Adams BL, Wright SI, Kunze K (1993) Orientation imaging: the emergence of a new microscopy. Metall Trans A 24(4):819–831 https://doi.org/10.1007/BF02656503
Article
Google Scholar
Affek HP, Eiler JM (2006) Abundance of mass 47 CO2 in urban air, car exhaust, and human breath. Geochim Cosmochim Acta 70(1):1–12 https://doi.org/10.1016/j.gca.2005.08.021
Article
Google Scholar
Agarwal K (1994) Tectonic evolution of the Almora Crystalline Zone, Kumaun Lesser Himalayas–A reinterpretation. J Geol Soc India 43(1):5–14
Google Scholar
Anczkiewicz R, Chakraborty S, Dasgupta S, Mukhopadhyay D, Kołtonik K (2014) Timing, duration and inversion of prograde Barrovian metamorphism constrained by high resolution Lu-Hf garnet dating: a case study from the Sikkim Himalaya, NE India. Earth Planet Sci Lett 407:70–81. https://doi.org/10.1016/j.epsl.2014.09.035
Article
Google Scholar
Bestmann M, Prior DJ (2003) Intragranular dynamic recrystallization in naturally deformed calcite marble: diffusion accommodated grain boundary sliding as a result of subgrain rotation recrystallization. J Struct Geol 25(10):1597–1613
Article
Google Scholar
Bollinger L, Avouac JP, Beyssac O, Catlos EJ, Harrison TM, Grove M et al (2004) Thermal structure and exhumation history of the Lesser Himalaya in central Nepal. Tectonics 23(5):1–19
Article
Google Scholar
Bonifacie M, Calmels D, Eiler JM, Horita J, Chaduteau C, Vasconcelos C et al (2017) Calibration of the dolomite clumped isotope thermometer from 25 to 350°C, and implications for a universal calibration for all (Ca, Mg, Fe)CO3 carbonates. Geochim Cosmochim Acta 200:255–279. https://doi.org/10.1016/j.gca.2016.11.028
Article
Google Scholar
Bose S, Mandal N, Mukhopadhyay DK, Mishra P (2009) An unstable kinematic state of the Himalayan tectonic wedge: Evidence from experimental thrust-spacing patterns. J Struct Geol 31(1):83–91. https://doi.org/10.1016/j.jsg.2008.10.002
Article
Google Scholar
Brand WA, Assonov SS, Coplen TB (2010) Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report). Pure Appl Chem 82(8):1719–1733
Article
Google Scholar
Bristow TF, Bonifacie M, Derkowski A, Eiler JM, Grotzinger JP (2011) A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature 474(7349):68–71
Article
Google Scholar
Burbank DW, Leland J, Fielding E, Anderson RS, Brozovic N, Reid MR et al (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379(6565):505–510
Article
Google Scholar
Burkhard M (1993) Calcite twins, their geometry, appearance and significance as stress-strain markers and indicators of tectonic regime: a review. J Struct Geol 15(3–5):351–368. https://doi.org/10.1016/0191-8141(93)90132-T
Article
Google Scholar
Célérier J, Harrison TM, Beyssac O, Herman F, Dunlap WJ, Webb AG (2009) The Kumaun and Garwhal Lesser Himalaya, India: Part 2: thermal and deformation histories. Bull Geol Soc Am 121(9–10):1281–1297
Article
Google Scholar
Chakraborty S, Anczkiewicz R, Gaidies F, Rubatto D, Sorcar N, Faak K et al (2016) A review of thermal history and timescales of tectonometamorphic processes in Sikkim Himalaya (NE India) and implications for rates of metamorphic processes. J Metamorph Geol 34(8):785–803 https://doi.org/10.1111/jmg.12200
Article
Google Scholar
Chakraborty S, Mukhopadhyay DK, Chowdhury P, Rubatto D, Anczkiewicz R, Trepmann C et al (2017) Channel flow and localized fault bounded slice tectonics (LFBST): insights from petrological, structural, geochronological and geospeedometric studies in the Sikkim Himalaya, NE India. Lithos 282–283:464–482. https://doi.org/10.1016/j.lithos.2017.01.024
Article
Google Scholar
Chemenda AI, Burg JP, Mattauer M (2000) Evolutionary model of the Himalaya-Tibet system: Geopoem based on new modelling, geological and geophysical data. Earth Planet Sci Lett 174(3–4):397–409
Article
Google Scholar
Chen S, Ryb U, Piasecki AM, Lloyd MK, Baker MB, Eiler JM (2019) Mechanism of solid-state clumped isotope reordering in carbonate minerals from aragonite heating experiments. Geochim Cosmochim Acta 258:156–173 https://doi.org/10.1016/j.gca.2019.05.018
Article
Google Scholar
Clarke GL, Bhowmik SK, Ireland TR, Aitchison JC, Chapman SL, Kent L (2016) Inverted Oligo-Miocene metamorphism in the Lesser Himalaya Sequence, Arunachal Pradesh, India; age and grade relationships. J Metamorph Geol 34(8):805–820
Article
Google Scholar
Clift PD, Hodges KV, Heslop D, Hannigan R, Van Long H, Calves G (2008) Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat Geosci 1(12):875–880
Article
Google Scholar
Colleps CL, McKenzie NR, Stockli DF, Hughes NC, Singh BP, Webb AAG et al (2018) Zircon (U-Th)/He Thermochronometric constraints on Himalayan thrust belt exhumation, bedrock weathering, and cenozoic seawater chemistry. Geochem Geophys Geosyst 19(1):257–271
Article
Google Scholar
Cottle JM, Larson KP, Kellett DA (2015) How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen. J Struct Geol 78:119–133. https://doi.org/10.1016/j.jsg.2015.06.008
Article
Google Scholar
DeCelles PG, Gehrels GE, Quade J, Ojha TP (1998) Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics 17(5):741–765
Article
Google Scholar
Defliese WF, Hren MT, Lohmann KC (2015) Compositional and temperature effects of phosphoric acid fractionation on δ47 analysis and implications for discrepant calibrations. Chem Geol 396:51–60
Article
Google Scholar
Dennis KJ, Affek HP, Passey BH, Schrag DP, Eiler JM (2011) Defining an absolute reference frame for ‘clumped’ isotope studies of CO2. Geochim Cosmochim Acta 75(22):7117–7131. https://doi.org/10.1016/j.gca.2011.09.025
Article
Google Scholar
Dennis KJ, Schrag DP (2010) Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochim Cosmochim Acta 74(14):4110–4122. https://doi.org/10.1016/j.gca.2010.04.005
Article
Google Scholar
Dey S, Dasgupta P, Das K, Matin A (2020) Neoproterozoic Blaini Formation of Lesser Himalaya. Fiction and Fact. GSA Bull, India, pp 1–15
Google Scholar
Eiler JM (2007) “Clumped-isotope” geochemistry—the study of naturally-occurring, multiply-substituted isotopologues. Earth Planet Sci Lett 262(3–4):309–327 https://doi.org/10.1016/j.epsl.2007.08.020
Article
Google Scholar
Eiler JM (2011) Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quat Sci Rev 30(25–26):3575–3588. https://doi.org/10.1016/j.quascirev.2011.09.001
Article
Google Scholar
Eiler JM, Schauble E (2004) 18O13C16O in Earth’s atmosphere. Geochim Cosmochim Acta 68(23):4767–4777 https://doi.org/10.1016/j.gca.2004.05.035
Article
Google Scholar
Ferrill DA, Groshong RH (1993) Deformation conditions in the northern Subalpine Chain, France, estimated from deformation modes in coarse-grained limestone. J Struct Geol 15(8):995–1006 https://doi.org/10.1016/0191-8141(93)90172-7
Article
Google Scholar
Ferrill DA, Morris AP, Evans MA, Burkhard M, Groshong RH, Onasch CM (2004) Calcite twin morphology: a low-temperature deformation geothermometer. J Struct Geol 26(8):1521–1529 https://doi.org/10.1016/j.jsg.2003.11.028
Article
Google Scholar
Ferry JM, Passey BH, Vasconcelos C, Eiler JM (2011) Formation of dolomite at 40-80°C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology 39(6):571–574 https://doi.org/10.1130/G31845.1
Article
Google Scholar
Gavillot Y, Meigs AJ, Sousa FJ, Stockli D, Yule D, Malik M (2018) Late Cenozoic foreland-to-hinterland low-temperature exhumation history of the Kashmir Himalaya. Tectonics 37(9):3041–3068
Article
Google Scholar
Ghosh P, Adkins J, Affek H, Balta B, Guo W, Schauble EA et al (2006a) 13C-18O bonds in carbonate minerals: A new kind of paleothermometer. Geochim Cosmochim Acta 70(6):1439–1456
Article
Google Scholar
Ghosh P, Garzione CN, Eiler JM (2006b) Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science 311(5760):511–515 https://doi.org/10.1126/science.1119365
Article
Google Scholar
Gibbons AD, Zahirovic S, Müller RD, Whittaker JM, Yatheesh V (2015) A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys. Gondwana Res 28(2):451–492. https://doi.org/10.1016/j.gr.2015.01.001
Article
Google Scholar
He B, Olack GA, Colman AS (2012) Pressure baseline correction and high-precision CO2 clumped-isotope (∆47) measurements in bellows and micro-volume modes. Rapid Commun Mass Spectrom 26(24):2837–2853 https://doi.org/10.1002/rcm.6436
Article
Google Scholar
Henkes GA, Passey BH, Grossman EL, Shenton BJ, Pérez-Huerta A, Yancey TE (2014) Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochim Cosmochim Acta 139:362–382 https://doi.org/10.1016/j.gca.2014.04.040
Article
Google Scholar
Henkes GA, Passey BH, Wanamaker AD, Grossman EL, Ambrose WG, Carroll ML (2013) Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells. Geochim Cosmochim Acta 106:307–325. https://doi.org/10.1016/j.gca.2012.12.020
Article
Google Scholar
Hodges KV (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Am Bull 112(3):324–350. https://doi.org/10.1130/0016-7606(2000)112<324:TOTHAS>2.0.CO;2
Article
Google Scholar
Huntington KW, Lechler AR (2015) Carbonate clumped isotope thermometry in continental tectonics. Tectonophysics 647:1–20. https://doi.org/10.1016/j.tecto.2015.02.019
Article
Google Scholar
Huntington KW, Saylor J, Quade J, Hudson AM (2015) High late Miocene-Pliocene elevation of the Zhada Basin, southwestern Tibetan Plateau, from carbonate clumped isotope thermometry. Bull Geol Soc Am 127(1–2):181–199
Article
Google Scholar
Kato H, Amekawa S, Kano A, Mori T, Kuwahara Y, Quade J (2019) Seasonal temperature changes obtained from carbonate clumped isotopes of annually laminated tufas from Japan: Discrepancy between natural and synthetic calcites. Geochim Cosmochim Acta 244:548–564 https://doi.org/10.1016/j.gca.2018.10.016
Article
Google Scholar
Kluge T, John CM, Jourdan A-L, Davis S, Crawshaw J (2015) Laboratory calibration of the calcium carbonate clumped isotope thermometer in the 25–250 °C temperature range. Geochim Cosmochim Acta 157:213–227 https://doi.org/10.1016/j.gca.2015.02.028
Article
Google Scholar
Kumar R (2020) Late Cenozoic Himalayan foreland basin: Sedimentologic attributes. Episodes 43(1):417–428
Article
Google Scholar
Kumar S, Wesnousky SG, Rockwell TK, Briggs RW, Thakur VC, Jayangondaperumal R (2006) Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya. J Geophys Res Solid Earth 111(3):1–19
Google Scholar
Lacombe O (2010) Calcite Twins, a tool for tectonic studies in thrust belts and stable orogenic forelands. Oil Gas Sci Technol – Rev d’IFP Energies Nouv 65(6):809–838 https://doi.org/10.2516/ogst/2009088
Article
Google Scholar
Lacroix B, Niemi NA (2019) Investigating the effect of burial histories on the clumped isotope thermometer: an example from the Green River and Washakie Basins, Wyoming. Geochim Cosmochim Acta 247:40–58 https://doi.org/10.1016/j.gca.2018.12.016
Article
Google Scholar
Lang KA, Huntington KW, Burmester R, Housen B (2016) Rapid exhumation of the eastern Himalayan syntaxis since the late Miocene. Bull Geol Soc Am 128(9–10):1403–1422
Article
Google Scholar
Lavé J, Avouac JP (2000) Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J Geophys Res Solid Earth 105(B3):5735–5770 https://doi.org/10.1029/1999JB900292
Article
Google Scholar
Lawson M, Shenton BJ, Stolper DA, Eiler JM, Rasbury ET, Becker TP et al (2018) Deciphering the diagenetic history of the El Abra Formation of eastern Mexico using reordered clumped isotope temperatures and U-Pb dating. Bull Geol Soc Am 130(3–4):617–629 https://doi.org/10.1130/B31656.1
Article
Google Scholar
Lloyd MK, Eiler JM, Nabelek PI (2017) Clumped isotope thermometry of calcite and dolomite in a contact metamorphic environment. Geochim Cosmochim Acta 197:323–344. https://doi.org/10.1016/j.gca.2016.10.037
Article
Google Scholar
MacDonald JM, Faithfull JW, Roberts NMW, Davies AJ, Holdsworth CM, Newton M et al (2019) Clumped-isotope palaeothermometry and LA-ICP-MS U–Pb dating of lava-pile hydrothermal calcite veins. Contrib. to. Mineral Petrol 174(7):63 https://doi.org/10.1007/s00410-019-1599-x
Article
Google Scholar
Martin AJ (2017) A review of definitions of the Himalayan Main Central Thrust. Int J Earth Sci 106(6):2131–2145 https://doi.org/10.1007/s00531-016-1419-8
Article
Google Scholar
McQuarrie N, Ehlers TA (2015) Influence of thrust belt geometry and shortening rate on thermochronometer cooling ages: insights from thermokinematic and erosion modeling of the Bhutan Himalaya. Tectonics 34(6):1055–1079 https://doi.org/10.1002/2014TC003783
Article
Google Scholar
Meigs AJ, Burbank DW, Beck RA (1995) Middle-late Miocene (>10 Ma) formation of the Main Boundary thrust in the western Himalaya. Geology 23(5):423 https://doi.org/10.1130/0091-7613(1995)023<0423:MLMMFO>2.3.CO;2
Article
Google Scholar
Metcalfe RP (1993) Pressure, temperature and time constraints on metamorphism across the Main Central Thrust zone and High Himalayan Slab in the Garhwal Himalaya. Geol Soc London Spec Publ 74(1):485–509 https://doi.org/10.1144/GSL.SP.1993.074.01.33
Article
Google Scholar
Mishra P, Mukhopadhyay DK (2012) Structural evolution of the frontal fold–thrust belt, NW Himalayas from sequential restoration of balanced cross-sections and its hydrocarbon potential. Geol Soc London Spec Publ 366(1):201–228 https://doi.org/10.1144/SP366.6
Article
Google Scholar
Mukhopadhyay DK, Mishra P (2005) A balanced cross section across the Himalayan frontal fold-thrust belt, Subathu area, Himachal Pradesh, India: Thrust sequence, structural evolution and shortening. J Asian Earth Sci 25(5):735–746
Article
Google Scholar
Najman Y, Bickle M, Garzanti E, Pringle M, Barfod D, Brozovic N et al (2009) Reconstructing the exhumation history of the Lesser Himalaya, NW India, from a multitechnique provenance study of the foreland basin Siwalik Group. Tectonics 29:TC6006 https://doi.org/10.1029/2010TC002778
Google Scholar
Najman Y, Garzanti E (2000) Reconstructing early Himalayan tectonic evolution and paleogeography from Tertiary foreland basin sedimentary rocks, Northern India. GSA Bull 112(3):435–449 https://doi.org/10.1130/0016-7606(2000)112<435:REHTEA>2.0.CO;2
Article
Google Scholar
Newman J (1994) The influence of grain size and grain size distribution on methods for estimating paleostresses from twinning in carbonates. J Struct Geol 16(12):1589–1601 https://doi.org/10.1016/0191-8141(94)90129-5
Article
Google Scholar
Parlangeau C, Dimanov A, Lacombe O, Hallais S, Daniel JM (2019) Uniaxial compression of calcite single crystals at room temperature: Insights into twinning activation and development. Solid Earth 10(1):307–316 https://doi.org/10.5194/se-10-307-2019
Article
Google Scholar
Passey BH, Henkes GA (2012) Carbonate clumped isotope bond reordering and geospeedometry. Earth Planet Sci Lett 351–352:223–236. https://doi.org/10.1016/j.epsl.2012.07.021
Article
Google Scholar
Patel RC, Manmohan (2020) Mio-Pliocene Tectonics and Exhumation Histories of the NW– and NE–Himalaya. Episodes 43(1):381–403. https://doi.org/10.18814/epiiugs/2020/020024
Article
Google Scholar
Powers PM, Lillie RJ, Yeats RS (1998) Structure and shortening of the Kangra and Dehra Dun reentrants, Sub-Himalaya, India. Geol Soc Am Bull 110(8):1010–1027 https://doi.org/10.1130/0016-7606(1998)110<1010:SASOTK>2.3.CO;2
Article
Google Scholar
Priestley K, James J, Mckenzie D (2008) Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern Tibet. Geophys J Int 172(1):345–362 https://doi.org/10.1111/j.1365-246X.2007.03636.x
Article
Google Scholar
Rowe KJ, Rutter EH (1990) Palaeostress estimation using calcite twinning: experimental calibration and application to nature. J Struct Geol 12(1):1–17 https://doi.org/10.1016/0191-8141(90)90044-Y
Article
Google Scholar
Ryb U, Lloyd MK, Stolper DA, Eiler JM (2017) The clumped-isotope geochemistry of exhumed marbles from Naxos, Greece. Earth Planet Sci Lett 470:1–12. https://doi.org/10.1016/j.epsl.2017.04.026
Article
Google Scholar
Rybacki E, Evans B, Janssen C, Wirth R, Dresen G (2013) Influence of stress, temperature, and strain on calcite twins constrained by deformation experiments. Tectonophysics 601:20–36. https://doi.org/10.1016/j.tecto.2013.04.021
Article
Google Scholar
Saha P, Bose S, Mandal N (2016) Sandbox modelling of sequential thrusting in a mechanically two-layered system and its implications in fold-and-thrust belts. J Geodyn 100:104–114. https://doi.org/10.1016/j.jog.2016.05.005
Article
Google Scholar
Sangode SJ, Kumar R (2003) Magnetostratigraphic correlation of the Late Cenozoic fluvial sequences from NW Himalaya, India. Curr Sci 84(8):1014–1024
Google Scholar
Sapkota SN, Bollinger L, Klinger Y, Tapponnier P, Gaudemer Y, Tiwari D (2013) Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat Geosci 6(1):71–76 https://doi.org/10.1038/ngeo1669
Article
Google Scholar
Schauble EA, Ghosh P, Eiler JM (2006) Preferential formation of 13C-18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochim Cosmochim Acta 70(10):2510–2529 https://doi.org/10.1016/j.gca.2006.02.011
Article
Google Scholar
Schultz MH, Hodges KV, Ehlers TA, van Soest M, Wartho JA (2017) Thermochronologic constraints on the slip history of the South Tibetan detachment system in the Everest region, southern Tibet. Earth Planet Sci Lett 459:105–117. https://doi.org/10.1016/j.epsl.2016.11.022
Searle MP, Godin L (2003) The South Tibetan detachment and the Manaslu Leucogranite: a structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. J Geol 111(5):505–523 https://doi.org/10.1086/376763
Sharma R, Villa IM, Kumar S (2019) Crustal architecture and evolution of the Himalaya-Karakoram-Tibet Orogen: introduction. Geol. Soc. London, Spec. Publ. 481(1):1–5 https://doi.org/10.1144/SP481-2019-46
Google Scholar
Sheehan AF, de la Torre TL, Monsalve G, Geoffrey AA, Hacker BR (2013) Physical state of Himalayan crust and uppermost mantle: constraints from seismic attenuation and velocity tomography. J Geophys Res Solid Earth 119:567–580 https://doi.org/10.1002/2013JB010601
Article
Google Scholar
Shenton BJ, Grossman EL, Passey BH, Henkes GA, Becker TP, Laya JC et al (2015) Clumped isotope thermometry in deeply buried sedimentary carbonates: the effects of bond reordering and recrystallization. Bull Geol Soc Am 127(7–8):1036–1051 https://doi.org/10.1130/B31169.1
Google Scholar
Siman-Tov S, Affek HP, Matthews A, Aharonov E, Reches Z (2016) Shear heating and clumped isotope reordering in carbonate faults. Earth Planet Sci Lett 445:136–145. https://doi.org/10.1016/j.epsl.2016.03.041
Article
Google Scholar
Singh RJ, Sharma MK, Ghosh T, Kumar P (2015) Tectonic architecture of the Paleogene belt and adjoining lithostratigraphic units in Parwanoo-Subathu sector of the Himachal Himalaya, India. Indian J Geosci 69(1):31–44
Google Scholar
Srivastava P, Mitra G (1996) Deformation mechanisms and inverted thermal profile in the North Almora Thrust mylonite zone, Kumaon Lesser Himalaya, India. J Struct Geol 18(1):27–39 https://doi.org/10.1016/0191-8141(95)00085-R
Article
Google Scholar
Stolper DA, Eiler JM (2015) The kinetics of solid-state isotope-exchange reactions for clumped isotopes: a study of inorganic calcites and apatites from natural and experimental samples. Am J Sci 315(5):363–411 https://doi.org/10.2475/05.2015.01
Article
Google Scholar
Swanson EM, Wernicke BP, Eiler JM, Losh S (2012) Temperatures and fluids on faults based on carbonate clumped-isotope thermometry. Am J Sci 312(1):1–21 https://doi.org/10.2475/01.2012.01
Article
Google Scholar
Thakur VC (2013) Active tectonics of Himalayan Frontal Fault system. Int J Earth Sci 102(7):1791–1810 https://doi.org/10.1007/s00531-013-0891-7
Article
Google Scholar
Thakur VC, Jayangondaperumal R, Malik MA (2010) Redefining Medlicott-Wadia’s Main Boundary Fault from Jhelum to Yamuna: An active fault strand of the Main Boundary Thrust in northwest Himalaya. Tectonophysics 489(1–4):29–42. https://doi.org/10.1016/j.tecto.2010.03.014
Article
Google Scholar
Turab SA, Stüwe K, Stuart FM, Chew DM, Cogne N (2017) Tectonics drives rapid exhumation of the western Himalayan syntaxis: evidence from low-temperature thermochronometry of the Neelum valley region, Pakistan. Lithosphere. 9(6):874–888 https://doi.org/10.1130/L626.1
Article
Google Scholar
Valdiya KS (1984) Evolution of the Himalaya. Tectonophysics. 105(3):229–248 https://doi.org/10.1016/0040-1951(84)90205-1
Article
Google Scholar
van der Beek P, Robert X, Mugnier JL, Bernet M, Huyghe P, Labrin E (2006) Late Miocene - Recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission-track thermochronology of Siwalik sediments, Nepal. Basin Res 18(4):413–434
Article
Google Scholar
Wang Z, Schauble EA, Eiler JM (2004) Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochim Cosmochim Acta 68(23):4779–4797 https://doi.org/10.1016/j.gca.2004.05.039
Article
Google Scholar
Webb AAG, Schmitt AK, He D, Weigand EL (2011) Structural and geochronological evidence for the leading edge of the Greater Himalayan Crystalline complex in the central Nepal Himalaya. Earth Planet Sci Lett 304(3–4):483–495. https://doi.org/10.1016/j.epsl.2011.02.024
Article
Google Scholar
Wesnousky SG, Kumar S, Mohindra R, Thakur VC (1999) Uplift and convergence along the Himalayan Frontal Thrust of India. Tectonics 18(6):967–976 https://doi.org/10.1029/1999TC900026
Article
Google Scholar
Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76(1–2):1–131 https://doi.org/10.1016/j.earscirev.2005.05.004
Article
Google Scholar
Yu H (2014) Contractional Tectonics : investigations of ongoing construction of the Himalaya fold-thrust belt and the Trishear model of fault-propagation folding. LSU Doctoral Dissertations 2683. https://digitalcommons.lsu.edu/gradschool_dissertations/2683.