, Abe Y (2016) Behavior from tsunami recorded in the multimedia sources at Kesennuma City in the 2011 Tohoku tsunami and its simulation by using the evacuation model with pedestrian-car interaction. Coast Eng J 58:1640023. https://doi.org/10.1142/S0578563416400234
Article
Google Scholar
Mas E, Adriano B, Koshimura S (2013) An integrated simulation of tsunami hazard and human evacuation in La Punta, Peru. J Disast Res 8:285–295. https://doi.org/10.20965/jdr.2013.p0285
Article
Google Scholar
Matsuda N, Tomita T (2015) AIS data analysis on ships transported by the 2011 Tohoku tsunami and damage to port facilities by the ships. J Jpn Soc Civil Eng B2 71:I_1657-I_1662. doi:https://doi.org/10.2208/kaigan.71.I_1657 (in Japanese with English abstract)
Matsuda N, Tomita T, Yeom G-S, Takagawa T (2012) Numerical simulation on tsunami-transported large vessel with AIS data. J Jpn Soc Civil Eng B2 68:I_256–I_260. https://doi.org/10.2208/kaigan.68.I_256
Google Scholar
McCaffrey R (2008) Global frequency of magnitude 9 earthquakes. Geology 36:263–266. https://doi.org/10.1130/G24402A.1
Article
Google Scholar
Melgar D, Bock Y (2015) Kinematic earthquake source inversion and tsunami runup prediction with regional geophysical data. J Geophys Res Solid Earth 120:3324–3349. https://doi.org/10.1002/2014JB011832
Article
Google Scholar
Miyazawa Y, Guo X, Varlamov SM, Miyama T, Yoda K, Sato K, Kano T, Sato K (2015) Assimilation of the seabird and ship drift data in the north-eastern sea of Japan into an operational ocean nowcast/forecast system. Sci Rep 5:17672. https://doi.org/10.1038/srep17672
Article
Google Scholar
Mulia IE, Hirobe T, Inazu D, Endoh T, Niwa Y, Tatehata H, Gusman AR, Waseda T, Hibiya T (2017) A reduced rank data assimilation for airborne measurements of a tsunami. Abstract HDS12-P07 presented at the JpGU-AGU Joint Meeting 2017, Makuhari, Japan, 20–25 May 2017. https://confit.atlas.jp/guide/event/jpguagu2017/subject/E_HDS12-P07/detail?lang. Accessed 15 June 2018
National Research Council (NRC) (2011) Long-term reliability and sustainability of warning center operations. In: Tsunami warning and preparedness: an assessment of the U.S. tsunami program and the nation’s preparedness efforts. The National Academies Press, Washington, DC, pp 163–205. https://doi.org/10.17226/12628
Google Scholar
O’Brien MP, Morison JR (1952) The forces exerted by waves on objects. Trans AGU 33:32–38. https://doi.org/10.1029/TR033i001p00032
Article
Google Scholar
Rabinovich AB, Eblé MC (2015) Deep-ocean measurements of tsunami waves. Pure Appl Geophys 172:3281–3312. https://doi.org/10.1007/s00024-015-1058-1
Article
Google Scholar
Raby A, Macabuag J, Pomonis A, Wilkinson S, Rossetto T (2015) Implications of the 2011 Great East Japan Tsunami on sea defence design. Intl J Disast Risk Reduc 14:332–346. https://doi.org/10.1016/j.ijdrr.2015.08.009
Article
Google Scholar
Reddy DV, Swamidas ASJ (2013) Environmental forces on offshore structures. In: Essentials of offshore structures—framed and gravity platforms. CRC Press, Boca Raton, pp 337–418
Google Scholar
Rong Y, Jackson DD, Magistrale H, Goldfinger C (2014) Magnitude limits of subduction zone earthquakes. Bull Seismol Soc Am 104:2359–2377. https://doi.org/10.1785/0120130287
Article
Google Scholar
Ruhl CJ, Melgar D, Grapenthin R, Allen RM (2017) The value of real-time GNSS to earthquake early warning. Geophys Res Lett 44:8311–8319. https://doi.org/10.1002/2017GL074502
Article
Google Scholar
Sagiya T (2004) A decade of GEONET: 1994–2003, the continuous GPS observation in Japan and its impact on earthquake studies. Earth Planets Space 56:xxix–xxli. https://doi.org/10.1186/BF03353077
Article
Google Scholar
Saito T, Inazu D, Miyoshi T, Hino R (2014) Dispersion and nonlinear effects in the 2011 Tohoku-Oki earthquake tsunami. J Geophys Res Oceans 119:5160–5180. https://doi.org/10.1002/2014JC009971
Article
Google Scholar
Saito T, Ito Y, Inazu D, Hino R (2011) Tsunami source of the 2011 Tohoku-Oki earthquake, Japan: inversion analysis based on dispersive tsunami simulations. Geophys Res Lett 38:L00G19. https://doi.org/10.1029/2011GL049089
Article
Google Scholar
Satake K (2014) Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami. Geosci Lett 1:15. https://doi.org/10.1186/s40562-014-0015-7
Article
Google Scholar
Stosius R, Beyerle G, Hoechner A, Wickert J, Lauterjung J (2011) The impact on tsunami detection from space using GNSS-reflectometry when combining GPS with GLONASS and Galileo. Adv Space Res 47:843–853. https://doi.org/10.1016/j.asr.2010.09.022
Article
Google Scholar
Suga Y, Koshimura S, Kobayashi E (2013) Risk evaluation of drifting ship by tsunami. J Disast Res 8:573–583. https://doi.org/10.20965/jdr.2013.p0573
Article
Google Scholar
Sugawara D, Goto K (2012) Numerical modeling of the 2011 Tohoku-oki tsunami in the offshore and onshore of Sendai Plain, Japan. Sediment Geol 282:110–123. https://doi.org/10.1016/j.sedgeo.2012.08.002
Article
Google Scholar
Suppasri A, Muhari A, Futami T, Imamura F, Shuto N (2014) Loss functions for small marine vessels based on survey data and numerical simulation of the 2011 Great East Japan Tsunami. J Waterway Port Coast Ocean Eng 140:04014018. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000244
Article
Google Scholar
Suppasri A, Shuto N, Imamura F, Koshimura S, Mas E, Yalciner AC (2013) Lessons learned from the 2011 Great East Japan Tsunami: performance of tsunami countermeasures, coastal buildings, and tsunami evacuation in Japan. Pure Appl Geophys 170:993–1018. https://doi.org/10.1007/s00024-012-0511-7
Article
Google Scholar
Tang L, Titov VV, Moore C, Wei Y (2016) Real-time assessment of the 16 September 2015 Chile tsunami and implications for near-field forecast. Pure Appl Geophys 173:369–387. https://doi.org/10.1007/s00024-015-1226-3
Article
Google Scholar
Terada Y, Kato T, Nagai T, Koshimura S, Imada N, Sakaue H, Tadokoro K (2015) Recent developments of GPS tsunami meter for a far offshore observations. In: Hashimoto M (ed) International symposium on geodesy for earthquake and natural hazards. International association of geodesy symposia, vol 145. Springer, Cham, pp 145–153. https://doi.org/10.1007/1345_2015_151
Chapter
Google Scholar
Tetley L, Calcutt D (2001) Electronic charts. In: Electronic navigation systems, 3rd edn. Butterworth-Heinemann, Oxford, pp 224–263
Chapter
Google Scholar
Tomita T, Yeom G-S, Ayugai M, Niwa T (2012) Breakwater effects on tsunami inundation reduction in the 2011 off the Pacific Coast of Tohoku Earthquake. J Jpn Soc Civil Eng B2 68:I_156-I_160. doi:https://doi.org/10.2208/kaigan.68.I_156 (in Japanese with English abstract)
Tournadre J (2014) Anthropogenic pressure on the open ocean: the growth of ship traffic revealed by altimeter data analysis. Geophys Res Lett 41:7924–7932. https://doi.org/10.1002/2014GL061786
Article
Google Scholar
Tsushima H, Hino R, Ohta Y, Iinuma T, Miura S (2014) tFISH/RAPiD: rapid improvement of near-field tsunami forecasting based on offshore tsunami data by incorporating onshore GNSS data. Geophys Res Lett 41:3390–3397. https://doi.org/10.1002/2014GL059863
Article
Google Scholar
Tsushima H, Hino R, Tanioka Y, Imamura F, Fujimoto H (2012) Tsunami waveform inversion incorporating permanent seafloor deformation and its application to tsunami forecasting. J Geophys Res Solid Earth 117:B03311. https://doi.org/10.1029/2011JB008877
Article
Google Scholar
Tsushima H, Hirata K, Hayashi Y, Tanioka Y, Kimura K, Sakai S, Shinohara M, Kanazawa T, Hino R, Maeda K (2011) Near-field tsunami forecasting using offshore tsunami data from the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63:821–826. https://doi.org/10.5047/eps.2011.06.052
Article
Google Scholar
United Nations Conference on Trade and Development (UNCTAD) (2017) Review of maritime transport 2017. http://unctad.org/en/Pages/Publications/Review-of-Maritime-Transport-(Series).aspx. Accessed 15 June 2018
Wei Y, Chamberlin C, Titov VV, Tang L, Bernard EN (2013) Modeling of the 2011 Japan tsunami: lessons for near-field forecast. Pure Appl Geophys 170:1309–1331. https://doi.org/10.1007/s00024-012-0519-z
Article
Google Scholar
Wei Y, Newman AV, Hayes GP, Titov VV, Tang L (2014) Tsunami forecast by joint inversion of real-time tsunami waveforms and seismic or GPS data: application to the Tohoku 2011 tsunami. Pure Appl Geophys 171:3281–3305. https://doi.org/10.1007/s00024-014-0777-z
Article
Google Scholar
Willick WF (2014) Evaluating the effectiveness of a space-based AIS. Canad Young Scientist J (2):8–10. https://doi.org/10.13034/cysj-2014-009
Yamamoto N, Aoi S, Hirata K, Suzuki W, Kunugi T, Nakamura H (2016) Multi-index method using offshore ocean-bottom pressure data for real-time tsunami forecast. Earth Planets Space 68:128. https://doi.org/10.1186/s40623-016-0500-7
Article
Google Scholar