Skip to main content

Atmospheric resuspension of insoluble radioactive cesium-bearing particles found in the difficult-to-return area in Fukushima

Abstract

The deposition of insoluble radiocesium-bearing microparticles (CsMPs), which were released from the Fukushima Daiichi Nuclear Power Plant (F1NPP) accident in March 2011, has resulted in the widespread contamination of eastern Japan. Obviously, these deposited insoluble CsMPs may become the secondary contamination sources by atmospheric migration or other environmental transferring process; however, the understanding of the transport mechanism remains non-elucidation, and the relevant evidence has not been directly provided. This study, for the first time, provides the direct evidence for the resuspension of these insoluble CsMPs to the atmosphere from (1) proximity of 137Cs radioactivity and resemblance of the morphology and the elemental compositions of CsMPs in the samples of soil and aerosol derived from the same sampling site, (2) the special characteristics of the resuspended CsMPs of which the ratios of Na/Si, K/Si and/or Cs/Si were smaller than those from the initially released CsMPs collected at either long distance or near F1NPP, which can be ascribed to the slowly natural corrosion of CsMPs by the loss of the small amount of soluble contents in CsMPs, and (3) high CsMPs concentration of 10 granules/g in the surface soil of our sampling site and high resuspension frequency of CsMPs in spring when predominant suspended particles were soil dust. Specifically, 15 single CsMPs were successfully isolated from the aerosol filters collected by unmanned high-volume air samplers at a severely polluted area in Fukushima Prefecture, about 25 km away from F1NPP, from January 2015 to September 2019. The mean diameter of these CsMPs was 1.8 ± 0.5 μm, and the average 137Cs radioactivity was 0.35 ± 0.23 Bq/granule. The contribution rate of the resuspended CsMPs to the atmospheric radiocesium was estimated from the ratio of 137Cs radioactivity of a single CsMP to that of the aerosol filter to be of 23.9 ± 15.3%. There has been no considerable decreasing trend in the annual CsMP resuspension frequency.


Highlights

  1. 1.

    This study, for the first time, provides the direct evidence of natural resuspension contribution of the insoluble radiocesium-bearing microparticles (CsMPs) to the atmospheric radiocesium.

  2. 2.

    This study introduces the evaluating method of resuspension contribution rate of CsMPs by the ratio of the radioactivity of 137Cs in a single CsMP to that of aerosol filter.

  3. 3.

    This work reveals that there is no clear downward trend in the annual frequency of CsMP resuspension and a slightly higher frequency in the springtime is attributed to high wind gust speed and low moisture of topsoil, though the distribution of CsMP resuspension is observed in each season.

Introduction

Accident

The Fukushima Daiichi Nuclear Power Plant (F1NPP) accident was triggered by the 9.0-magnitude Tohoku-Oki earthquake and the subsequent tsunami on March 11, 2011 (Committee and on the Accident at the Fukushima Nuclear Power Station of Tokyo Electric Power Company 2011; Fuchigami and Kasahara 2011), which resulted in the complete loss of all power and over-heat and over-pressurization of Units 1–3 (there are 6 Units in F1NPP and Units 4–6 had been “shut down” for regular maintenance prior to the earthquake (Tokyo Electric Power Company Holdings 2011)). Over the subsequent several days, despite the attempt to inject cooling water and/or perform venting operations for Units 1–3 (starting at 10:40 JST on March 12 (Fuchigami and Kasahara 2011), 10:15 JST on March 13 (Tokyo Electric Power Company Holdings 2011) and 08:41 JST on March 12 (Hatamura et al. 2014), respectively), hydrogen explosions could not be avoided at Units 1 and 3 (at 15:36 JST on March 12 and 11:01 JST on March 14 (Committee and on the Accident at the Fukushima Nuclear Power Station of Tokyo Electric Power Company 2011)). Thus, a large quantity of radioactive materials was released into the atmosphere (Igarashi et al. 2015), the land (Yoshida and Kanda 2012; Yoshida and Takahashi 2012), and the Pacific Ocean (Hirose 2016). Specifically, the amount of total atmospheric release of 137Cs was up to 15–21 PBq (1 PBq = 1015 Bq), and 3–6 PBq was directly deposited onto the land (Aoyama et al. 2020). The rest of the 137Cs was distributed over the North Pacific, which was quantified to be 15–18 PBq (Aoyama et al. 2020). Moreover, Steinhauser et al. (Steinhauser et al. 2014) reported that the highly contaminated area, with 137Cs levels exceeding 185 kBq m−2, spread approximately 1700 km2 in Fukushima Prefecture.

Radiocesium-bearing microparticles

Water-insoluble radiocesium-bearing microparticles (hereafter CsMPs) (Adachi et al. 2013; Igarashi et al. 2019a) were released and deposited in the environment by the F1NNP accident. In recent several years, research on the morphology, elemental compositions, classifications, and emission sources of CsMPs has been comprehensively reported (Adachi et al. 2013; Igarashi et al. 2019a; Satou et al. 2018; Snow et al. 2016). Specifically, Adachi et al. (2013) first reported that spherical CsMPs mainly contained O, Fe, and Zn as well as other trace elements. These CsMPs were referred to as the released and deposited CsMPs in early stage of the F1NPP accident (Ishizuka et al. 2017). Based on the difference of size and structure as well as the difference in the isotopic ratio of 134Cs/137Cs, the CsMPs have been classified into type A (possibly derived from Unit 2 or 3 with a size of less than 10 μm and 134Cs/137Cs ≈ 1.0) and type B (perhaps released from Unit 1 with a size of more than 100 μm and 134Cs/137Cs ≈ 0.9) (Igarashi et al. 2019a; Satou et al. 2018). There are also reports suggesting that type A CsMPs were derived from Unit 2 (Hidaka 2019) or Unit 1 (Abe et al. 2014). Moreover, the glassy state of CsMPs implied water insolubility [discussed in detail in references (Adachi et al. 2013; Niimura et al. 2015)) and comparatively persistent toxicity and hazards in the terrestrial environment (Suzuki et al. 2020) (137Cs has a half-life of 30.2 years (Press 2015)]. The high-dose internal radiation exposure by the inhalation of radioactive aerosols and the consumption of food associated with radioactive material is the most concerning health hazard (Yamamoto et al. 2019; Shannon 2012; Nakamura 2020). In order to assess and reduce the risk of radiocesium inhalation (Higaki et al. 2020) and the intake of food (Miura et al. 2021; Nihei et al. 2018) contaminated by CsMPs, it is necessary to understand its distribution and transport in the secondary processes in the environment.

Resuspension of radiocesium

Hirose (2013) found that the deposition of the early-stage released radiocesium was significant from March to June 2011 and that an obvious decrease in radiocesium deposition rate occurred after July 2011. Hirose (2020) concluded that most of the F1NPP-derived 137Cs deposited on the ground surface remained in the surface soil layer as a potential secondary source of atmospheric 137Cs, and Tanaka et al. (2012) reported that more than 90% of the radiocesium was fixed within the top 5 cm of the profile. Although the F1NPP accident has passed for about 10 years, most of the 137Cs is thought to remain there (Matsuda et al. 2015), and thus the decontamination by removal of topsoil was conducted in Fukushima Prefecture (Mishra et al. 2015; Evrard et al. 2019). Resuspension of radiocesium refers to the secondary migration of the deposited radiocesium into the atmosphere from surfaces and terrestrial ecosystems by winds (Ochiai et al. 2016), biomass burning (Igarashi et al. 2015), and other different anthropogenic disturbances (Yamaguchi et al. 2012; Akimoto 2015), which can be found in the reports about the F1NPP accident (Ochiai et al. 2016; Yamaguchi et al. 2012; Akimoto 2015; Kinase et al. 2018) and the Chernobyl Nuclear Power Plant accident (Wagenpfeil and Tschiersch 2001; Garger et al. 1996; Yoschenko et al. 2006). Regarding the issue, Igarashi et al. (2015) emphasized, through their observation and data analysis of radiocesium in air over Tsukuba and Ibaraki, that “elucidating the secondary emission processes of the F1NPP radionuclides remains an imminent scientific challenge, especially for heavily polluted areas. Secondary sources can include soil dust suspension from polluted earth surfaces, emissions from polluted vegetation and forests, and volatilization and release from combustion of polluted garbage and open field burning. Although the main emission sources are not yet well understood, this elucidation must be performed as soon as possible.” Significantly, this process is an uncontrollable route that can cause widespread secondary contamination (Nihei et al. 2018) in previous noncontaminated or decontaminated areas. Although the radioactivity level of resuspension (Igarashi et al. 2015; Kinase et al. 2018) was a few orders of magnitude lower than that of the early-stage released, it would be a matter of public concern, especially for the evacuated people who lived in difficult-to-return areas.

Hirose (2013) suggested that the second increase in atmospheric radiocesium in the spring 2012 can be attributed to the resuspension process. Moreover, seasonal variations of radiocesium in aerosol samples were observed in severely contaminated areas of Fukushima Prefecture (Ishizuka et al. 2017; Kinase et al. 2018; Kita et al. 2018; Igarashi et al. 2019b), being explained as the result of radiocesium resuspension because the observed seasonal dependence of the atmospheric radiocesium concentration cannot be interpreted from direct or delayed primary release from F1NPP accident site (Igarashi et al. 2019b). Specifically, Ishizuka et al. (2017) measured and modeled the particle size distribution of suspended soil dust carrying radiocesium considering different soil textures. Kinase et al. (2018) and Igarashi et al. (Igarashi et al. 2019b) discussed possible resuspension-hosting sources and showed that soil particles (Kaneyasu et al. 2012) can be significant in the springtime and that bioaerosols such as pollens (Nakagawa et al. 2018), spores (Igarashi et al. 2019b), and microorganisms (Kinase et al. 2018) can be a major host particle in summer and autumn. Kajino et al. (2016) modeled the resuspension of 137Cs from bare soil and forest ecosystems and suggested a similar seasonal change of the resuspension host particle to above-mentioned studies, namely, the high radiocesium concentration can be observed in warm seasons and the low can be obtained in cold seasons. They also estimated respective resuspension rates of 1–2 × 10−6 day−1 (Kajino et al. 2016). These results were helpful to estimate the inhalation dose (EPA 1977; Garger and Talerko 2020). However, research on the resuspension of radiocesium has still been insufficient, and both observational and theoretical model studies are necessary for a quantitative understanding. Notably, these studies did not discuss the resuspension of the CsMPs.

Higaki et al. (2014) reported that the main sources of radiocesium adhered to non-woven fabric face masks, which were worn both outdoors and indoors by 68 residents living in eastern Japan in the spring of 2012, were fugitive dust and CsMPs (Higaki et al. 2020) (the masks were worn by the Fukushima residents in the spring of 2013). The CsMPs were also isolated from Japanese spinach (Nihei et al. 2018). Although these results suggested the possibilities of the resuspension of CsMPs from the ground to the atmosphere, there has been no evidence to indicate that it occurred naturally (without anthropogenic interferences) and no discussion about the special features of the collected CsMPs to demonstrate whether they are derived from resuspension or other reasons. This study, for the first time, provides the direct evidence of resuspension of the CsMPs in the monitoring duration at our sampling site, and explains the transport variables and mechanism of the CsMPs. Therefore, this study aims at (1) detection and isolation of highly radioactive granules from aerosol and soil samples collected at a severely polluted area to identify them as CsMPs by analyses of their morphology and elemental compositions, (2) describing the possibility of the natural resuspension of CsMPs to the atmosphere and (3) evaluating the frequency of CsMP resuspension and its contribution ratio to the whole atmospheric concentration of radiocesium.

Experiments and methods

Sample collection

Sampling of aerosols

Aerosol samples were collected at a site (37.6° N, 140.8° E, and altitude 438 m) located in a highly contaminated zone that was difficult for residents to return to (approximately 25 km northwest from the F1NPP), as shown in Fig. 1. Details of the sampling site are described elsewhere (Ishizuka et al. 2017; Kinase et al. 2018; Igarashi et al. 2019b; Kajino et al. 2016). Aerosol samples were collected on quartz-fiber filters (2500QAT–UP, Pall Corp., NY, USA or QR100, Advantech, Tokyo, Japan) with high-volume samplers (HV samplers; HV–1000R/F, Sibata Scientific Technology, Ltd., Saitama, Japan and 120SL, Kimoto Electric Co. Ltd., Tennoji, Osaka, Japan) at a sampling air flow rate of 0.7 m3 min−1 from January 2015 to September 2019. We used the aerosol samples collected in 2015, 2016, 2018, and 2019 because the aerosol sampling was interrupted for several months in 2017. Additionally, aerosol samples with different aerodynamic diameters were also collected separately on slotted quartz-fiber filters using an HV sampler with a seven-stage cascade impactor (TE–230, Tisch Environmental Inc., OH, USA) with slotted quartz-fiber filters. The aerodynamic size-distribution ranges with a collection efficiency exceeding 50% were sampled as follows: Q1 (> 10.3 μm), Q2 (4.2–10.3 μm), Q3 (2.1–4.2 μm), Q4 (1.3–2.1 μm), Q5 (0.69–1.3 μm), Q6 (0.39–0.69 μm), and Q7 (< 0.39 μm, working as a backup filter) at a sampling air flow rate of 0.556 m3/min. Note that the aerosol samples were successively taken by 10 timer-controlled HV samplers without anthropogenic interference, except for replacing the sampling filters over the course of a few hours every 2–4 weeks. In all sampling processes, aerosol filter samples were collected at a height of 1.2 m above the ground. The sampling periods ranged from 3 days to 4 weeks.

Fig. 1
figure 1

Map of the sampling site (37.6° N, 140.8° E) in this study plotted over the surface contamination map for 137Cs obtained by the Japanese government (Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) 2011) as of April 29, 2011 (Onda et al. 2015)

Collection of soil samples

About 200 g of surface soil samples was collected on June 25, 2016, at the same site as the aerosol-sampling location with a 10 × 10 cm2 area and 1.5 cm depth and were transported to the laboratory and stored at ambient temperature. They were homogenized in a plastic bag (Onda et al. 2015) for measurement of their radioactivity and stored for further analysis. For extracting the CsMPs, approximately 2.5 g soil sample was randomly retrieved (the radioactivity was 173.6 ± 2.00 Bq/g and 166.2 ± 0.40 Bq/g for 134Cs and 137Cs, respectively). The radioactivity data in this study were all corrected back to March 11, 2011, 14:46 JST.

Detection and isolation of highly radioactive granules

An imaging plate (IP) system (CR × 25P portable computed radiography, GE Measurement & Control, Massachusetts, USA) and a micromanipulator (Axis Pro; Micro Support Corp., Shizuoka, Japan) were used to detect and isolate CsMPs from the aerosol filters. The isolation procedure of CsMPs from the aerosol filters and from the soil samples was conducted as the similar dry process (without use of water) of Adachi et al. (2013) and Satou et al. (2016), respectively.

Measurement of gamma-ray spectrometry and SEM observation

The gamma-ray peak intensities at 605 and 662 keV were used to identify and determine the radioactivities of 134Cs and 137Cs, respectively (Satou et al. 2016). Identification of the CsMPs was based on the morphology and elemental compositions of the single highly radioactive particle. The observation of the morphology and elemental compositions was conducted with an SEM (SU3500, Hitachi High-Technologies Co., Tokyo, Japan) equipped with energy-dispersive X-ray spectroscopy (EDS: X-max 50 mm, Horiba Ltd., Kyoto, Japan) for aerosol CsMPs and a field emission SEM (JSM-7800F, JEOL Ltd. Tokyo, Japan) for visualizing soil CsMPs and water-immersed aerosol CsMPs.

Results and discussion

Identification of resuspension of CsMPs

Aerosol CsMPs (A-CsMPs)

Twenty highly radioactive granules were detected from the aerosol samples by using IP imaging, 15 of which have been successfully isolated, and the rest of which was lost during the isolation procedures. Their SEM observation images are shown in Fig. 2, and the detailed information regarding radioactivity and elemental compositions is given in Table 1 and Additional file 1: Table S1. These results indicate that all isolated granules have characteristics corresponding to those reported for type A CsMPs (Igarashi et al. 2019a; Satou et al. 2018) as described below.

Fig. 2
figure 2

Scanning electron microscopic images of 15 single A-CsMPs isolated from the aerosol filter samples

Table 1 Information of 15 single isolated insoluble Cs-bearing particles (The radioactivity is corrected back to 11/03/2011 14:46, JST)

All CsMPs were of an almost spherical or distorted spherical shape, and their diameter distribution ranged from 1.2 to 3.0 μm with the same mean and median values of 1.8 μm. The 137Cs radioactivity of the single CsMP varied from 0.13 to 0.87 Bq/granule, and the mean and median values of 137Cs radioactivity were 0.35 Bq/granule and 0.36 Bq/granule, respectively. The 134Cs radioactivity was less than the detection limit in most cases due to its shorter physical half-life of about 2 years than that of 137Cs. The elemental mapping images (a) and EDS spectra (b) of #11-HNVF-300601-Q are given in Fig. 3. It is obvious that Cs in the particle showed multiple peaks (Cs Lα and Cs Lβ at 4.42 and 4.55 keV), and O, Si, Na, S, Cl, K, Ca, Ti, Fe, and Zn also coexisted within the particle according to the elemental mapping images of major elements. Moreover, based on EDS analysis of 15 CsMPs, the main elemental components included Si (average atomic mass fraction 36.0 ± 5.3 wt.%), O (50.1 ± 3.7 wt.%), Cs (1.0 ± 0.2 wt.%), Zn (2.7 ± 1.0 wt.%), Sn (0.2 ± 0.2 wt.%), S (0.1 ± 0.1 wt.%), Na (3.2 ± 3.3 wt.%), K (2.5 ± 2.2 wt.%), Fe (1.0 ± 0.3 wt.%), Cl (0.2 ± 0.1 wt.%), and some other trace elements in some individual particles, such as Ba, Al, P, Ca, and Ti. The elemental composition of each CsMPs is given in Additional file 1: Table S1.

Fig. 3
figure 3

Elemental mapping images (a) and EDS spectra (b) of #11-NHVF-300601-Q. The Cs in the particle shows multiple peaks and O, Si, Na, S, Cl, K, Ca, Ti, Fe, and Zn are coexistent within the particle according to the elemental mapping of main elements within the area

The water insolubility of radiocesium in CsMPs has been reported by Adachi et al. (Adachi et al. 2013), and other reports also support this fact [CsMPs can be isolated from the wet-isolation method (Imoto et al. 2017; Kurihara et al. 2020a) and can be detected in river water (Miura et al. 2018)]. The water insolubility of the CsMPs was also checked by immersion of the isolated A-CsMPs into water for 24 h (#11-NHVF-300601-Q) and 48 h (#12-NHVF-300906-Q), which is shown in Additional file 1: Fig. S1. There was no obvious detectable change in their radiocesium activity and seeable change in morphology before and after the immersion. Therefore, we conclude that CsMPs exhibit very low water-solubility in short term. Regarding the long-term solubility, there have been a few research (Miura et al. 2018; Okumura et al. 2019). The morphology, the 137Cs radioactivity, the elemental compositions and distributions, and the water insolubility of isolated CsMPs in this study were consistent with those of the reported type A CsMPs (Adachi et al. 2013; Igarashi et al. 2019a; Satou et al. 2018; Abe et al. 2014). We can conclude that type A CsMPs are detected in aerosol samples and refer to aerosol CsMPs as “A-CsMPs.”

Comparison of CsMPs isolated from aerosols and soil

There are 24 CsMPs detected in soil sample (namely, ten granules per gram, which was approximately consistent with the results of Ikehara et al. (2020)) and we refer to these soil CsMPs as “S-CsMPs.” The 137Cs radioactivity of these S-CsMPs mostly ranged from 0.06 to 0.95 Bq/granule, except for one that exhibited 6.70 Bq. Their mean and median values were 0.29 and 0.22 Bq/granule, respectively, and the sum of 137Cs radioactivity of these S-CsMPs was 13.4 Bq. Six single granules from the group of 24 S-CsMPs have thus far been successfully extracted from the soil samples, and three of them have been observed and analyzed by SEM–EDS. The SEM images and their elemental compositions are given in Fig. 4 and Additional file 1: Table S2, respectively. They were all spherical particles, and their diameters were 1.8 μm (S-CsMPs-1, 0.93 Bq/granule), 1.6 μm (S-CsMPs-2, 0.56 Bq/granule), and 1.8 μm (S-CsMPs-3, 0.75 Bq/granule), with an average diameter of 1.7 ± 0.1 μm (0.75 ± 0.18 Bq/granule).

Fig. 4
figure 4

Scanning electron microscopic images of 3 single S-CsMPs isolated from the soil samples (The average diameter of all spherical S-CsMPs was 1.7 ± 0.1 μm, which is conspicuously close to that of A-CsMPs)

Moreover, the EDS spectra of an A-CsMP (#15-HNVA-190919) and an S-CsMP (S-CsMPs-3) are shown in comparison in Fig. 5. These EDS spectra showed that both A-CsMPs and S-CsMPs mainly consist of Si, O, Cs, Fe, Zn, K, Na, and Cl. Specifically, the average atomic mass fraction of the main elemental compositions of the three S-CsMPs were evaluated, given as following; Si (6.4 ± 6.7 wt.%), O (29.2 ± 4.7 wt.%), Cs (1.7 ± 2.48 wt.%), Zn (3.5 ± 4.6 wt.%), Fe (1.9 ± 2.4), Na (1.0 ± 0.7 wt.%), K (0.3 ± 0.4 wt.%) and Cl (0.4 ± 0.6 wt.%). The radiocesium activities, morphologies, and elemental compositions of A-CsMPs and S-CsMPs were almost consistent with each other. These results imply that A-CsMPs were derived from the resuspension of S-CsMPs.

Fig. 5
figure 5

Energy-dispersive X-ray spectrum of A-CsMPs (#15-HNVA-1909 19) and S-CsMPs-3. (Cu and C are derived from copper and carbon tape substrates, which were used to confirm the existence of silicon and the fixation of CsMPs)

Possibility of natural resuspension of CsMPs into the atmosphere

The possibility of CsMP resuspension from the contaminated surface soil was suggested in studies (Ishizuka et al. 2017; Higaki et al. 2020; Nihei et al. 2018; Utsunomiya et al. 2019). Specifically, CsMPs were detected in face masks worn by Fukushima residents in the spring of 2013 (Higaki et al. 2020). The resuspended CsMPs were also found on Japanese mustard spinach in Fukushima Prefecture cultivated from August to December 2017 (Nihei et al. 2018). The resuspension of radiocesium caused by decontamination work has also been reported by several studies (Ikehara et al. 2020; Hosoda et al. 2019; Doi et al. 2018), suggesting a possibility of the resuspension of the CsMPs induced by decontamination work by the government. However, these studies have not discussed whether the resuspension of CsMPs into the atmosphere can occur naturally or not because CsMPs in these studies were found in living areas or in association with human activities. In contrast, A-CsMPs of this study were found in aerosol samples collected by unmanned-operated HV samplers at a site located in an evacuated area that was difficult for residents to return to, indicating the possibility that A-CsMPs were derived from naturally resuspended S-CsMPs, without anthropogenic activities. Furthermore, it is possible that the A-CsMPs were transported from F1NPP or areas where decontamination and other remediation activities were carried out. If a significant number of radioactive pollutants, including CsMPs, were transported to the sampling site, the atmospheric concentration of 137Cs should have increased. However, a systematic increase in atmospheric 137Cs concentration was not detected during the sampling periods of A-CsMPs, and no leakage events of radioactive pollutants from the F1NPP were reported. These results imply a low likelihood that A-CsMPs were derived from decontamination work at the F1NPP site and the severely contaminated areas. On the one hand, transport of contaminated soil by dump trucks has increased along a road near the sampling site since 2018, and decontamination activities in areas adjacent to the sampling sites (within 500 m range) were also conducted between June and December 2019. On the other hand, there was no increasing trend in the detected numbers of A-CsMPs in 2015, 2016, 2018, and 2019. More specifically, only one A-CsMP was found after June 2019, as shown in Table 2. Therefore, it seems unlikely that A-CsMPs in this study were derived from human activities.

Table 2 Seasonal or yearly frequency variations of 15 single isolated insoluble CsMPs

Significantly, we can find that the atomic ratios of Na/Si (≈ 0.086), K/Si (≈ 0.045), and/or Cs/Si (≈ 0.031) of our isolated A-CsMPs are smaller than that of the CsMPs (~ 0.139 / ~ 0.055 / ~ 0.040) released in the early stage (approximately 6 months after the Fukushima accident) (Okumura et al. 2020), even lower than that of the CsMPs collected at far distance away from F1NNP (Cs/Si ≈ 0.208) (Utsunomiya et al. 2019), herein, the concentration of Cs has been corrected back to March 11, 2011, 14:46 JST, and assuming that there has been no decrease in Si. This special characteristic of our isolated A-CsMPs quantitatively exemplifies the high possibility of A-CsMPs resulted from the resuspension of S-CsMPs. This phenomenon may be attributed to the slow environmental erosion by the loss of the very small amount of Na and K, even the loss of Cs, which is consistent with the report of slow environmental weathering dissolvable CsMPs (Okumura et al. 2019). This information of lowering the Cs concentration with time lapse implies mitigation of the anxieties for the hazard resulting from the resuspension of the CsMPs. Moreover, we observed a typical suspension phenomenon of surface soil on April 22, 2021, in the playground of Ibaraki University, where have similarly environmental circumstances as our sampling site. It can indirectly provide the natural resuspension condition of CsMPs by the wind gust of which speed exceeding 4 m s−1, as shown in Additional file 1: Fig. S2 and Additional file 2: Supporting video.

Resuspension frequencies of CsMPs

In this study, 165 aerosol filter samples collected over 4 years (2015, 2016, 2018, and 2019) were used to detect and isolate the CsMPs. Although they were not all aerosol samples because of time and cost considerations, the sampling periods of the used samples (165 samples) covered more than 80% of the total sampling period: 290.5(days)/365(days) in 2015, 352.5/366 in 2016, 346.5/365 in 2018, and 225.5/274 in 2019, and 1215/1461 = 0.83 overall. As mentioned above, 20 highly radioactive granules were detected in these 165 samples, and 15 single A-CsMPs have been successfully obtained. The detailed data for A-CsMPs and aerosol filters are given in Tables 1, 2, and Additional file 1: Table S3. If all 20 CsMPs were A-CsMPs, the sampling probability of A-CsMPs at the sampling site can be estimated as 1.6 × 10−2 granule per sampling day or 1.2 × 10−5 granule per unit sampling-air volume (m−3).

Furthermore, the yearly frequency was obtained as follows: 2.1 × 10−2 granule·day−1 in 2015, 8.5 × 10−3 granule·day−1 in 2016, 8.7 × 10−3 granule·day−1 in 2018, and 1.3 × 10−2 granule·day−1 in 2019. There was no considerable decreasing trend of these resuspension frequencies, which strongly suggests necessity of the long-term monitoring of resuspended CsMPs. Alternatively, the seasonal frequency variation of resuspended A-CsMPs can be found in Table 2. The number and seasonal frequencies of A-CsMPs detected in four seasons of four sampling years are as follows: (a) 1 and 4.5 × 10−3 granule·day−1 in December–February (DJF), (b) 8 and 2.4 × 10−2 granule·day−1 in March–May (MAM), (c) 4 and 1.1 × 10−2 granule·day−1 in Jun–August, and (d) 2 and 6.9 × 10−3 granule·day−1 in September–November. The seasonal frequency tended lower in DJF and higher in MAM. In DJF the surface soil is mostly frozen or very wet, and snow often covers the ground at the sampling site (Ishizuka et al. 2017), and these conditions can inhibit the resuspension of CsMPs from the surface soil in this season. Kinase et al. (2018) showed that soil mineral particles were major coarse aerosols at our sampling site in the springtime (MAM), indicating that the suspension of soil particles from the ground surface occurred in this season. It is reasonable and possible that this dispersion process may cause the resuspension of CsMPs. Kinase et al. (2018) also found that the peak of the atmospheric radiocesium concentration was consistent with maximal average wind speed in the springtime. Based on the above discussion, it would be obvious that the atmospheric radiocesium concentration was associated with wind-driven suspended soil in the springtime. This seasonality is consistent with the natural resuspension of the CsMPs in this study.

Meteorological data, including the gust, the average wind speeds (the wind speeds were sampled at a height of approximately 10 m from the ground), the mean soil–water content, and the relative humidity (RH), were measured at the sampling site in 2015, when six CsMPs were sampled. These data from May 2015 are plotted in Fig. 6. Two CsMPs were collected when the wind gust speed exceeded 4 m s−1 and the soil water content was not notably high (significantly, during the sampling time, wind gust speeds exceeding 4 m s−1 can be frequently observed and sometimes even exceeded 8 m s−1, as shown in Fig. 6 and Additional file 1: Fig. S3). Furthermore, Wu et al. (1992) observed that particles (with diameters ranging from 7.0 to 42.3 μm) could be suspended occasionally at wind speeds of 4 m s−1, with more than half of the particles suspended within 2 s at a wind speed of 8 m s−1. Nicholson (1993) obtained a gentle increasing trend for suspension of particles with a 4.1 μm diameter along with increments of wind speed, and a positive correlation between PM2.5 and a wind speed higher than 3 m s−1 was also found by Wang and Ogawa (2015). These characteristics of microparticle suspension can indirectly explain the resuspension of CsMPs and the low frequency of A-CsMP detection in this work. Additionally, Ishizuka et al. (2017) developed a size-resolved suspension scheme for soil particles from the ground surface to estimate and explain measured size distribution of resuspended radioactive particles at the sampling site same as ours. They found that the particle size distributions of radioactive particles, adopting sandy loam and silty loam as soil textures, were in good agreement with that of the particles with diameters ranging around 1–2 μm in the size-resolved atmospheric radioactivity concentration observation. Thus, natural resuspension of CsMPs with diameter of 1–2 um by wind could be possibly and reasonably observed when wind speed was high and soil moisture was low. Especially, the large scale of a SEM image of a representative aerosol filter sample collected on May 16, 2016, as shown in Additional file 1: Fig. S4, exhibits many microparticles from topsoil, which can also be observed in the report of Kaneyasu et al. (Kaneyasu et al. 2017). Obviously, it was almost impossible to find the location of a CsMP in a filter or soil sample before isolation. However, these observations confirmed the resuspension of CsMPs absorbing/attaching on surface soil by strong winds. Also, in Fig. 2, it can be found that the isolated aerosol CsMPs (#9 NHVB-280429-I-Q7 and #14 NHVA-190425-B-Q) were still adsorbed on other large particles. In addition, in our isolated S-CsMPs, the phenomenon of S-CsMPs absorbing other particles was not clear, but it was able to find in the reports of Satou et al. (2018) (samples of FT-13#01 and NM-14#02). These results further supported the resuspension mechanism of CsMPs: they are readily absorbed/attached on topsoil particles and resuspended into air by high wind speed. Therefore, we speculate that CsMP resuspension needs both a strong wind of 4 m s−1 and incidental phenomena such as aggregate lumps formed by attachment/collisions of CsMPs with larger dust particles scattered by winds. Furthermore, according to SEM observations of aerosol CsMPs and soil CsMPs, the possibility of soil dust working as the carriers of the resuspended CsMPs is high. Moreover, it is unable to exclude CsMP resuspended by itself, obtained from the reasons: (1) the high CsMPs concentration of 10 granules/gram in the surface soil of our sampling site, (2) high resuspension frequency of CsMPs in spring when major suspended particles sampled there was soil dust, and (3) the reports of Ishizuka et al. (2017) that the particle size distributions of radioactive particles, adopting sandy loam and silty loam as soil textures, were in good agreement with that of the particles with diameters ranging around 1–2 μm in the size-resolved atmospheric radioactivity concentration observation. However, the organic matter works as the carrier of the resuspended CsMPs were not clear in this study. Additionally, because some holes that were presumably dug by wild boars were found around the sampling site (within a few hundred meters), a possibility, that the dispersion of CsMPs occurred with such animal activities, cannot be ruled out. It is a great challenge to discuss more detailed information by random appearance of wild animals in the sampling location, also, this consideration is waiting for more observations.

Fig. 6
figure 6

Temporal variations of the average wind speed, the gust speed, the mean soil–water content, and the relative humidity data collected in May 2015 (The average wind speed and gust speed mean an average wind speed was recorded per 30 min by the sampler. Also, for Gust wind, the value was output only considering data when it is 1 m/s or more)

Contribution of the resuspended CsMPs to atmospheric radioactivity

Various studies (Ikehara et al. 2020, 2018) have shown that significant levels of CsMPs were released into the environment (Furuki et al. 2017) and that a considerable part of the deposition of radiocesium should be attributed to the released CsMPs (Imoto et al. 2017; Utsunomiya et al. 2019). Based on the results and discussion above, CsMPs can be directly resuspended into atmosphere. Herein, the contribution ratio of the resuspended CsMPs to atmospheric 137Cs can be defined as the ratio of the radioactivity of single CsMPs (137Cs) to that of the aerosol filters from which the A-CsMPs was obtained. As given in Table 2, the resuspension contribution ratios of CsMPs ranged from 5.0 to 50.6%, and the mean and median values were 23.9% and 20.5%, respectively. The remainder of the resuspension hosts of atmospheric radiocesium can be attributed to bioaerosols and soil particles bearing with low concentrations of radiocesium (Igarashi et al. 2019b; Kita et al. 2020) as well as low-level radioactive CsMPs. Although A-CsMPs were not detected by one-hour exposure by IP, the radioactive spot was detected in the aerosol filter by IP inspection when the IP plate was exposed for tens of hours, as shown in Additional file 1: Fig. S5. Because of the excessive amount of time and human resources required for the extraction procedure, further extraction of CsMPs in these filters has not been conducted. Moreover, the average contribution ratio of A-CsMPs, which is the ratio of total 137Cs radioactivity of 15 A-CsMPs to that of all 165 aerosol samples, was estimated to be about 2.0%, as shown in Additional file 1: Table S3. Correspondingly, the ratio of total 137Cs radioactivity of S-CsMPs to that of the surface soil sample used in this study was about 8.0% (= 13.40 Bq/166.2 Bq); the contribution of A-CsMPs to the total atmospheric radioactivity, therefore, was smaller than that in the corresponding surface soil.

Conclusions

This study reveals the occurrence of direct resuspension of water-insoluble CsMPs, composed of silicate glass, to the atmosphere without human interference. The fact can be confirmed by (1) their successful extraction from aerosol samples collected by unmanned-operated samplers, (2) the nearly resembling characteristics of A-CsMPs and S-CsMPs, which were extracted from the respective aerosol and surface soil samples collected at the same sampling site in a heavily contaminated area of F1NPP and (3) the seasonality of the A-CsMP detection. The sizes and radioactivities of both A-CsMPs and S-CsMPs found in the present study were situated within the distributions of the reported type A CsMPs, but they were generally smaller than those reported for type A CsMPs (with a diameter of less than ca. 10 μm) (Adachi et al. 2013; Abe et al. 2014) sampled in primary emission from the F1NPP accident in 2011. This can be used to exclude the probability that A-CsMPs may be derived from the primary release and may be explained by surface-deposited CsMPs subjected to their very slow dissolution rates in the natural environment, as suggested by Okumura et al. (Okumura et al. 2019). Therefore, the erosion of CsMPs in the natural environment should be a significant process to be clarified by future studies.

This study also reveals the frequency of CsMP resuspension and its contribution to atmospheric radiocesium, although this can vary with the location depending on the amount of radiocesium and CsMP deposition (surface contamination extent). The resuspension of insoluble type A CsMPs is indeed infrequent, and their absolute activity remains at the sub-Bq level. On the other hand, the detection of type A CsMPs has been continued up to 2019 and no obvious decreasing trend has been found from annual resuspension frequencies, suggesting its persistence. The CsMPs can also work as the transferring medium of fuel debris (Ochiai et al. 2018), trace uranium (Abe et al. 2014; Kurihara et al. 2020a), strontium (Zhang et al. 2019), and plutonium (Kurihara et al. 2020b) into the environment, although they are at very low level, and CsMPs resuspension increases the possibility of unpredictable inhalation. If they are inhaled, they can easily reach the deep respiratory system (Assessment N. C. f. E., NC 1996). Thus, more investigation is necessary regarding the risk assessment of even the single CsMP radiation exposure (Suzuki et al. 2020) and long-term monitoring of these resuspended insoluble type A CsMPs.

Availability of data and materials

The datasets supporting the conclusions of this study are available as additional files (Supporting information file and Supporting video of suspension of surface soil) and are available upon request to the corresponding authors, Kazuyuki Kita (E-mail: kazuyuki.kita.iu@vc.ibaraki.ac.jp) and Yasuhito Igarashi (E-mail: igarashi.yasuhito.4e@kyoto-u.ac.jp).

Abbreviations

F1NPP:

Fukushima Daiichi Nuclear Power Plant

CsMPs:

Radiocesium-bearing microparticles

A-CsMPs:

Aerosol radiocesium-bearing microparticles

S-CsMPs:

Soil radiocesium-bearing microparticles

JAEA:

Japan Atomic Energy Agency

MRI:

Meteorological Research Institute

TEPCO:

Tokyo Electric Power Company

References

  • Abe Y, Iizawa Y, Terada Y, Adachi K, Igarashi Y, Nakai I (2014) Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses. Anal Chem 86(17):8521–8525

    Google Scholar 

  • Adachi K, Kajino M, Zaizen Y, Igarashi Y (2013) Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci Rep 3(1):2554

    Google Scholar 

  • Akimoto K (2015) Annual and weekly cycles of radioactivity concentration observed in Fukushima city. Health Phys 108(1):32–38

    Google Scholar 

  • Aoyama M, Tsumune D, Inomata Y, Tateda Y (2020) Mass balance and latest fluxes of radiocesium derived from the fukushima accident in the western North Pacific Ocean and coastal regions of Japan. J Environ Radioact 217:106206

    Google Scholar 

  • Assessment (1996) N. C. f. E.; NC) Air quality criteria for particulate matter. US Environmental Protection Agency, Office of Research and Development, vol 3

  • Doi T, Takagi M, Tanaka A, Kanno M, Dokiya Y, Tao Y, Masumoto K (2018) The variation of atmospheric radioactive caesium concentration from Fukushima Dai-ichi Nuclear Power Plant Accident in Tsukuba and Iitate, and factors controlling its high concentration events. Radioisotopes 68(3):83–104 (in Japanese)

    Google Scholar 

  • EPA (1977) Proposed guidance on dose limits for persons exposed to transuranium elements in the general environment. US Environmental Protection Agency

  • Evrard O, Laceby JP, Nakao A (2019) Effectiveness of landscape decontamination following the Fukushima nuclear accident: a review. SOIL 5(2):333–350

    Google Scholar 

  • Fuchigami M, Kasahara N (2015) 2 - The Fukushima nuclear power plant accident: the main sequence of events. Yotaro H, Seiji A, Masao F, Naoto K (eds) The 2011 Fukushima Nuclear Power Plant Accident, Woodhead Publishing, 2015: pp 21–96. https://doi.org/10.1016/B978-0-08-100118-9.00002-4.

  • Furuki G, Imoto J, Ochiai A, Yamasaki S, Nanba K, Ohnuki T, Grambow B, Ewing RC, Utsunomiya S (2017) Caesium-rich micro-particles: A window into the meltdown events at the Fukushima Daiichi Nuclear Power Plant. Sci Rep 7(1):42731

    Google Scholar 

  • Garger E, Gordeev S, Hollaender W, Kashparov V, Kashpur V, Martinez-Serrano J, Mironov V, Peres J, Tschiersch J, Vintersved I, Watterson J (1996) Resuspension and deposition of radionuclides under various conditions. Belarus: N. p. https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/056/31056833.pdf

  • Garger E, Talerko M (2020) Re-entrainment of the Chernobyl-derived radionuclides in air: experimental data and modeling. Behav Radionucl Environ II:75

    Google Scholar 

  • Hatamura Y, Abe S, Fuchigami M, Kasahara N, Iino K (2014) The 2011 Fukushima nuclear power plant accident: how and why it happened, vol 73. Woodhead Publishing, Sawston

    Google Scholar 

  • Hidaka A (2019) Formation mechanisms of insoluble Cs particles observed in Kanto district four days after Fukushima Daiichi NPP accident. J Nucl Sci Technol 56(9–10):831–841

    Google Scholar 

  • Higaki S, Shirai H, Hirota M, Takeda E, Yano Y, Shibata A, Mishima Y, Yamamoto H, Miyazawa K (2014) Quantitation of Japanese cedar pollen and radiocesium adhered to nonwoven fabric masks worn by the general population. Health Phys 107(2):117–134

    Google Scholar 

  • Higaki S, Kurihara Y, Takahashi Y (2020) Discovery of radiocesium-bearing particles in masks worn by members of the public in Fukushima in spring 2013. Health Phys 118(6):656–663

    Google Scholar 

  • Hirose K (2013) Temporal variation of monthly 137Cs deposition observed in Japan: effects of the Fukushima Daiichi nuclear power plant accident. Appl Radiat and Isotop 81:325–329

    Google Scholar 

  • Hirose K (2016) Fukushima Daiichi Nuclear Plant accident: atmospheric and oceanic impacts over the five years. J Environ Radioact 157:113–130

    Google Scholar 

  • Hirose K (2020) Atmospheric effects of Fukushima nuclear accident: a review from a sight of atmospheric monitoring. J Environ Radioact 218:106240

    Google Scholar 

  • Hosoda M, Hozumi W, Akata N, Endo A, Kelleher K, Yamanouchi K, Imajo Y, Fukuhara T, Shiroma Y, Iwaoka K, Tokonami S (2019) Evaluations of inventory and concentration of radiocesium in soil at a residential house 3 years after Fukushima nuclear accident. Radiat Prot Dosim 184(3–4):518–522

    Google Scholar 

  • Igarashi Y, Kajino M, Zaizen Y, Adachi K, Mikami M (2015) Atmospheric radioactivity over Tsukuba, Japan: a summary of three years of observations after the FDNPP accident. Prog Earth Planet Sci 2(1):44

    Google Scholar 

  • Igarashi Y, Kogure T, Kurihara Y, Miura H, Okumura T, Satou Y, Takahashi Y, Yamaguchi N (2019a) A review of Cs-bearing microparticles in the environment emitted by the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 205–206:101–118

    Google Scholar 

  • Igarashi Y, Kita K, Maki T, Kinase T, Hayashi N, Hosaka K, Adachi K, Kajino M, Ishizuka M, Sekiyama TT, Zaizen Y, Takenaka C, Ninomiya K, Okochi H, Sorimachi A (2019b) Fungal spore involvement in the resuspension of radiocaesium in summer. Sci Rep 9(1):1954

    Google Scholar 

  • Ikehara R, Suetake M, Komiya T, Furuki G, Ochiai A, Yamasaki S, Bower WR, Law GTW, Ohnuki T, Grambow B, Ewing RC, Utsunomiya S (2018) Novel method of quantifying radioactive cesium-rich microparticles (CsMPs) in the environment from the Fukushima Daiichi Nuclear Power Plant. Environ Sci Technol 52(11):6390–6398

    Google Scholar 

  • Ikehara R, Morooka K, Suetake M, Komiya T, Kurihara E, Takehara M, Takami R, Kino C, Horie K, Takehara M (2020) Abundance and distribution of radioactive cesium-rich microparticles released from the Fukushima Daiichi Nuclear Power Plant into the environment. Chemosphere 241:125019

    Google Scholar 

  • Imoto J, Ochiai A, Furuki G, Suetake M, Ikehara R, Horie K, Takehara M, Yamasaki S, Nanba K, Ohnuki T, Law GTW, Grambow B, Ewing RC, Utsunomiya S (2017) Isotopic signature and nano-texture of cesium-rich micro-particles: Release of uranium and fission products from the Fukushima Daiichi Nuclear Power Plant. Sci Rep 7(1):5409

    Google Scholar 

  • Investigation Committee on the Accident at the Fukushima Nuclear Power Station of Tokyo Electric Power Company (2011) Cabinet Secretariat of the Government of Japan, Tokyo, Japan, Interim Report

  • Ishizuka M, Mikami M, Tanaka TY, Igarashi Y, Kita K, Yamada Y, Yoshida N, Toyoda S, Satou Y, Kinase T, Ninomiya K, Shinohara A (2017) Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface. J Environ Radioact 166:436–448

    Google Scholar 

  • Kajino M, Ishizuka M, Igarashi Y, Kita K, Yoshikawa C, Inatsu M (2016) Long-term assessment of airborne radiocesium after the Fukushima nuclear accident: re-suspension from bare soil and forest ecosystems. Atmos Chem Phys 16:13149–13172

    Google Scholar 

  • Kaneyasu N, Ohashi H, Suzuki F, Okuda T, Ikemori F (2012) Sulfate aerosol as a potential transport medium of radiocesium from the Fukushima nuclear accident. Environ Sci Technol 46(11):5720–5726

    Google Scholar 

  • Kaneyasu N, Ohashi H, Suzuki F, Okuda T, Ikemori F, Akata N, Kogure T (2017) Weak size dependence of resuspended radiocesium adsorbed on soil particles collected after the Fukushima nuclear accident. J Environ Radioact 172:122–129

    Google Scholar 

  • Kinase T, Kita K, Igarashi Y, Adachi K, Ninomiya K, Shinohara A, Okochi H, Ogata H, Ishizuka M, Toyoda S, Yamada K, Yoshida N, Zaizen Y, Mikami M, Demizu H, Onda Y (2018) The seasonal variations of atmospheric 134,137Cs activity and possible host particles for their resuspension in the contaminated areas of Tsushima and Yamakiya, Fukushima, Japan. Prog Earth Planet Sci 5(1):12

    Google Scholar 

  • Kita K, Igarashi Y, Kinase T, Hayashi N, Ishizuka M, Adachi K, Koitabashi M, Sekiyama TT, Onda Y (2020) Rain-induced bioecological resuspension of radiocaesium in a polluted forest in Japan. Sci Rep 10(1):1–15

    Google Scholar 

  • Kita K, Hayashi N, Minami K, Kimura M, Igarashi Y, Adachi K, Maki T, Ishizuka M, Okochi H, Furukawa J, Ninomiya K, Shinohara A (2018) Increase of radioactive cesium resuspension to the atmosphere with bioaerosols in a polluted area in Fukushima. EGUGA, 7773

  • Kurihara Y, Takahata N, Yokoyama TD, Miura H, Kon Y, Takagi T, Higaki S, Yamaguchi N, Sano Y, Takahashi Y (2020a) Isotopic ratios of uranium and caesium in spherical radioactive caesium-bearing microparticles derived from the Fukushima Dai-ichi Nuclear Power Plant. Sci Rep 10(1):3281

    Google Scholar 

  • Kurihara E, Takehara M, Suetake M, Ikehara R, Komiya T, Morooka K, Takami R, Yamasaki S, Ohnuki T, Horie K, Takehara M, Law GTW, Bower WW, Mosselmans JF, Warnicke P, Grambow B, Ewing RC, Utsunomiya S (2020b) Particulate plutonium released from the Fukushima Daiichi meltdowns. Sci Total Environ 743:140539

    Google Scholar 

  • Matsuda N, Mikami S, Shimoura S, Takahashi J, Nakano M, Shimada K, Uno K, Hagiwara S, Saito K (2015) Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi Nuclear Power Plant, Japan. J Environ Radioact 139:427–434

    Google Scholar 

  • Mishra S, Arae H, Sorimachi A, Hosoda M, Tokonami S, Ishikawa T, Sahoo SK (2015) Distribution and retention of Cs radioisotopes in soil affected by Fukushima nuclear plant accident. J Soils Sedim 15(2):374–380

    Google Scholar 

  • Miura H, Kurihara Y, Sakaguchi A, Tanaka K, Yamaguchi N, Higaki S, Takahashi Y (2018) Discovery of radiocesium-bearing microparticles in river water and their influence on the solid-water distribution coefficient (Kd) of radiocesium in the Kuchibuto River in Fukushima. Geochem J 52(2):145–154

    Google Scholar 

  • Miura H, Ishimaru T, Ito Y, Kurihara Y, Otosaka S, Sakaguchi A, Misumi K, Tsumune D, Kubo A, Higaki S (2021) First isolation and analysis of caesium-bearing microparticles from marine samples in the pacific coastal area near Fukushima Prefecture. Sci Rep 11(1):1–11

    Google Scholar 

  • Nakagawa M, Yamada K, Toyoda S, Kita K, Igarashi Y, Komatsu S, Yamada K, Yoshida N (2018) Characterization of hydrocarbons in aerosols and investigation of biogenic sources as a carrier of radiocesium isotopes. Geochem J 52(2):163–172

    Google Scholar 

  • Nakamura AJ (2020) Assessment of DNA damage induction in farm animals after the FNPP accident. Low-dose radiation effects on animals and ecosystems. Springer, Singapore, pp 153–161

    Google Scholar 

  • Nicholson K (1993) Wind tunnel experiments on the resuspension of particulate material. Atmos Environ A Gen Top 27(2):181–188

    Google Scholar 

  • Nihei N, Yoshimura K, Okumura T, Tanoi K, Iijima K, Kogure T, Nakanishi TM (2018) Secondary radiocesium contamination of agricultural products by resuspended matter. J Radioanal Nucl Chem 318(1):341–346

    Google Scholar 

  • Niimura N, Kikuchi K, Tuyen ND, Komatsuzaki M, Motohashi Y (2015) Physical properties, structure, and shape of radioactive Cs from the Fukushima Daiichi Nuclear Power Plant accident derived from soil, bamboo and shiitake mushroom measurements. J Environ Radioact 139:234–239

    Google Scholar 

  • Ochiai S, Hasegawa H, Kakiuchi H, Akata N, Ueda S, Tokonami S, Hisamatsu S (2016) Temporal variation of post-accident atmospheric 137Cs in an evacuated area of Fukushima Prefecture: size-dependent behaviors of 137Cs-bearing particles. J Environ Radioact 165:131–139

    Google Scholar 

  • Ochiai A, Imoto J, Suetake M, Komiya T, Furuki G, Ikehara R, Yamasaki S, Law GTW, Ohnuki T, Grambow B, Ewing RC, Utsunomiya S (2018) Uranium dioxides and debris fragments released to the environment with cesium-rich microparticles from the Fukushima Daiichi Nuclear Power Plant. Environ Sci Technol 52(5):2586–2594

    Google Scholar 

  • Okumura T, Yamaguchi N, Dohi T, Iijima K, Kogure T (2019) Dissolution behaviour of radiocaesium-bearing microparticles released from the Fukushima nuclear plant. Sci Rep 9(1):3520

    Google Scholar 

  • Okumura T, Yamaguchi N, Suga H, Takahashi Y, Segawa H, Kogure T (2020) Reactor environment during the Fukushima nuclear accident inferred from radiocaesium-bearing microparticles. Sci Rep 10(1):1–9

    Google Scholar 

  • Onda Y, Kato H, Hoshi M, Takahashi Y, Nguyen M-L (2015) Soil sampling and analytical strategies for mapping fallout in nuclear emergencies based on the Fukushima Dai-ichi Nuclear Power Plant accident. J Environ Radioact 139:300–307

    Google Scholar 

  • Press C (2015) CRC handbook of chemistry and physics-table of isotopes

  • Satou Y, Sueki K, Sasa K, Adachi K, Igarashi Y (2016) First successful isolation of radioactive particles from soil near the Fukushima Daiichi Nuclear Power Plant. Anthropocene 14:71–76

    Google Scholar 

  • Satou Y, Sueki K, Sasa K, Yoshikawa H, Nakama S, Minowa H, Abe Y, Nakai I, Ono T, Adachi K, Igarashi Y (2018) Analysis of two forms of radioactive particles emitted during the early stages of the Fukushima Dai-ichi Nuclear Power Station accident. Geochem J 52(2):137–143

    Google Scholar 

  • Shannon S (2012) Radiation protective foods: a menu for the nuclear age

  • Snow MS, Snyder DC, Delmore JE (2016) Fukushima Daiichi reactor source term attribution using cesium isotope ratios from contaminated environmental samples. Rapid Commun Mass Spectrom 30(4):523–532

    Google Scholar 

  • Steinhauser G, Brandl A, Johnson TE (2014) Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Sci Total Environ 470–471:800–817

    Google Scholar 

  • Suzuki M, Ninomiya K, Satou Y, Sueki K, Fukumoto M (2020) Perspective on the biological impact of exposure to radioactive cesium-bearing insoluble particles. Low-dose radiation effects on animals and ecosystems. Springer, Singapore, pp 205–213

    Google Scholar 

  • Tanaka K, Takahashi Y, Sakaguchi A, Umeo M, Hayakawa S, Tanida H, Saito T, Kanai Y (2012) Vertical profiles of iodine-131 and cesium-137 in soils in Fukushima prefecture related to the Fukushima Daiichi Nuclear Power Station accident. Geochem J 46(1):73–76

    Google Scholar 

  • Tokyo Electric Power Company Holdings (2011) I. T. Fukushima nuclear accident analysis report (interim report) summary

  • Utsunomiya S, Furuki G, Ochiai A, Yamasaki S, Nanba K, Grambow B, Ewing RC (2019) Caesium fallout in Tokyo on 15th March, 2011 is dominated by highly radioactive, caesium-rich microparticles. http://arxiv.org/abs/1906.00212.

  • Wagenpfeil F, Tschiersch J (2001) Resuspension of coarse fuel hot particles in the Chernobyl area. J Environ Radioact 52(1):5–16

    Google Scholar 

  • Wang J, Ogawa S (2015) Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. Int J Environ Res Public Health 12(8):9089–9101

    Google Scholar 

  • Wu Y-L, Davidson CI, Russell AG (1992) Controlled wind tunnel experiments for particle bounceoff and resuspension. Aerosol Sci Technol 17(4):245–262

    Google Scholar 

  • Yamaguchi N, Eguchi S, Fujiwara H, Hayashi K, Tsukada H (2012) Radiocesium and radioiodine in soil particles agitated by agricultural practices: field observation after the Fukushima nuclear accident. Sci Total Environ 425:128–134

    Google Scholar 

  • Yamamoto K, Nomura S, Tsubokura M, Murakami M, Ozaki A, Leppold C, Sawano T, Takita M, Kato S, Kanazawa Y, Anbe H (2019) Internal exposure risk due to radiocesium and the consuming behaviour of local foodstuffs among pregnant women in Minamisoma City near the Fukushima nuclear power plant: a retrospective observational study. BMJ Open 9(7):e023654

    Google Scholar 

  • Yoschenko VI, Kashparov VA, Protsak VP, Lundin SM, Levchuk SE, Kadygrib AM, Zvarich SI, Khomutinin YV, Maloshtan IM, Lanshin VP, Kovtun MV, Tschiersch J (2006) Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part I. Fire experiments. J Environ Radioact 86(2):143–163

    Google Scholar 

  • Yoshida N, Kanda J (2012) Tracking the Fukushima radionuclides. Science 336(6085):1115

    Google Scholar 

  • Yoshida N, Takahashi Y (2012) Land-surface contamination by radionuclides from the Fukushima Daiichi Nuclear Power Plant accident. Elements 8(3):201–206

    Google Scholar 

  • Zhang Z, Igarashi J, Satou Y, Ninomiya K, Sueki K, Shinohara A (2019) Activity of 90Sr in fallout particles collected in the difficult-to-return zone around the Fukushima Daiichi Nuclear Power Plant. Environ Sci Technol 53(10):5868–5876

    Google Scholar 

Download references

Acknowledgements

We thank Ms. N. Hayashi, Mr. K Minami, Ms. H. Li, and other students of the College of Science and College of Engineering, Ibaraki University, for the maintenance of the sampling instruments, special installations in the field, and data collection. We especially thank the local government of Namie and the Fukushima prefectural government, who kindly provided the monitoring opportunity. We also acknowledge Mr. K. Hama (Atox Co. Ltd) and Mr. K. Obara for assistance with the activity measurements and separation of A-CsMPs.

Funding

This study was financially supported by Nuclear Energy Science & Technology and Human Resource Development Project (International Joint Research Program of Nuclear Decommission of Japan-UK, 30I125) and partly by Grants-in-Aid for Scientific Research (B) (Nos. 20H04318 and 17H01873).

Author information

Authors and Affiliations

Authors

Contributions

PT and KH analyzed the samples and summarized these data in this article. PT prepared the manuscript. KK planned and carried out the measurements as well as the samplings. YI is the leader of our project team. KK and YI helped in writing the manuscript and provided important discussions for this article. YS, KA, and TK supported the measurement of the aerosol and soil CsMPs by SEM–EDS. KN and AS collected and measured radioactivity of the soil samples. YS and KA also provided important suggestions for this article. All authors read and approved the final manuscript.

Authors’ information

PT received his Ph.D. from University of Fukui in 2020 and worked at Ibaraki University as a postdoctoral researcher and wrote this article during this period.

KK received his Ph.D. from Tokyo University in 1990 and worked at Tokyo University until 2002 as a research assistant. He moved to Ibaraki University in 2002. His studies focus on the atmospheric O3 and NO2, the effects of black carbon (BC) on global warming, and the resuspension processes of radiocesium.

YI received his Ph.D. from the University of Tsukuba in 1987. From 1987 to 1991, he worked at the former National Institute of Radiological Sciences and moved to the MRI in 1991. His current interests are atmospheric aerosols; their precursors, including Asian dust and PM2.5; their possible influences on climate and general environmental changes and other related phenomena.

YS received his Ph.D. from University of Tsukuba in 2016, worked as researcher in Collaborative Laboratories for Advanced Decommissioning Sciences, Japan Atomic Energy Agency. His current interests are focused on the research of F1NPP accident released radioactive particles.

KA received his Ph.D. from Kobe University in 2005, worked at Arizona State University between 2005 and 2011 as a postdoctoral/faculty research associate, and is currently studying atmospheric aerosols at the MRI.

TK received his Ph.D. from Ibaraki University in 2016. His interests are focusing on BC aerosols and Environmental Transfer of Radionuclides from the Fukushima Daiichi NPP Accident.

KN received his Ph.D. from Osaka University in 2007 and worked at Osaka University in 2008. He moved to JAEA and worked as a research scientist between 2009 and 2012; then, he returned to Osaka University. His main research field is nuclear- and radiochemistry.

AS received his Ph.D. from Osaka University in 1985 and then worked at the Japan Society for the Promotion of Science. He moved to Nagoya University, where he worked between 1987 and 1998. Then, he moved to Kyoto University in 1998, before moving to Osaka University in 1999. His main research field is nuclear and radiochemistry.

Corresponding authors

Correspondence to Kazuyuki Kita or Yasuhito Igarashi.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1

. Supporting figures and tables.

Additional file 2. Supporting video: suspension of surface soil.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, P., Kita, K., Igarashi, Y. et al. Atmospheric resuspension of insoluble radioactive cesium-bearing particles found in the difficult-to-return area in Fukushima. Prog Earth Planet Sci 9, 17 (2022). https://doi.org/10.1186/s40645-022-00475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s40645-022-00475-6

Keywords

  • Resuspension
  • Radiocesium
  • Water-insoluble radiocesium-bearing microparticles (CsMPs)
  • Fukushima accident
  • Aerosol