Abe O, Agata S, Morimoto M, Abe M, Yoshimura K, Hiyama T, Yoshida N (2009) A 6.5-year continuous record of sea surface salinity and seawater isotopic composition at Harbour of Ishigaki Island, southwest Japan. Isot Environ Health Stud 45(3):247–258. https://doi.org/10.1080/10256010903083847
Article
Google Scholar
Abram NJ, HV MG, Tierney JE, Evans MN, NP MK, Kaufman DS, the PAGES 2k Consortium (2016) Early onset of industrial-era warming across the oceans and continents. Nature 536(7617):411–418. https://doi.org/10.1038/nature19082
Article
Google Scholar
Alibert C, Kinsley L (2008a) A 170-year Sr/Ca and Ba/Ca coral record from the western Pacific warm pool: 1. What can we learn from an unusual coral record? J Geophys Res 113(C4):C04008. https://doi.org/10.1029/2006JC003979
Article
Google Scholar
Alibert C, Kinsley L (2008b) A 170-year Sr/Ca and Ba/Ca coral record from the western Pacific warm pool: 2. A window into variability of the New Ireland Coastal Undercurrent. J Geophys Res 113(C6):C06006. https://doi.org/10.1029/2007JC004263
Article
Google Scholar
Allison N, Tudhope AW, EIMF (2012) The skeletal geochemistry of the sclerosponge Astrosclera willeyana: implications for biomineralisation processes and paleoenvironmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 313–314:70–77. https://doi.org/10.1016/j.palaeo.2011.10.009
Article
Google Scholar
Asami R, Felis T, Deschamps P, Hanawa K, Iryu Y, Bard E, Durand N, Murayama M (2009) Evidence for tropical South Pacific climate change during the Younger Dryas and the Bølling–Allerød from geochemical records of fossil Tahiti corals. Earth Planet Sci Lett 288(1-2):96–107. https://doi.org/10.1016/j.epsl.2009.09.011
Article
Google Scholar
Asami R, Kinjo A, Ohshiro D, Naruse T, Mizuyama M, Uemura R, Shinjo R, Ise Y, Fujita Y, Sakamaki T (2020a) Evaluation of geochemical records as a paleoenvironmental proxy in the hypercalcified demosponge Astrosclera willeyana. Prog Earth Planet Sci 7(1):15. https://doi.org/10.1186/s40645-020-00329-z
Article
Google Scholar
Asami R, Konishi M, Tanaka K, Uemura R, Furukawa M, Shinjo R (2015) Late Holocene coral reef environment recorded in Tridacnidae shells from archaeological sites in Okinawa-jima, subtropical southwestern Japan. Island Arc 24(1):61–72. https://doi.org/10.1111/iar.12076
Article
Google Scholar
Asami R, Yamada T, Iryu Y, Quinn TM, Meyer CP, Paulay G (2005) Interannual and decadal variability of the western Pacific sea surface condition for the years 1787–2000: reconstruction based on stable isotope record from a Guam coral. J Geophys Res 110(C5):C05018. https://doi.org/10.1029/2004JC002555
Article
Google Scholar
Asami R, Yoshimura N, Toriyabe H, Minei S, Shinjo R, Hongo C, Sakamaki T, Fujita K (2020b) High-resolution evidence for middle Holocene East Asian winter and summer monsoon variations: snapshots of fossil coral records. Geophys Res Lett 47:e2020GL088509 https://doi.org/10.1029/2020GL088509
Article
Google Scholar
Benavides LM, Druffel ERM (1986) Sclerosponge growth rate as determined by 210Pd and Δ14C chronologies. Coral Reefs 4(4):221–224. https://doi.org/10.1007/BF00298080
Article
Google Scholar
Böhm F, Haase-Schramm A, Eisenhauer A, Dullo W-C, Joachimski MM, Lehnert H, Reitner J (2002) Evidence for preindustrial variations in the marine surface water carbonate system from coralline sponges. Geochem Geophys Geosyst 3(3):1019–1013. https://doi.org/10.1029/2001GC000264
Article
Google Scholar
Böhm F, Joachimski MM, Dullo W-C, Eisenhauer A, Lehnert H, Reitner J, Wörheide G (2000) Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochim Cosmochim Acta 64(10):1695–1703. https://doi.org/10.1016/S0016-7037(99)00408-1
Article
Google Scholar
Böhm F, Joachimski MM, Lehnert H, Morgenroth G, Kretschmer W, Vacelet J, Dullo W-C (1996) Carbon isotope records from extant Caribbean and South Pacific sponges: evolution of δ13C in surface water DIC. Earth Planet Sci Lett 139(1-2):291–303. https://doi.org/10.1016/0012-821X(96)00006-4
Article
Google Scholar
Boutron CF, Görlach U, Candelone J-P, Bolshov MA, Delmas RJ (1991) Decrease in anthropogenic lead, cadmium and zinc in Greenland snows since the late 1960s. Nature 353(6340):153–1156. https://doi.org/10.1038/353153a0
Article
Google Scholar
DeCarlo TM, Gaetani GA, Holcomb M, Cohen AL (2015) Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: implications for interpreting coral skeleton. Geochim Cosmochim Acta 162:151–165 https://doi.org/10.1016/j.gca.2015.04.016
Article
Google Scholar
Druffel ERM, Benavides LM (1986) Input of excess CO2 to the surface ocean based on 13C/12C ratios in a banded Jamaican sclerosponge. Nature 321(6065):58–61. https://doi.org/10.1038/321058a0
Article
Google Scholar
Fallon SJ, Guilderson TP, Caldeira K (2003) Carbon isotope constraints on vertical mixing and air-sea CO2 exchange. Geophys Res Lett 30(24):2289. https://doi.org/10.1029/2003GL018049
Article
Google Scholar
Fallon SJ, McCulloch MT, Guilderson TP (2005) Interpreting environmental signals from the coralline sponge Astrosclera willeyana. Palaeogeogr Palaeoclimatol Palaeoecol 228(1-2):58–69. https://doi.org/10.1016/j.palaeo.2005.03.053
Article
Google Scholar
Fleitmann D, Dunbar RB, McCulloch M, Mudelsee M, Vuille M, McClanahan TR, Cole JE, Eggins S (2007) East African soil erosion recorded in a 300 year old coral colony from Kenya. Geophys Res Lett 34(4):L04401. https://doi.org/10.1029/2006GL028525
Article
Google Scholar
Gilis M, Grauby O, Willenz P, Dubois P, Heresanu V, Baronnet A (2013) Biomineralization in living hypercalcified demosponges: toward a shared mechanism? J Struct Biol 183(3):441–454. https://doi.org/10.1016/j.jsb.2013.05.018
Article
Google Scholar
Grottoli AG (2006) Monthly resolved stable oxygen isotope record in a Palauan sclerosponge Acanthocheatetes wellsi for the period of 1977–2001. Proc 10th Int Coral Reef Symp 2004:572–579
Google Scholar
Grottoli AG, Adkins JF, Panero WR, Reaman DM, Moots K (2010) Growth rates, stable oxygen isotopes (δ18O), and strontium (Sr/Ca) composition in two species of Pacific sclerosponges (Acanthocheatetes wellsi and Astrosclera willeyana) with δ18O calibration and application to paleoceanography. J Geophys Res 115(C6):C06008. https://doi.org/10.1029/2009JC005586
Article
Google Scholar
Ghil M, Allen MR, Dettinger MD, Ide K, Kondra-shov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40:1003. https://doi.org/10.1029/2000RG000092
Haase-Schramm A, Böhm F, Eisenhauer A, Garbe-Schönberg D, Dullo W-C, Reitner J (2005) Annual to interannual temperature variability in the Caribbean during the Maunder sunspot minimum. Paleoceanography 20(4):PA4015. https://doi.org/10.1029/2005PA001137
Article
Google Scholar
Hao YC, Guo ZG, Yang ZS, Fan DJ, Fang M, Li XD (2008) Tracking historical lead pollution in the coastal area adjacent to the Yangtze River Estuary using lead isotopic compositions. Environ Pollut 156(3):1325–1331. https://doi.org/10.1016/j.envpol.2008.02.023
Article
Google Scholar
Hartman WD (1980) Ecology of Recent sclerosponges. In: Hartman WD, Wendt JW, Wiedenmayer F (eds) Living and fossil sponges. Sedimenta, Miami, pp 253–255
Google Scholar
Hartman WD, Goreau TF (1966) Ceratoporella, a living sponge with stromatoporoid affinities. Am Zool 6:563–564
Google Scholar
Hartman WD, Goreau TF (1975) A Pacific tabulate sponge, living representative of a new order of sclerosponges. Postilla 167:1–21. https://doi.org/10.5962/bhl.part.6459
Article
Google Scholar
Hathorne EC, Gagnon A, Felis T, Adkins J, Asami R, Boer W, Caillon N, Case D, Cobb KM, Douville E, deMenocal P, Eisenhauer A, Garbe-Schönberg D, Geibert W, Goldstein S, Hughen K, Inoue M, Kawahata H, Kölling M, Cornec FL, Linsley BK, McGregor HV, Montagna P, Nurhati IS, Quinn TM, Raddatz J, Rebaubier H, Robinson L, Sadekov A, Sherrell R, Sinclair D, Tudhope AW, Wei G, Wong H, Wu HC, You CF (2013) Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements. Geochem Geophys Geosyst 14(9):3730–3750. https://doi.org/10.1002/ggge.20230
Article
Google Scholar
Hirabayashi S, Yokoyama Y, Suzuki A, Miyairi Y, Aze T (2017) Multidecadal oceanographic changes in the western Pacific detected through high-resolution bomb-derived radiocarbon measurements on corals. Geochem Geophys Geosyst 18(4):1608–1617. https://doi.org/10.1002/2017GC006854
Article
Google Scholar
Inoue M, Hata A, Suzuki A, Nohara M, Shikazono N, Yim WW, Hantoro WS, Donghuai S, Kawahata H (2006) Distribution and temporal changes of lead in the surface seawater in the western Pacific and adjacent seas derived from coral skeletons. Environ Pollut 144(3):1045–1052. https://doi.org/10.1016/j.envpol.2005.11.048
Article
Google Scholar
Inoue M, Tanimizu M (2008) Anthropogenic lead inputs to the western Pacific during the 20th century. Sci Total Environ 406(1-2):123–130. https://doi.org/10.1016/j.scitotenv.2008.07.032
Article
Google Scholar
Iryu Y, Matsuda H, Machiyama H, Piller WE, Quinn TM, Mutti M (2006) Introductory perspective on the COREF Project. Island Arc 15(4):393–406. https://doi.org/10.1111/j.1440-1738.2006.00537.x
Article
Google Scholar
Keeling CD, Mook WG, Tans PP (1979) Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277(5692):121–123. https://doi.org/10.1038/277121a0
Article
Google Scholar
Kim S-T, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61(16):3461–3475. https://doi.org/10.1016/S0016-7037(97)00169-5
Article
Google Scholar
Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary one deposits. Geochim Cosmochim Acta 42(6):547–569. https://doi.org/10.1016/0016-7037(78)90001-7
Article
Google Scholar
Lazareth C, Willenz P, Navez J, Keppens E, Dehairs F, Andre L (2000) Sclerosponges as a new potential recorder of environmental changes: lead in Ceratoporella nicholsoni. Geology 28(6):515–518. https://doi.org/10.1130/0091-7613(2000)28515:SAANPR2.0.CO;2
Article
Google Scholar
Mann ME, Lees JM (1996) Robust estimation of background-noise and signal-detection in climatic time-series. Clim Change 33:409–445. https://doi.org/10.1007/BF00142586
McCulloch M, Fallon S, Wyndham T, Hendy E, Lough J, Barnes D (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421(6924):727–730. https://doi.org/10.1038/nature01361
Article
Google Scholar
Mishima M, Suzuki A, Nagao M, Ishimura T, Inoue M, Kawahata H (2010) Abrupt shift toward cooler condition in the earliest 20th century detected in a 165 year coral record from Ishigaki Island, southwestern Japan. Geophys Res Lett 37(15):L15609. https://doi.org/10.1029/2010GL043451
Article
Google Scholar
Moore MD, Charles CD, Rubenstone JL, Fairbanks RG (2000) U/Th-dated sclerosponges from the Indonesian Seaway record subsurface adjustments to west Pacific winds. Paleoceanography 15(4):404–416. https://doi.org/10.1029/1999PA000396
Article
Google Scholar
Morse JW, Bender ML (1990) Partition-coefficients in calcite: examination of factors influencing the validity of experimental results and their application to natural systems. Chem Geol 82(3–4):265–277. https://doi.org/10.1016/0009-2541(90)90085-L
Article
Google Scholar
Ohmori K, Watanabe T, Tanimizu M, Shirai K (2014) Lead concentration and isotopic composition in the Pacific sclerosponge (Acanthochaetetes wellsi) reflects environmental lead pollution. Geology 42(4):287–290. https://doi.org/10.1130/G34316.1
Article
Google Scholar
Okai T, Suzuki A, Kawahata H, Terashima S, Imai N (2002) Preparation of a new Geological Survey of Japan geochemical reference material: coral JCp-1. Geostand Newslett 26(1):95–99. https://doi.org/10.1111/j.1751-908X.2002.tb00627.x
Article
Google Scholar
PAGES 2k Consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6(5):339–346. https://doi.org/10.1038/ngeo1797
Article
Google Scholar
Prouty NG, Field ME, Stock JD, Jupiter SD, McCulloch M (2010) Coral Ba/Ca records of sediment input to the fringing reef of the southshore of Moloka’i, Hawai’i over the last several decades. Mar Pollut Bull 60(10):1822–1835. https://doi.org/10.1016/j.marpolbul.2010.05.024
Article
Google Scholar
Quay PD, Tilbrook B, Wong CS (1992) Oceanic uptake of fossil fuel CO2: carbon-13 evidence. Science 256(5053):74–79. https://doi.org/10.1126/science.256.5053.74
Article
Google Scholar
Reitner J (1992) “Coralline Spongien”. Der Versuch einer phylogenetisch- taxonomischen Analyse. Coralline sponges an attempt of a phylogenetic-taxonomic analysis. Berliner Geowiss Abh, Reihe E Palaeobiol 1:1–352
Google Scholar
Reitner J, Engeser TS (1987) Skeletal structures and habitats of recent and fossil Acanthochaetetes (subclass Tetractinomorpha, Demospongiae, Porifera). Coral Reefs 6(1):13–18. https://doi.org/10.1007/BF00302207
Article
Google Scholar
Reitner J, Gautret P (1996) Skeletal formation in the modern but ultraconservative chaetetid sponge Spirastrella (Acanthochaetetes) wellsi (Demospongiae, Porifera). Facies 34(1):193–208. https://doi.org/10.1007/BF02546164
Article
Google Scholar
Reitner J, Wörheide G, Lange R, Thiel V (1997) Biomineralization of calcified skeletons in three Pacific coralline demosponges- an approach to the evolution of basal skeletons. Cour Forsch Inst Senckenberg 201:371–383 https://doi.org/10.23689/fidgeo-769
Google Scholar
Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56(1):419–430. https://doi.org/10.1016/0016-7037(92)90142-6
Article
Google Scholar
Rosenheim BE, Swart PK, Thorrold SR (2005b) Minor and trace elements in sclerosponge Ceratoporella nicholsoni: biogenic aragonite near the inorganic endmember? Palaeogeogr Palaeoclimatol Palaeoecol 228(1-2):109–129. https://doi.org/10.1016/j.palaeo.2005.03.055
Article
Google Scholar
Rosenheim BE, Swart PK, Thorrold SR, Eisenhauer A, Willenz P (2005a) Salinity change in the subtropical Atlantic: secular increase and teleconnections to the North Atlantic Oscillation. Geophys Res Lett 32(2):L02603. https://doi.org/10.1029/2004GL021499
Article
Google Scholar
Rosenheim BE, Swart PK, Thorrold SR, Willenz P, Berry L, Latkoczy C (2004) High-resolution Sr/Ca records in sclerosponges calibrated to temperature in situ. Geology 32(2):145–148 https://doi.org/10.1130/G20117.1
Article
Google Scholar
Rosman KJR, Chisholm W, Boutron CF, Candelone JP, Görlach U (1993) Isotopic evidence for the source of lead in Greenland snows since the late 1960s. Nature 362(6418):333–335. https://doi.org/10.1038/362333a0
Article
Google Scholar
Rosenheim BE, Swart PK, Willenz P (2009) Calibration of sclerosponge oxygen isotope records to temperature using high-resolution δ18O data. Geochim Cosmochim Acta 73:5308–5319. https://doi.org/10.1016/j.gca.2009.05.047
Saha N, Rodriguez-Ramirez A, Nguyen AD, Clarka TR, Zhao J, Webb GE (2018) Seasonal to decadal scale influence of environmental drivers on Ba/Ca and Y/Ca in coral aragonite from the southern Great Barrier Reef. Sci Total Environ 639:1099–1109 https://doi.org/10.1016/j.scitotenv.2018.05.156
Article
Google Scholar
Shen GT, Boyle EA (1987) Lead in corals: reconstruction of historical industrial fluxes to the surface ocean. Earth Planet Sci Lett 82(3-4):289–304. https://doi.org/10.1016/0012-821X(87)90203-2
Article
Google Scholar
Stuiver M, Polach HA (1977) Discussion reporting of 14C data. Radiocarbon 19(3):355–363. https://doi.org/10.1017/S0033822200003672
Article
Google Scholar
Suzuki A, Kawamura N, Itaki T, Katayama H, Murakami S, Usami T, Kuroyanagi A (2009) Geochemical analyses on seawater samples collected during the GH08 cruise in the eastern offshore of Okinawa Island. In: Arak K (ed) Marine Geological and Geophysical Studies around Okinawa Islands eastern off of Okinawa Island, Preliminary Reports on Researches in the 2008 Fiscal Year, GSJ Interim Rep 46. Geol Surv Jpn, Natl Inst Adv Ind Sci and Technol, Tsukuba, pp 86–92
Google Scholar
Swart PK, Greer L, Rosenheim BE, Moses CS, Waite AJ, Winter A, Dodge RE, Helmle K (2010) The 13C Suess effect in scleractinian corals mirror changes in the anthropogenic CO2 inventory of the surface oceans. Geophys Res Lett 37(5):L05604. https://doi.org/10.1029/2009GL041397
Article
Google Scholar
Swart PK, Thorrold S, Rosenheim B, Eisenhauer A, Harrison CGA, Grammer M, Latkoczy C (2002) Intra-annual variation in the stable oxygen and carbon and trace element composition of sclerosponges. Paleoceanography 17(3):1045–17-12. https://doi.org/10.1029/2000PA000622
Article
Google Scholar
Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong CS, Delille B, Bates NR, de Baar HJW (2009) Climatological mean and decadal change in surface ocean pCO2, and net Sea-air CO2 flux over the global oceans. Deep-Sea Res II 56(8-10):554–577. https://doi.org/10.1016/j.dsr2.2008.12.009
Article
Google Scholar
Takayanagi H, Asami R, Abe O, Miyajima T, Kitagawa H, Iryu Y (2012) Carbon- and oxygen-isotope compositions of a deep-water modern brachiopod Campagea japonica collected off Aguni-jima, Central Ryukyu Islands, southwestern Japan. Geochem J 46(2):77–87. https://doi.org/10.2343/geochemj.1.0153
Article
Google Scholar
Tarutani T, Clayton RN, Mayeda TK (1969) The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium and carbonate and water. Geochim Cosmochim Acta 33(8):987–996. https://doi.org/10.1016/0016-7037(69)90108-2
Article
Google Scholar
Vacelet J (1985) Coralline sponges and the evolution of Porifera. In: Conway Morris S, George JD, Gibson R, Platt HM (eds) The origins and relationships of lower invertebrates. Clarendon Press, Oxford, pp 1–13
Google Scholar
Waite AJ, Swart PK, Rosenheim BE, Rosenberg AD (2018) Improved calibration of the Sr/Ca-temperature relationship in the sclerosponge Ceratoporella nicholsoni: re-evaluating Sr/Ca derived records of post-industrial era warming. Chem Geol 488:56–61 https://doi.org/10.1016/j.chemgeo.2018.03.005
Article
Google Scholar
Watanabe T, Kawamura T, Yamazaki A, Murayama M, Yamano H (2014) A 106 year monthly coral record reveals that the East Asian summer monsoon modulates winter PDO variability. Geophys Res Lett 41(10):3609–3614. https://doi.org/10.1002/2014GL060037
Article
Google Scholar
Willenz P, Hartman WD (1989) Micromorphology and ultrastructure of Caribbean sclerosponges. Mar Biol 103(3):387–401. https://doi.org/10.1007/BF00397274
Article
Google Scholar
Wood R (1990) Reef-building sponges. Am Sci 78:224–235
Google Scholar
Wörheide G (1998) The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the Indo-Pacific. Micromorphology, ultrastructure, biocalcification, isotope record, taxonomy, biogeography, phylogeny. Facies 38(1):1–88. https://doi.org/10.1007/BF02537358
Article
Google Scholar
Wörheide G, Reitner J, Gautret P (1997) Comparison of biocalcification processes in the two coralline demosponges Astrosclera willeyana Lister 1900 and “Acanthochaetetes” wellsi Hartman and Goreau 1975. In: Lessios HA, Macintyre IG (eds) Proc 8th Int Coral Reef Symp. Smithsonian Tropical Research Institute, Panama, pp 1427–1432
Google Scholar
Wu HC, Grottoli AG (2010) Stable oxygen isotope records of corals and a sclerosponge in the Western Pacific warm pool. Coral Reefs 29(2):413–418. https://doi.org/10.1007/s00338-009-0576-7
Article
Google Scholar
Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochim Cosmochim Acta 59(1):107–114. https://doi.org/10.1016/0016-7037(95)91550-D
Article
Google Scholar
Zheng J, Tan MG, Shibata Y, Tanaka A, Li Y, Zhang GL, Zhang YM, Shan Z (2004) Characteristics of lead isotope ratios and elemental concentrations in PM10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline. Atmos Environ 38(8):1191–1200. https://doi.org/10.1016/j.atmosenv.2003.11.004
Article
Google Scholar