Ackland GJ, Loveday JS (2020) Structures of solid hydrogen at 300 K. Phys Rev B 101:094104. https://doi.org/10.1103/PhysRevB.101.094104
Article
Google Scholar
Akahama Y, Nishimura M, Kawamura H, Hirao N, Ohishi Y, Takemura K (2010) Evidence from x-ray diffraction of orientational ordering in phase III of solid hydrogen. Phys Rev B 82:060101. https://doi.org/10.1103/PhysRevB.82.060101
Article
Google Scholar
Alavi S, Dornan P, Woo TK (2008) Determination of NMR lineshape anisotropy of guest molecules within inclusion complexes from molecular dynamics simulations. Chem Phys Chem 9:911–919. https://doi.org/10.1002/cphc.200700805
Article
Google Scholar
Alavi S, Susilo R, Ripmeester JA (2009) Linking microscopic guest properties to macroscopic observables in clathrate hydrates: guest–host hydrogen bonding. J Chem Phys 130:174501. https://doi.org/10.1063/1.3124187
Article
Google Scholar
Ancilotto F, Chiarotti GL, Scandolo S, Tosatti E (1997) Dissociation of methane into hydrocarbons at extreme (planetary) pressure and temperature. Science 275:1288–1290. https://doi.org/10.1126/science.275.5304.1288
Article
Google Scholar
Aoki K, Yamawaki H, Sakashita M, Fujihisa H (1996) Infrared absorption study of the hydrogen-bond symmetrization in ice to 110 GPa. Phys Rev B 54:15673–15677. https://doi.org/10.1103/PhysRevB.54.15673
Article
Google Scholar
Benedetti LR, Nguyen JH, Caldwell WA, Liu H, Kruger M, Jeanloz R (1999) Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? Science 286:100–102. https://doi.org/10.1126/science.286.5437.100
Article
Google Scholar
Bezacier L, Menn E, Grasset O, Bollengier O, Oancea A, Mezouar M, Tobie G (2014) Experimental investigation of methane hydrates dissociation up to 5 GPa: implications for Titan’s interior. Phys Earth Planet Inter 229:144–152. https://doi.org/10.1016/j.pepi.2014.02.001
Article
Google Scholar
Bini R, Pratesi G (1997) High-pressure infrared study of solid methane: phase diagram up to 30 GPa. Phys Rev B 55:14800. https://doi.org/10.1103/PhysRevB.55.14800
Article
Google Scholar
Bini R, Ulivi L, Jodl HJ, Salvi PR (1995) High pressure crystal phases of solid CH4 probed by Fourier transform infrared spectroscopy. J Chem Phys 103:1353. https://doi.org/10.1063/1.469810
Article
Google Scholar
Burger BJ, Estrada MV, Gustin MS (2019) What caused Earth’s largest mass extinction event? New evidence from the Permian-Triassic boundary in northeastern Utah. Glob Planet Change 177:81. https://doi.org/10.1016/j.gloplacha.2019.03.013
Article
Google Scholar
Bykov M, Bykova E, Pickard CJ, Martinez-Canales M, Glazyrin K, Smith JS, Goncharov AF (2021) Structural and vibrational properties of methane up to 71 GPa. Phys Rev B 104:184105. https://doi.org/10.1103/PhysRevB.104.184105
Article
Google Scholar
Cha M, Shin K, Lee H, Moudrakovski IL, Ripmeester JA, Seo Y (2015) Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy. Environ Sci Technol 49:1964–1971. https://doi.org/10.1021/es504888n
Article
Google Scholar
Chen JY, Yoo CS (2012) Formation and phase transitions of methane hydrates under dynamic loadings: compression rate dependent kinetics. J Chem Phys 136:114513. https://doi.org/10.1063/1.3695212
Article
Google Scholar
Chen PN, Zha CS, Chen XJ, Shu J, Hemley RJ, Mao HK (2011) Raman study of phase transitions in compressed methane using moissanite anvil cells. Phys Rev B 84:104110. https://doi.org/10.1103/PhysRevB.84.104110
Article
Google Scholar
Chou I-M, Sharma A, Burruss RC, Shu J, Mao H-K, Hemley RJ, Goncharov AF, Stern LA, Kirby SH (2000) Transformations in methane hydrates. Proc Natl Acad Sci USA 97:13484. https://doi.org/10.1073/pnas.250466497
Article
Google Scholar
Choukroun M, Grasset O, Tobie G, Sotin C (2010) Stability of methane clathrate hydrates under pressure: influence on outgassing processes of methane on Titan. Icarus 205:581–593. https://doi.org/10.1016/j.icarus.2009.08.011
Article
Google Scholar
Davidson DW (1973) Clathrate hydrates. In: Franks F (eds) Water in crystalline hydrates aqueous solutions of simple nonelectrolytes. Water, Vol 2. Chapt.3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6958-6_3
Davidson DW, Leaist DG, Hesse R (1983) Oxygen-18 enrichment in the water of a clathrate hydrate. Geochim Cosmochim Acta 47:2293–3229. https://doi.org/10.1016/0016-7037(83)90053-4
Article
Google Scholar
Davidson DW, Garg SK, Gough SR, Handa YP, Ratcliffe CL, Tse JS, Ripmeester JA (1984a) Some structural and thermodynamic studies of clathrate hydrates. J Inclusion Phenom 2:231–238. https://doi.org/10.1007/BF00663261
Article
Google Scholar
Davidson DW, Handa YP, Ratcliffe CI, Tse JS, Powell BM (1984b) The ability of small molecules to form clathrate hydrates of structure II. Nature 311:142–143. https://doi.org/10.1038/311142a0
Article
Google Scholar
Davidson DW, Handa YP, Ripmeester JA (1986) Xenon-129 NMR and the thermodynamic parameters of xenon hydrate. J Phys Chem 90(24):6549–6552. https://doi.org/10.1021/j100282a026
Article
Google Scholar
Davies SR, Sloan ED, Sum AK, Koh CA (2010) In situ studies of the mass transfer mechanism across a methane hydrate film using high-resolution confocal Raman spectroscopy. J Phys Chem C 114:1173–1180. https://doi.org/10.1021/jp909416y
Article
Google Scholar
Deng Y, Chen F, Guo Q, Hu Y, Chen D, Yang S, Cao J, Chen H, Wei R, Cheng S, Zhou J, Liu C, Iang X, Zhu J (2021) Possible links between methane seepages and glacial-interglacial transitions in the South China sea. Geophys Res Lett 48:e2020GL091429. https://doi.org/10.1029/2020GL091429
Article
Google Scholar
Dyadin YA, Aladko EY, Udachin KA, Tkacz M (1994) The solubility of helium and hydrogen in ice Ih at high pressures. Polish J Chem 68:343–348
Google Scholar
Dyadin YA, Aladko EY, Larionov EG (1997) Decomposition of methane hydrates up to 15 kbar. Mendeleev Commun 7:34–35. https://doi.org/10.1070/MC1997v007n01ABEH000655
Article
Google Scholar
Dyadin YA, Larionov EG, Manakov AY, Zhurko FV, Aladko EY, Mikina TV, Komarov VY (1999) Clathrate hydrates of hydrogen and neon. Mendeleev Commun 9:209–210. https://doi.org/10.1070/MC1999v009n05ABEH001104
Article
Google Scholar
Efimchenko VS, Kuzovnikov MA, Fedotov V, Sakharov M (2010) New phase in the water–hydrogen system. J Alloys Compd 509:S860–S863. https://doi.org/10.1016/j.jallcom.2010.12.200
Article
Google Scholar
Eremets MI, Drozdov AP, Kong PP, Wang H (2019) Semimetallic molecular hydrogen at pressure above 350 GPa. Nat Phys 15:1246–1249. https://doi.org/10.1038/s41567-019-0646-x
Article
Google Scholar
Franks F, Reid DS (1973) Water: a comprehensive treatise. In: Franks F (ed) 2 *1, Chapter 5. Plenum Press, New York (1973)
Gao G, Oganov AR, Ma Y, Wang H, Li P, Li Y, Iitaka T, Zou G (2010) Dissociation of methane under high pressure. J Chem Phys 133:144508. https://doi.org/10.1063/1.3488102
Article
Google Scholar
Goncharov AF, Struzhkin VV (2017) Comment on “Observation of the Wigner-Huntington transition to metallic hydrogen.” Science 357:715. https://doi.org/10.1126/science.aam9736
Article
Google Scholar
Goncharov AF, Struzhkin VV, Somayazulu M, Hemley RJ, Mao HK (1996) Compression of ice to 210 GPa: evidence for a symmetric hydrogen bonded phase. Science 273:218–220. https://doi.org/10.1126/science.273.5272.218
Article
Google Scholar
Grasset O, Sotin C, Deschamps F (2000) On the internal structure and dynamics of Titan. Planet Space Sci 48:617. https://doi.org/10.1016/S0032-0633(00)00039-8
Article
Google Scholar
Hanfland M, Hemley RJ, Mao HK (1993) Novel infrared vibron absorption in solid hydrogen at megabar pressures. Phys Rev Lett 70:3760. https://doi.org/10.1103/PhysRevLett.70.3760
Article
Google Scholar
Hazen RM, Mao HK, Finger LW, Bell PM (1980) Structure and compression of crystalline methane at high pressure and room temperature. Appl Phys Lett 37:288. https://doi.org/10.1063/1.91909
Article
Google Scholar
Hemley RJ (2010) Percy W. Bridgman’s second century. High Press Res 30:581–619. https://doi.org/10.1080/08957959.2010.538974
Article
Google Scholar
Hemley RJ, Mao HK (1996) Dense molecular hydrogen: order, disorder, and localization. J Non-Cryst Solids 205–207:282–289. https://doi.org/10.1016/S0022-3093(96)00238-4
Article
Google Scholar
Hirai H (2009) From carbon materials to gas hydrates: high-pressure properties of gas hydrates and solid methane in the icy planets and their moon—2008 Award winners and their studies. Jpn Mag Miner Petrol Sci 38:1–8. https://doi.org/10.2465/gkk.38.1. (in Japanese with English abstract)
Article
Google Scholar
Hirai H, Kadobayashi H (2018) Properties of gas hydrates under low to high temperatures and high pressures and their implications of interiors of icy bodies. J Crystallogr Soc Japan 60:54–61. https://doi.org/10.5940/jcrsj.60.54. (in Japanese with English abstract)
Article
Google Scholar
Hirai H, Uchihara Y, Fujihisa H, Sakashita M, Katoh E, Aoki K, Nagashima K, Yamamoto Y, Yagi T (2001) High-pressure structures of methane hydrate observed up to 8 GPa. J Chem Phys 115:7066–7070. https://doi.org/10.1063/1.1403690
Article
Google Scholar
Hirai H, Uchihara Y, Nishimura Y, Kawamura T, Yamamoto Y, Yagi T (2002a) Structural changes of argon Hydrate under high pessure. J Phys Chem B 106:11089–11092. https://doi.org/10.1021/jp021458l
Article
Google Scholar
Hirai H, Uchihara Y, Kawamua T, Yamamoto Y, Yagi T (2002b) Pressure-indued phase changes of argon hydrate and methane hydrate at room temperature. Proc Jpn Acad Ser B 78:39–44. https://doi.org/10.2183/pjab.78.39
Article
Google Scholar
Hirai H, Tanaka T, Kawamura T, Yamamoto Y, Yagi T (2003) Retention of filled ice structure of methane hydrate up to 42 GPa. Phys Rev B 68:172102. https://doi.org/10.1103/PhysRevB.68.172102
Article
Google Scholar
Hirai H, Tanaka T, Kawamura T, Yamamoto Y, Yagi T (2004) Structural changes in gas hydrates and existence of a filled ice structure of methane hydrate above 40 GPa. J Phys Chem Solid 65:1555–1559. https://doi.org/10.1016/j.jpcs.2003.12.018
Article
Google Scholar
Hirai H, Machida S, Kawamura T, Yamamoto Y, Yagi T (2006) Stabilizing of methane hydrate and transition to a new high-pressure structure at 40 GPa. Am Mineral 91:826–830. https://doi.org/10.2138/am.2006.1991
Article
Google Scholar
Hirai H, Ohno S, Kawamura T, Yamamoto Y, Yagi T (2007) Changes in vibration modes of hydrogen and water molecules and in lattice parameters with pressure for filled-ice hydrogen hydrates. J Phys Chem C 111:312–315. https://doi.org/10.1021/jp064281u
Article
Google Scholar
Hirai H, Konagai K, Kawamura T, Yamamoto Y, Yagi T (2008b) Phase changes of solid methane under high pressure up to 86 GPa at room temperature. Chem Phys Lett 454:212–217. https://doi.org/10.1016/j.cplett.2008.01.082
Article
Google Scholar
Hirai H, Takahara N, Kawamura T, Yamamoto Y, Yagi T (2008a) Structural changes and preferential cage occupancy of ethane hydrate and methane-ethane mixed gas hydrate under very high pressure. J Chem Phys 129:224503. https://doi.org/10.1063/1.3036006
Article
Google Scholar
Hirai H, Konagai K, Kawamura T, Yamamoto Y, Yagi T (2009) Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets. Phys Earth Planet Inter 174:242–246. https://doi.org/10.1016/j.pepi.2008.06.011
Article
Google Scholar
Hirai H, Komatsu K, Honda M, Kawamura T, Yamamoto Y, Yagi T (2010) Phase changes of CO2 hydrate under high pressure and low temperature. J Chem Phys 133:124511. https://doi.org/10.1063/1.3493452
Article
Google Scholar
Hirai H, Kagawa S, Tanaka T, Matsuoka T, Yagi T (2012) Structural changes of filled ice Ic hydrogen hydrate under low temperatures and high pressures from 5 to 50 GPa. J Chem Phys 137:074505. https://doi.org/10.1063/1.4746017
Article
Google Scholar
Hirai H, Tanaka T, Kagawa S, Matsuoka T, Ohishi Y, Hirao N, Yagi T, Ohtake M, Yamamoto Y (2014) Phase changes Induced by guest orientational ordering on methane and hydrogen hydrates under low temperatures and high pressures. Rev High Press Sci Technol 24:278–287. https://doi.org/10.4131/jshpreview.24.278. (in Japanese with English abstract)
Article
Google Scholar
Hirai H, Kadobayashi H, Hirao N, Ohishi Y, Ohtake M, Yamamoto Y, Nakano S (2015) Time-resolved x-ray diffraction and Raman studies of the phase transition mechanisms of methane hydrate. J Chem Phys 142:024707. https://doi.org/10.1063/1.4905482
Article
Google Scholar
Howie RT, Guillaume CL, Scheler T, Goncharov AF, Gregoryanz E (2012a) Mixed molecular and atomic phase of dense hydrogen. Phys Rev Lett 108:125501. https://doi.org/10.1103/PhysRevLett.108.125501
Article
Google Scholar
Howie RT, Scheler T, Guillaume CL, Eugene Gregoryanz E (2012b) Proton tunneling in phase IV of hydrogen and deuterium. Phys Rev B 86:214104. https://doi.org/10.1103/PhysRevB.86.214104
Article
Google Scholar
Iitaka T, Ebisuzaki T (2003) Methane hydrate under high pressure. Phys Rev B 68:172105. https://doi.org/10.1103/PhysRevB.68.172105
Article
Google Scholar
Ikeda T, Terakura K (2003) Structural transformation of methane hydrate from cage clathrate to filled ice. J Chem Phys 119:6784. https://doi.org/10.1063/1.1606437
Article
Google Scholar
Ikeda T, Yamamuro O, Matsuo T, Mori K, Torii S, Kamiyama T, Izumi F, Ikeda S, Mae S (1999) Neutron diffraction study of carbon dioxide clathrate hydrate. J Phys Chem Solids 60(8–9):1527–1529. https://doi.org/10.1016/S0022-3697(99)00165-1
Article
Google Scholar
Itoh H, Tse JS, Kawamura K (2001) The structure and dynamics of doubly occupied Ar hydrate. J Chem Phys 115:9414. https://doi.org/10.1063/1.1414378
Article
Google Scholar
Jeffrey GA (1969) Water structure in organic hydrates. Acc Chem Res 2(11):344–352. https://doi.org/10.1021/ar50023a004
Article
Google Scholar
Jeffrey GA (1984) Hydrate inclusion compounds. J Incl Phenom 1:211–222. https://doi.org/10.1007/BF00656757
Article
Google Scholar
Jeffrey GA, McMullan RK (1967) The clathrate hydrates. In: Cotton FA (eds) Book series: progress in inorganic chemistry, vol 8, pp 43–108. https://doi.org/10.1002/9780470166093.ch2
Kadobayashi H, Hirai H, Ohfuji H, Kojima Y, Ohishi Y, Hirao N, Ohtake M, Yamamoto Y (2017) Transition mechanism of sH to filled-ice Ih structure of methane hydrate under fixed pressure condition. J Phys Conf Ser 950:042044. https://doi.org/10.1088/1742-6596/950/4/042044
Article
Google Scholar
Kadobayashi H, Hirai H, Ohfuji H, Ohtake M, Yamamoto Y (2018) In situ Raman and X-ray diffraction studies on the high pressure and temperature stability of methane hydrate up to 55 GPa. J Chem Phys 148:1503. https://doi.org/10.1063/1.5013302
Article
Google Scholar
Kadobayashi H, Hirai H, Ohfuji H, Ohtake M, Muraoka M, Yoshida S, Yamamoto Y (2020a) Structural evolution of methane hydrate under pressures up to 134 GPa. J Chem Phys 152:194308. https://doi.org/10.1063/5.0007511
Article
Google Scholar
Kadobayashi H, Hirai H, Suzuki K, Ohfuji H, Muraoka M, Yoshida S, Yamamoto Y (2020b) Sequential in situ Raman spectroscopy for observing dissociation behavior of filled-ice Ih of methane hydrate at high pressure. J Raman Spectrosc 51:2536–2542. https://doi.org/10.1002/jrs.6012
Article
Google Scholar
Kadobayashi H, Hirai H, Ohfuji H, Kawamura H, Muraoka M, Yoshida S, Yamamoto Y (2020c) Effect of ammonia on mMethane hydrate stability under high-pressure and high-temperature conditions. J Phys Chem A 124:10890–10896. https://doi.org/10.1021/acs.jpca.0c09652
Article
Google Scholar
Kadobayashi H, Ohnishi S, Ohfuji H, Yamamoto Y, Muraoka M, Yoshida S, Hirao N, Kawaguchi-Imada S, Hirai H (2021) Diamond formation from methane hydrate under the internal conditions of giant icy planets. Sci Rep 11:8165. https://doi.org/10.1038/s41598-021-87638-5
Article
Google Scholar
Kamb B (1965) Aclathrate crystalline form of silica. Science 148:232–234. https://doi.org/10.1038/ncomms1196
Article
Google Scholar
Kawaji H, Horie H, Yamanaka S, Ishikawa M (1995) Superconductivity in the silicon clathrate compound (Na, Ba) xSi46. Phys Rev Lett 74:1427–1429. https://doi.org/10.1103/PhysRevLett.74.1427
Article
Google Scholar
Kieffer SW, Lu X, Bethke CM, Spencer JR, Marshak S, Navrotsky A (2006) A clathrate reservoir hypothesis for Enceladus’ south polar plume. Science 314:1764. https://doi.org/10.1126/science.1133519
Article
Google Scholar
Kirchner MT, Boese R, Billups WE, Norman LR (2004) Gas hydrate single-crystal structure analyses. J Am Chem Soc 126:9407–9412. https://doi.org/10.1021/ja049247c
Article
Google Scholar
Kolesnikov A, Kutcherov VG, Goncharov AF (2009) Methane-derived hydrocarbons produced under upper-mantle conditions. Nat Geosci 2:566–570. https://doi.org/10.1038/ngeo591
Article
Google Scholar
Kraus D (2018) On Neptune, it’s raining diamonds. Am Sci 106:285. https://doi.org/10.1511/2018.106.5.285
Article
Google Scholar
Kraus D, Vorberger J, Pak A, Hartley E, Gamboa EJ, Gericke DO, Glenzer SH, Granados E, MacDonald MJ, MacKinnon AJ, McBride EE, Nam I, Neumayer P, Roth M, Saunders AM, Schuster AK, Sun P, van Driel T, Döppner T, Falcone RW (2017) Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat Astron 1:606–611. https://doi.org/10.1038/s41550-017-0219-9
Article
Google Scholar
Kuhs WF, Chazallon B, Radaelli PG, Pauer F (1997) Cage occupancy and compressibility of deuterated N2-clathrate hydrate by neutron diffraction. J Incl Phenom Mol Recognit Chem 29:65–77. https://doi.org/10.1023/A:1007960217691
Article
Google Scholar
Kuhs WF, Hansen TC, Falenty A (2018) Filling ices with helium and the formation of helium clathrate hydrate. J Phys Chem Lett 9:3194–3198. https://doi.org/10.1021/acs.jpclett.8b01423
Article
Google Scholar
Kurnosov AV, Manakov AY, Komarov VY, Voronin VI, Teplykh AE, Dyadin YA (2001) A new gas hydrate structure. Dokl Phys Chem 381:303. https://doi.org/10.1023/A:1013293514290
Article
Google Scholar
Kvenvolden KA (1998) Methane hydrate—a major reservoir of carbon in the shallow geosphere? Chem Geol 71:41–51. https://doi.org/10.1016/0009-2541(88)90104-0
Article
Google Scholar
Lee MS, Scandolo S (2011) Mixtures of planetary ices at extreme conditions. Nat Commun 2:185. https://doi.org/10.1038/ncomms1184
Article
Google Scholar
Lee H, Lee J, Kim DY, Park J, Seo Y, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA (2005) Tuning clathrate hydrates for hydrogen storage. Nature 434:743–746. https://doi.org/10.1038/nature03457
Article
Google Scholar
Lei J, Lim J, Kim M, Yoo CS (2021) Crystal structure of symmetric ice X in H2O–H2 and H2O–He under pressure. J Phys Chem Lett 12:4707–4712. https://doi.org/10.1021/acs.jpclett.1c00606
Article
Google Scholar
Li B, Ding Y, Kim DY, Wang L, Weng T-C, Yang W, Yu Z, Ji C, Wang J, Shu J, Chen JJ, Yang K, Xiao Y, Chow P, Shen G, Mao WL, Mao HK (2021) Probing the electronic band gap of solid hydrogen by inelastic X-ray scattering up to 90 GPa. Phys Rev Lett 126:036402. https://doi.org/10.1103/PhysRevLett.126.036402
Article
Google Scholar
Lin J, Gregoryanz E, Struzhkin V, Somayazulu M, Mao H, Hemley R (2005) Melting behavior of H2O at high pressures and temperatures. Geophys Res Lett 32:L11306. https://doi.org/10.1029/2005GL022499
Article
Google Scholar
Lobanov S, Chen P, Chen X, Zha C, Litasov K, Mao H, Goncharov A (2013) Carbon precipitation from heavy hydrocarbon fluid in deep planetary interiors. Nat Commun 4:2446. https://doi.org/10.1038/ncomms3446
Article
Google Scholar
Lokshin KA, Zhao Y, He D, Mao WL, Mao HK, Hemley RJ, Lobanov MV, Greenblatt M (2004) Structure and dynamics of hydrogen molecules in the novel clathrate hydrate by high pressure neutron diffraction. Phys Rev Lett 93:125503. https://doi.org/10.1103/PhysRevLett.93.125503
Article
Google Scholar
Londono D, Kuhs WF, Finney JL (1988) Enclathration of helium in ice II: the first helium hydrate. Nature 332:141–142. https://doi.org/10.1038/332141a0
Article
Google Scholar
Lorenzana HE, Silvera IF, Goettel KA (1989)Evidence for a structural phase transition in solid hydrogen at megabar pressures.Phys Rev Lett 63:2080. https://doi.org/10.1103/PhysRevLett.63.2080
Article
Google Scholar
Loveday JS, Nelmes RJ (2008) High-pressure gas hydrates. Phys Chem Chem Phys 10:937–950. https://doi.org/10.1039/B704740A
Article
Google Scholar
Loveday JS, Nelmes RJ, Guthrie M, Belmonte SA, Allan DR, Klug DD, Tse JS, Handa YP (2001a) Stable methane hydrate above 2 GPa and the source of Titan’s atmosphericmethane. Nature 410:661–663. https://doi.org/10.1038/35070513
Article
Google Scholar
Loveday JS, Nelmes RJ, Guthrie M, Klug DD, Tse JS (2001b) Transition from cage clathrate to filled ice: the structure of methane hydrate III. Phys Rev Lett 87:215501. https://doi.org/10.1103/PhysRevLett.87.215501
Article
Google Scholar
Lunine JI, Stevenson DJ (1987) Clathrate and ammonia hydrates at high-pressure: application to the origin of methane on Titan. Icarus 70:61–77. https://doi.org/10.1016/0019-1035(87)90075-3
Article
Google Scholar
Machida S, Hirai H, Kawamura T, Yamamoto Y, Yagi T (2006) A new high-pressure structure of methane hydrate surviving to 86 GPa and its implications for the interiors of giant planets. Phys Earth Planet Inter 155:170–176. https://doi.org/10.1016/j.pepi.2005.12.008
Article
Google Scholar
Machida S, Hirai H, Kawamura T, Yamamoto Y, Yagi T (2007) Raman spectra of methane hydrate up to 86 GPa. Phys Chem Miner 34:31–35. https://doi.org/10.1007/s00269-006-0126-6
Article
Google Scholar
Machida S, Hirai H, Kawamura T, Yamamoto Y, Yagi T (2008) Structural changes of filled ice Ic structure for hydrogen hydrate under high pressure. J Chem Phys 129:224505. https://doi.org/10.1063/1.3013440
Article
Google Scholar
Machida S, Hirai H, Kawamura T, Yamamoto Y, Yagi T (2010) Raman spectra for hydrogen hydrate under high pressure: intermolecular interactions in filled iceIc structure. J Phys Chem Solids 71:1324–1328. https://doi.org/10.1016/j.jpcs.2010.05.015
Article
Google Scholar
Magdău IB, Ackland GJ (2013) Identification of high-pressure phases III and IV in hydrogen: simulating Raman spectra using molecular dynamics. Phys Rev B 87:174110. https://doi.org/10.1103/PhysRevB.87.174110
Article
Google Scholar
Mak TCW, McMullan RK (1965) Polyhedral clathrate hydrates. X. Structure of the double hydrate of tetrahydrofuran and hydrogen sulfide. J Chem Phys 42:2732. https://doi.org/10.1063/1.1703229
Article
Google Scholar
Manakov AY, Dyadin YA, Ogienko AG, Kurnosov AV, Aladko EY, Larionov EG, Zhurko FV, Voronin VI, Berger IF, Goryainov SV, Lihacheva AY, Ancharov AI (2009) Phase diagram and high-pressure boundary of hydrate formation in the carbon dioxide-water system. J Phys Chem B 113:7257–7262. https://doi.org/10.1021/jp9008493
Article
Google Scholar
Mao H-K, Hemley RJ (1994) Ultrahigh-pressure transitions in solid hydrogen. Rev Mod Phys 66:671. https://doi.org/10.1103/RevModPhys.66.671
Article
Google Scholar
Mao WL, Mao H-K (2004) Hydrogen storage in molecular compounds. PNAS 101:708–710. https://doi.org/10.1073/pnas.0307449100
Article
Google Scholar
Mao WL, Mao HK, Goncharov AF, Struzhkin VV, Guo Q, Hu J, Shu J, Hemley RJ, Somayazulu M, Zhao Y (2002) Hydrogen clusters in clathrate hydrate. Science 297:2247–2249. https://doi.org/10.1126/science.1075394
Article
Google Scholar
Mao W, Koh CA, Sloan ED (2007) Clathrate hydrates under pressure. Phys Today 60:42. https://doi.org/10.1063/1.2800096
Article
Google Scholar
Marboeuf U, Mousis O, Petit JM, Schmitt B (2010) Clathrate hydrates formation in short-period comets. Astrophys J 708:812–816. https://doi.org/10.1088/0004-637X/708/1/812
Article
Google Scholar
Maynard-Casely HE, Lundegaard LF, Loa I, McMahon MI, Gregoryanz E, Nelmes RJ, Loveday JS (2014) The crystal structure of methane B at 8 GPa—an α-Mn arrangement of molecules. J Chem Phys 141:234313. https://doi.org/10.1063/1.4903813
Article
Google Scholar
Mazin II, Hemley RJ, Goncharov AF, Hanfland M, Mao HK (1997) Quantum and classical orientational ordering in solid hydrogen. Phys Rev Lett 78:1066. https://doi.org/10.1103/PhysRevLett.78.1066
Article
Google Scholar
McMullan RK, Jeffrey GA (1965) Polyhedral clathrate hydrates. IX. Structure of ethylene oxide hydrate. J Chem Phys 42:2725. https://doi.org/10.1063/1.1703228
Article
Google Scholar
Morales MA, Pierleoni C, Schwegler E, Ceperley DM (2010) Evidence for a first order liquid–liquid transition in high pressure hydrogen from ab-initio simulations. PNAS 107(29):12799–12803. https://doi.org/10.1073/pnas.1007309107
Article
Google Scholar
Nakagawa T, Kihara K, Harada K (2001) The crystal structure of low melanophlogite. Am Miner 86:1506–1512. https://doi.org/10.2138/am-2001-11-1219
Article
Google Scholar
Nakahata I, Matsui N, Akahama Y, Kawamura H (1999) Structural studies of solid methane at high pressures. Chem Phys Lett 302(3–4):359–362
Article
Google Scholar
Nakano S, Moritoki M, Ohgaki K (1998) High-pressure phase equilibrium and Raman microprobe spectroscopic studies on the CO2 hydrate system. J Chem Eng Data 43:807–810. https://doi.org/10.1021/je9800555
Article
Google Scholar
Naumova AS, Lepeshkin SV, Bushlanov PV, Oganov AR (2021) Unusual chemistry of the C–H–N–O system under pressure and implications for giant planets. J Phys Chem A 125:3936–3942. https://doi.org/10.1021/acs.jpca.1c00591
Article
Google Scholar
Nettelmann N, Helled R, Fortney JJ, Redmer R (2013) New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data. Planet Space Sci 77:143–151. https://doi.org/10.1016/j.pss.2012.06.019
Article
Google Scholar
Nettelmann N, Wang K, Fortney JJ, Hamel S, Yellamilli S, Bethkenhagen M, Redmer R (2016) Uranus evolution models with simple thermal boundary layers. Icarus 275:107–116. https://doi.org/10.1016/j.icarus.2016.04.008
Article
Google Scholar
Nolas GS, Slack GA, Morelli DT, Tritt TM, Ehrlich AC (1996) The effect of rare-earth filling on the lattice thermal conductivity of skutterudites. J Appl Phys 79:4002–4008. https://doi.org/10.1063/1.361828
Article
Google Scholar
Ohgaki K, Akano K, Sangawa H, Matsubara T, Nakano S (1996) Methane exploitation by carbon dioxide from gas hydrates-phase equilibria for CO2–CH4 mixed hydrate system. J Chem Eng 29:478–483. https://doi.org/10.1252/jcej.29.478
Article
Google Scholar
Ohta K, Ichimaru K, Einaga M, Kawaguchi S, Shimizu K, Matsuoka T, Hirao N, Ohishi Y (2015) Phase boundary of hot dense fluid hydrogen. Sci Rep 5:16560. https://doi.org/10.1038/srep16560
Article
Google Scholar
Okuchi T, Takigawa M, Shu J, Mao H, Hemley R, Yagi T (2007) Fast molecular transport in hydrogen hydrates by high-pressure diamond anvil cell NMR. Pys Rev B 75:144104. https://doi.org/10.1103/PhysRevB.75.144104
Article
Google Scholar
Pellenbarg RE, Max MD, Stephen M, Clifford SM (2003) Methane and carbon dioxide hydrates on Mars: potential origins, distribution, detection, and implications for future in situ resource utilization. J Geophys Res 108:8042. https://doi.org/10.1029/2002JE001901
Article
Google Scholar
Petrenko VF, Whitworth RW (1999) Physics of ice. Oxford University Press, New York, pp 4, 6, 252 ISBN:0-19-851895-1
Pratt LR, Chandler D (1977) Theory of the hydrophobic effect. J Chem Phys 67:3683. https://doi.org/10.1063/1.435308
Article
Google Scholar
Pruzan P (1994) Pressure effects on the hydrogen bond in ice up to 80 GPa. J Mol Struct 322:279–286. https://doi.org/10.1016/0022-2860(94)87045-4
Article
Google Scholar
Qian GR, Lyakhov AO, Zhu Q, Oganov AR, Dong X (2014) Novel hydrogen hydrate structures under pressure. Sci Rep 4:5606. https://doi.org/10.1038/srep05606
Article
Google Scholar
Redmer R, Mattsson TR, Nettelmann N, French M (2011) The phase diagram of water and the magnetic fields of Uranus and Neptune. Icarus 211:798–803. https://doi.org/10.1016/j.icarus.2010.08.008
Article
Google Scholar
Ripmeester JA, Ratcliffe CI (1999) On the contributions of NMR spectroscopy to clathrate science. J Struct Chem 40:654–662. https://doi.org/10.1063/1.3124187
Article
Google Scholar
Ripmeester JA, Garg SK, Davidson DW (1980) NMR behavior of the clathrate hydrate of tetrahydrofuran. III. Effect of oxygen. J Magn Reson 38:537–544. https://doi.org/10.1016/0022-2364(80)90333-9
Article
Google Scholar
Ripmeester JA, Tse JS, Ratcliffe CI, Powell BM (1987) A new clathrate hydrate structure. Nature 325:135–136. https://doi.org/10.1038/325135a0
Article
Google Scholar
Ripmeester JA, Ratcliffe CI, Klug DD, Tse JS (1994) Molecular perspectives on structure and dynamics in clathrate hydrates. Annuals of the New York Academy of Sciences, 715:161–176. In: Sloan ED, Happel J, Hnatow MA (eds) Proc. First International Conference on Natural Gas Hydrates. https://doi.org/10.1111/j.1749-6632.1994.tb38832.x
Ross M (1981) The ice layer in Uranus and Neptune—diamonds in the sky? Nature 292:435–436. https://doi.org/10.1038/292435a0
Article
Google Scholar
Saito S (1994) Materials with fullerene-related structures. Rev High Press Sci Technol 3–2:150–155 (in Japanese with English abstract)
Article
Google Scholar
Salzmann CG, Radaelli PG, Hallbrucker A, Mayer E, Finney JL (2009a) The preparation and structures of hydrogen ordered phases of ice. Science 311:1761–1758. https://doi.org/10.1126/science.1123896
Article
Google Scholar
Salzmann CG, Radaelli PG, Mayer E, Finney JL (2009b) Ice XV. A new thermodynamically stable phase of ice. Phys Rev Lett 103:105701. https://doi.org/10.1103/PhysRevLett.103.105701
Article
Google Scholar
Sandford S, Allamandola L, Geballe T (1993) Spectroscopic detection of molecular hydrogen frozen in interstellar ices. Science 262:400. https://doi.org/10.1126/science.11542874
Article
Google Scholar
Sakai H, Gamo T, Kim ES, Tsutsumi M, Tanaka T, Ishibashi J, Wakita H, Yamano M, Oomori T (1990)Venting of carbon dioxide-rich fluid and hydrate formation in mid-Okinawa trough backarc basin.Science 248(4959):1093–1096. https://doi.org/10.1126/science.248.4959.1093
Article
Google Scholar
Sasaki S, Kito Y, Kume T, Shimizu H (2007) High-pressure Raman study on the guest vibration in the host cage of methane hydrate structure I. Chem Phys Lett 444:91. https://doi.org/10.1016/j.cplett.2007.07.018
Article
Google Scholar
Schaack S, Ranieri U, Depondt P, Gaal R, Kuhs WF, Falenty A, Gillet P, Finocchi F, Bove LE (2018) Orientational ordering, locking-in, and distortion of CH4 molecules in methane hydrate III under high pressure. J Phys Chem C 122:11159–11166. https://doi.org/10.1021/acs.jpcc.8b02783
Article
Google Scholar
Schaack S, Ranieri U, Depondt P, Gaal R, Kuhs WF, Gillet P, Finocchi F, Bove LE (2019) Observation of methane filled hexagonal ice stable up to 150 GPa. PNAS 116:16204–16209. https://doi.org/10.1073/pnas.1904911116
Article
Google Scholar
Schaack S, Depondt P, Moog M, Pietrucci F, Finocchi F (2020) How methane hydrate recovers at very high pressure the hexagonal ice structure. J Chem Phys 152:024504. https://doi.org/10.1063/1.5129617
Article
Google Scholar
Schicks JM, Naumann R, Erzinger J, Hester KC, Koh CA, Sloan ED (2006) Phase transitions in mixed gas hydrates: experimental observations versus calculated data. J Phys Chem B 110:11468–11474. https://doi.org/10.1021/jp0612580
Article
Google Scholar
Senadheera L, Conradi MS (2007) Rotation and diffusion of H2 in hydrogen-ice clathrate by 1H NMR. J Phys Chem B 111:12097–12102. https://doi.org/10.1021/jp074517+
Article
Google Scholar
Shimizu H, Kumazaki T, Kume T, Sasaki S (2002) In situ observations of high-pressure phase transformations in a synthetic methane hydrate. J Phys Chem B 106:30–33. https://doi.org/10.1021/jp013010a
Article
Google Scholar
Silvera IF, Dias R (2022) Phases of the hydrogen isotopes under pressure: metallic hydrogen. Adv Phys X 6:1961607. https://doi.org/10.1080/23746149.2021.1961607
Article
Google Scholar
Sloan ED (2007) Physical/chemical properties of gas hydrates and application to world margin stability and climatic change. Geol Soc Lond Spec Publ 137:31–50. https://doi.org/10.1144/GSL.SP.1998.137.01.03
Article
Google Scholar
Sloan ED, Koh CA (2008) Clathrate hydrates of natural gases, 3rd edn. Taylor and Francis, London, pp 45, 257, 320, and 537. ISBN-13: 978-0849390784
Strobel TA, Sloan ED, Koh CA (2009) Raman spectroscopic studies of hydrogen clathrate hydrates. J Chem Phys 130:014506. https://doi.org/10.1063/1.3046678
Article
Google Scholar
Strobel TA, Somayazulu M, Hemley RJ (2011) Phase behavior of H2 + H2O at high pressures and low temperatures. J Phys Chem C 115:4898–4903. https://doi.org/10.1063/1.3046678
Article
Google Scholar
Strobel TA, Somayazulu M, Sinogeikin SV, Dera P, Hemley RJ (2016) Hydrogen-stuffed, quartz-like water ice. J Am Chem Soc 138:13786–13789. https://doi.org/10.1021/jacs.6b06986
Article
Google Scholar
Struzhkin VV, Militzer B, Mao WL, Mao H-K, Hemley R (2007) Hydrogen storage in molecular clathrates. Chem Rev 107:4133–4151. https://doi.org/10.1021/cr050183d
Article
Google Scholar
Sugimura E, Iitaka T, Hirose K, Kawamura K, Sata N, Ohishi Y (2008) Compressionof H2Oice to 126 GPa and implications for hydrogen-bondsymmetrization: synchrotron x-ray diffraction measurements anddensity-functional calculations. Phys Rev B 77:2103. https://doi.org/10.1103/PhysRevB.77.214103
Article
Google Scholar
Takeya S, Udachin KA, Moudrakovski IL, Susilo R, Ripmeester JA (2010) Direct space methods for powder X-ray diffraction for guest-host materials: applications to cage occupancies and guest distributions in clathrate hydrates. J Am Chem Soc 132:524–531. https://doi.org/10.1021/ja905426e
Article
Google Scholar
Tanaka T, Hirai H, Matsuoka T, Ohishi Y, Yagi T, Ohtake M, Yamamoto Y, Nakano S, Irifune T (2013) Phase changes of filled ice Ih methane hydrate under low temperature and high pressure. J Chem Phys 139:104701. https://doi.org/10.1063/1.4820358
Article
Google Scholar
Tobie G, Grasset O, Lunine JI, Mocquet A, Sotin C (2005) Titan’s internal structure inferred from a coupled thermal-orbital model. Icarus 175:496–502. https://doi.org/10.1016/j.icarus.2004.12.007
Article
Google Scholar
Toledano P, Katzke H, Goncharov AF, Hemley RJ (2009) Symmetry breaking in dense hydrogen: mechanisms for the transitions to phase II and phase III. Phys Rev Lett 103:105301-1–105304. https://doi.org/10.1103/PhysRevLett.103.105301
Article
Google Scholar
Tulk C, Klug D, Santos A, Karotis G, Guthrie M, Molaison J, Pradhan N (2012) Cage occupancies in the high pressure structure H methane hydrate: a neutron diffraction study. J Chem Phys 136:054502. https://doi.org/10.1063/1.3679875
Article
Google Scholar
Tulk CA, Machida S, Klug DD, Lu H, Guthrie M, Molaison JJ (2014) The structure of CO2 hydrate between 0.7 and 1.0 GPa. J Chem Phys 141:1503. https://doi.org/10.1063/1.4899265
Article
Google Scholar
Udachin KA, Ratcliffe CI, Enright GD, Ripmeester JA (1997) Structure H hydrate: a single crystal diffraction study of 2,2-dimethylpentane·5(Xe, H2S)·34H2O. Supramol Chem 8:173–176. https://doi.org/10.1080/10610279708034933
Article
Google Scholar
Udachin KA, Ratcliffe CI, Ripmeester JA (2002) Single crystal diffraction studies of structure I, II and H hydrates: structure, cage occupancy and composition. J Supramol Chem 2:405–408. https://doi.org/10.1016/S1472-7862(03)00049-2
Article
Google Scholar
Umemoto S, Yoshii T, Akahama Y, Kawamura H (2002) X-ray diffraction measurements for solid methane at high pressures.J Phys Condens Matter 14(44):10675–10678. https://doi.org/10.1088/0953-8984/14/44/355
Article
Google Scholar
Vos WL, Finger LW, Hemley RJ, Mao HK (1993) Novel H2–H2O clathrates at high pressures. Phys Rev Lett 71:3150. https://doi.org/10.1103/PhysRevLett.71.3150
Article
Google Scholar
Vos WL, Finger LW, Hemley RJ, Mao HK (1996) Pressure dependence of hydrogen bonding in a novel H2O–H2 clathrate. Chem Phys Lett 257:524. https://doi.org/10.1016/0009-2614(96)00583-0
Article
Google Scholar
Wang Y, Glazyrin K, Roizen V, Oganov AR, Chernyshov I, Zhang X, Greenberg E, Prakapenka VB, Yang X, Jiang SQ, Goncharov AF (2020) Novel hydrogen clathrate hydrate. Phys Rev Lett 125:255702. https://doi.org/10.1103/PhysRevLett.125.255702
Article
Google Scholar
Wentorf RH (1965) The behavior of some carbonaceous materials at very high pressures and high temperatures. J Phys Chem 69:3063–3069. https://doi.org/10.1021/j100893a041
Article
Google Scholar
Wigner E, Huntington HB (1935) On the possibility of a metallic modification of hydrogen. J Chem Phys 3:764. https://doi.org/10.1063/1.1749590
Article
Google Scholar
Yagi T, Iida E, Hirai H, NMiyajima N, Kikegawa T, Bunno M, (2007) High-pressure behavior of a SiO2 clathrate observed by using various pressure media. Phys Rev B 75:174115. https://doi.org/10.1103/PhysRevB.75.174115
Article
Google Scholar
Zerr A, Serghiou G, Boehler R, Ross M (2006) Decomposition of alkanes at high pressures and temperatures. High Press Res 26:23–32. https://doi.org/10.1080/08957950600608931
Article
Google Scholar
Zha CS, Liu Z, Hemley RJ (2012) Synchrotron infrared measurements of dense hydrogen to 360 GPa. Phys Rev Lett 108:146402. https://doi.org/10.1103/PhysRevLett.108.146402
Article
Google Scholar
Zhang J, Kuon J-L, Iitaka T (2012) First principles molecular dynamics study of filled ice hydrogen hydrate. J Chem Phys 137:084505. https://doi.org/10.1063/1.4746776
Article
Google Scholar
Zhang X, Wang Y, Bykov M, Bykova E, Chariton S, Prakapenka VB, Glazyrin K, Goncharov AF (2021) Immiscibility in N2–H2O solids up to 140 GPa. J Chem Phys 154:2505. https://doi.org/10.1063/5.0052315
Article
Google Scholar
Zhao Z, Shen B, Zhu JM, Lang X, Wu G, Tan D, Pei H, Huang T, Ning M, Ma H (2021) Active methanogenesis during the melting of Marinoan snowball Earth. Nat Commun 12:955. https://doi.org/10.1038/s41467-021-21114-6
Article
Google Scholar