Ahagon N, Tanaka Y, Ujiie H (1993) Florisphaera profunda, a possible nannoplankton indicator of late Quaternary changes in sea-water turbidity at the northwestern margin of the Pacific. Mar Micropaleontol 22:255–273. https://doi.org/10.1016/0377-8398(93)90047-2
Aizawa C, Oba T, Okada H (2004) Late Quaternary paleoceanography deduced from coccolith assemblages in a piston core recovered off the central Japan coast. Mar Micropaleontol 52:277–297. https://doi.org/10.1016/j.marmicro.2004.05.005
Article
Google Scholar
Anthonissen DE, Ogg JG (2012) Appendix 3 Cenozoic and Cretaceous biochronology of planktonic foraminifera and calcareous nannofossils. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The Geologic Time Scale 2012. Elsevier, Boston, USA 2:1083–1124
Google Scholar
Berger WH, Yasuda MK, Bickert T, Wefer G, Takayama T (1994) Quaternary time scale for the Ontong Java Plateau: Milankovitch template for Ocean Drilling Program Site 806. Geology 22:463–467. https://doi.org/10.1130/0091-7613(1994)022<0463:QTSFTO>2.3.CO;2
Article
Google Scholar
Bown PR, Lees JA, Young JR (2004) Calcareous nannoplankton evolution and diversity through time. In: Thierstein HR, Young JR (eds) Coccolithophores. Springer, Berlin, Heidelberg, pp 481–508
Chapter
Google Scholar
Brown E, Colling A, Park D, Phillips J, Rothery D, Wright J (2001) Chapter 3-Ocean Currents, Ocean Circulation (Second Edition). Butterworth-Heinemann, Oxford, pp 37–78
Google Scholar
Bukry D (1973) Low-latitude coccolith biostratigraphic zonation. In: Edgar NT, Saunders JB, et al. Initial Reports DSDP 15, Washington (U.S. Govt. Printing Office), 685–703. https://doi.org/10.2973/dsdp.proc.15.116.1973
Cachão M, Moita MT (2000) Coccolithus pelagicus, a productivity proxy related to moderate fronts off Western Iberia. Mar Micropaleontol 39:131–155. https://doi.org/10.1016/S0377-8398(00)00018-9.
Cherepanova MV, Pushkar VS, Razjigaeva N, Kumai H, Koizumi I (2002) Diatom biostratigraphy of the Kazusa Group, Boso Peninsula, Honshu, Japan. Quat Res (Daiyonki Kenkyu) 41:1–10. https://doi.org/10.4116/jaqua.41.1
Article
Google Scholar
Chiyonobu S, Mori Y, Oda M (2012) Reconstruction of paleoceanographic conditions in the northwestern Pacific Ocean over the last 500 kyr based on calcareous nannofossil and planktic foraminiferal assemblages. Mar Micropaleontol 96(97):29–37. https://doi.org/10.1016/j.marmicro.2012.07.002
Article
Google Scholar
Flores JA, Sierro FJ (1997) Revised technique for calculation of calcareous nannofossil accumulation rates. Mircopaleontol 43:321–324
Gallagher SJ, Kitamura A, Iryu Y, Itaki T, Koizumi I, Hoiles PW (2015) The Pliocene to recent history of the Kuroshio and Tsushima warm currents: a multi-proxy approach. Prog Earth Planet Sci 2:1–17. https://doi.org/10.1186/s40645-015-0045-6
Gallagher SJ, Sagawa T, Henderson ACG, Saavedra-Pellitero M, De Vleeschouwer D, Black H, Itaki T, Toucanne S, Bassetti M-A, Clemens S, Anderson W, Alvares-Zarikian C, Tada R (2018) East Asian monsoon history and paleoceanography of the Japan Sea over the last 460,000 years. Paleoceanogr. Paleoclimatol. 33:683–702. https://doi.org/10.1029/2018PA003331
Gradstein FM, Ogg JG, Schmitz M, Ogg G (2012) The Geologic Time Scale 2012. Elsevier, Boston, USA. https://doi.org/10.1016/C2011-1-08249-8
Hagino K (1997) Distribution of living coccolithophores in the western Pacific Ocean off the coast of Northwest Japan. Fossil. 63:1–19 (in Japanese with English abstract)
Google Scholar
Hagino K, Horiguchi T, Takano Y, Matsuoka H (2011) Geological and biological approaches of speciation with size variation in coccolithophores. Bull. Plank. Soc. Japan. 58:73–80 (in Japanese with English abstract)
Google Scholar
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:9 pp http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Haneda Y, Okada M, Kubota Y, Suganuma Y (2020) Millennial-scale hydrographic changes in the northwestern Pacific during marine isotope stage 19: teleconnections with ice melt in the North Atlantic. Earth Planet Sci Lett 531. https://doi.org/10.1016/j.epsl.2019.115936
Hay WW, Beaudry FM (1973) Calcareous nannofossils-Leg 15. In: Edgar NT, Saunders JB, et al. Initial Reports DSDP 15, Washington (U.S. Govt. Printing Office), 625–683 https://doi.org/10.2973/dsdp.proc.15.116.1973
Head MJ, Gibbard PL (2005) Early–Middle Pleistocene transitions: an overview and recommendation for the defining boundary. In Head MJ, Gibbard PL (eds) Early–Middle Pleistocene Transitions: The Land–Ocean Evidence. Geological Society, London, Special Publications 247:1–18. https://doi.org/10.1144/GSL.SP.2005.247.01.01
Article
Google Scholar
Ito M (1992) High-frequency depositional sequences of the upper part of the Kazusa Group, a middle Pleistocene forearc basin fill in Boso Peninsula, Japan. Sedimentary Geology 76:155–175. https://doi.org/10.1016/0037-0738(92)90081-2
Article
Google Scholar
Ito M (1998) Submarine fan sequences of the lower Kazusa Group, a Plio-Pleistocene forearc basin fill in the Boso Peninsula, Japan. Sedimentary Geology 122:69–93. https://doi.org/10.1016/S0037-0738(98)00099-2
Article
Google Scholar
Ito M, Kameo K, Satoguchi Y, Masuda F, Hiroki Y, Takano O, Nakajima T, Suzuki N (2016) Neogene–Quaternary sedimentary successions. In: Moreno T, Wallis S, Kojima T, Gibbons W (eds) The Geology of Japan, Geological Society, London, Geology of Series, 309–337
Ito M, Katsura Y (1992) Inferred glacio-eustatic control for high-frequency depositional sequences of the Plio-Pleistocene Kazusa Group, a forearc basin fill in Boso Peninsula, Japan. Sedimentary Geology 80:67–75. https://doi.org/10.1016/0037-0738(92)90032-M
Article
Google Scholar
Kazaoka O, Suganuma Y, Okada M, Kameo K, Head MJ, Yoshida T, Kameyama S, Nirei H, Aida N, Kumai H (2015) Stratigraphy of the Kazusa Group, Central Japan: a high-resolution marine sedimentary sequence from the Lower to Middle Pleistocene. Quat Int 383:116–135. https://doi.org/10.1016/j.quaint.2015.02.065
Article
Google Scholar
Kimura S, Nakata H, Okazaki Y (2000) Biological production in meso-scale eddies caused by frontal disturbances of the Kuroshio Extension. ICES Journal of Marine Science 57:133–142. https://doi.org/10.1006/jmsc.1999.0564
Article
Google Scholar
Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Paver CR, Reagan JR, Johnson DR, Hamilton M, Seidov D (2013) World Ocean Atlas 2013, Volume 1: Temperature. In: Levitus S, Mishonov A, (Technical ed) NOAA Atlas NESDIS 73: p 40
Lourens L, Hilgen F, Shackleton NJ, Lasker J, Wilson D. (2004) 21 The Neogene Period. In: Gradstein FM, Odd JG, Smith AG (eds) A Geologic Time Scale 2004. Cambridge University Press, Cambridge, 409–440.
Maiorano P, Marino M (2004) Calcareous nannofossil bioevent and environmental control on temporal and special patterns at the early-middle Pleistocene. Mar Micropaleontol 53:405–422. https://doi.org/10.1016/j.marmicro.2004.08.003
Article
Google Scholar
Maiorano P, Marino M, Di Stefano E, Ciaranfi N (2004) Calcareous nannofossil events in the lower–middle Pleistocene transition at the Montalbano Jonico section and ODP Site 964: calibration with isotope and sapropel stratigraphy. Riv Ital Paleontol Stratigr 110:547–556. https://doi.org/10.13130/2039-4942/5823
Matsuoka H, Okada H (1989) Quantitative analysis of Quaternary nannoplankton in the subtropical northwestern Pacific Ocean. Mar Micropaleontol 14:97–118. https://doi.org/10.1016/0377-8398(89)90033-9
Article
Google Scholar
Matsuoka H, Okada H (1990) Time-progressive morphometric changes of the genus Gephyrocapsa in the Quaternary sequence of the tropical Indian Ocean, Site 709. In Duncan RA, Backman J, Peterson LC et al. Proc ODP, Sci Results, 115: College Station, TX (Ocean Drilling Program), 255–270. https://doi.org/10.2973/odp.proc.sr.115.155.1990
Molfino B, McIntyre A (1990) Precessional forcing of nutricline dynamics in the Equatorial Atlantic. Science 249:766–769. https://doi.org/10.1126/science.249.4970.766
Article
Google Scholar
Narciso A, Cachão M, de Abreu L (2006) Coccolithus pelagicus subsp. pelagicus versus Coccolithus pelagicus subsp. braarudii (Coccolithophore, Haptophyta): a proxy for surface subarctic Atlantic waters off Iberia during the last 200 kyr. Mar Micropaleontol 59:15–34. https://doi.org/10.1016/j.marmicro.2005.12.001
Niitsuma N (1971) Detailed study of the sediments recording the Matuyama–Brunhes geomagnetic reversal. Tohoku Univ Sci Rep 2nd Ser (Geol) 43: 1–39
Niitsuma N (1976) Magnetic stratigraphy in the Boso Peninsula. Jour Geol Soc Japan 82:163–181 (in Japanese with English abstract)
Article
Google Scholar
Nishida N, Kazaoka O, Izumi K, Suganuma Y, Okada M, Yoshida T, Ogitsu I, Nakazato H, Kameyama S, Kagawa A, Morisaki M, Nirei H (2016) Sedimentary processes and depositional environments of a continuous marine succession across the Lower–Middle Pleistocene boundary: Kokumoto Formation, Kazusa Group, central Japan. Quat Int 397:3–15. https://doi.org/10.1016/j.quaint.2015.06.045
Article
Google Scholar
Oda M (1977) Planktonic foraminiferal biostratigraphy of the late Cenozoic sedimentary sequence, Central Honshu, Japan. Tohoku Univ Sci Rep 2nd Ser (Geol) 48: 1–76
Okada H, Wells P (1997) Late Quaternary nannofossil indicators of climate change in two deep-sea cores associated with the Leeuwin Current off Western Australia. Palaeogeogr Palaeoclimatol Palaeoecol 131:413–432. https://doi.org/10.1016/S0031-0182(97)00014-X
Article
Google Scholar
Okada M, Niitsuma N (1989) Detailed paleomagnetic records during the Brunhes–Matuyama geomagnetic reversal and a direct determination of depth lag for magnetization in marine sediments. Phys Earth Planet Inter 56:133–150. https://doi.org/10.1016/0031-9201(89)90043-5
Article
Google Scholar
Okada M, Suganuma Y, Haneda Y, Kazaoka O (2017) Paleomagnetic direction and paleointensity variations during the Matuyama–Brunhes polarity transition from a marine succession in the Chiba composite section of the Boso Peninsula, central Japan. Earth, Planets, Space 69(45). https://doi.org/10.1186/s40623-017-0627-1
Pälike H, Lyle MW, Nishi H, Raffi I, Ridgwell A, Gamage K, Klaus A, Acton G, Anderson L, Backman J, Baldauf J, Beltran C, Bohaty SM, Bown P, Busch W, Channell JET, Chun COJ, Delaney M, Dewangan P, Jones TD, Edgar KM, Evans H, Fitch P, Foster GL, Gussone N, Hasegawa H, Hathorne ED, Hayashi H, Herrle JO, Holbourn A, Hovan S, Hyeong K, Iijima K, Ito T, Kamikuri S, Kimoto K, Kuroda J, Leon-Rodriguez L, Malinverno A, Moore TC Jr, Murphy BH, Murphy DP, Nakamura H, Ogane K, Ohneiser C, Richter C, Robinson R, Rohling EJ, Romero O, Sawada K, Scher H, Schneider L, Sluijs A, Takata H, Tian J, Tsujimoto A, Wade BS, Westerhold T, Wilkens R, Williams T, Wilson PA, Yamamoto Y, Yamamoto S, Yamazaki T, Zeebe RE (2012) A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature 488:609–614. https://doi.org/10.1038/nature11360
Pickering KT, Souter C, Oba T, Taira A, Schaaf M, Platzman E (1999) Glacio-eustatic control on deep-marine clastic forearc sedimentation, Pliocene–mid-Pleistocene (ca 1180–600 ka) Kazusa Group SE Japan. Jour Geol Soc London 156:125–136. https://doi.org/10.1144/gsjgs.156.1.0125
Article
Google Scholar
Qiu B (2001) Kuroshio and Oyashio currents. In: Steele JH, Thorpe SA, Turekian KK (eds), Encyclopedia of Ocean Sciences, London, Academic Press, pp 1413–1425. https://doi.org/10.1006/rwos.2001.0350
Raffi I (2002) Revision of the early-middle Pleistocene calcareous nannofossil biochronology (1.75–0.85 Ma). Mar Micropaleontol 45:25–55. https://doi.org/10.1016/S0377-8398(01)00044-5
Article
Google Scholar
Raffi I, Backman J, Fornaciari E, Pälike H, Rio D, Lourens L, Hilgen F (2006) A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat Sci Rev 25:3113–3137. https://doi.org/10.1016/j.quascirev.2006.07.007
Article
Google Scholar
Raffi I, Backman J, Rio D, Shackleton NJ (1993) Plio-Pleistocene nannofossil biostratigraphy and calibration to oxygen isotope stratigraphies from Deep Sea Drilling Project Site 607 and Ocean Drilling Program Site 677. Paleoceanography 8:387–408. https://doi.org/10.1029/93PA00755
Rio D (1982) The fossil distribution of coccolithophore genus Gephyrocapsa Kamptner and related Plio-Pleistocene chronostratigraphic problems. In: Prell WL, Gardner JV, et al. Init Repts DSDP 68, Washington (U.S. Govt. Printing Office), 325–343. https://doi.org/10.2973/dsdp.proc.68.109.1982
Rio D, Fornaciari E, Raffi I (1990) Late Oligocene through early Pleistocene calcareous nannofossils from western equatorial Indian Ocean (Leg 115). In: Duncan RA, Backman J, Peterson LC, et al, Proc ODP, Sci Res 115, College Station, TX (Ocean Drilling Program), 175–235. https://doi.org/10.2973/odp.proc.sr.115.152.1990
Sato T (1989) Uppermost Cenozoic calcareous nannofossil biostratigraphy of Japan. Institute of Geology and Paleontology, Faculty of Science, Tohoku University, Doctoral dissertation, p 117 (in Japanese)
Google Scholar
Sato T, Chiyonobu, S, Hodell DA (2009) Data report: Quaternary calcareous nannofossil datums and biochronology in the North Atlantic Ocean, IODP Site U1308. In Channell JET, Kanamatsu T, Sato T, Stein R, Alvarez Zarikian CA, Malone MJ, the Expedition 303/306 Scientists, Proc IODP, 303/306: College Station, TX (Integrated Ocean Drilling Program Management International, Inc), https://doi.org/10.2204/iodp.proc.303306.210.2009
Sato T, Kameo K, Mita I (1999) Validity of the latest Cenozoic calcareous nannofossil datums and its application to the tephrochronology. Earth Science (Chikyu Kagaku) 53:265–274 (in Japanese with English abstract). https://doi.org/10.15080/agcjchikyukagaku.53.4_265
Article
Google Scholar
Sato T, Takayama T (1992) A stratigraphically significant new species of the calcareous nannofossil Reticulofenestra asanoi. In: Ishizaki K, Saito T (eds) Centenary of Japanese Micropaleontology. Terra Scientific Publishing Company, Tokyo, pp 457–460
Google Scholar
Sato T, Takayama T, Kato M, Kudo T, Kameo K (1988) Calcareous microfossil biostratigraphy of the uppermost Cenozoic formations distributed in the coast of the Japan Sea, Part 4: Conclusion. Jour Jap Assoc Petr Tech 53:474–491 (in Japanese with English abstract). https://doi.org/10.3720/japt.53.475
Satoguchi Y, Nagahashi Y (2012) Tephrostratigraphy of the Pliocene to Middle Pleistocene Series in Honshu and Kyushu Islands, Japan. Island Arc 21:149–169. https://doi.org/10.1111/j.1440-1738.2012.00816.x
Article
Google Scholar
Schlitzer R (2020) Ocean Data view. http://odv.awi.de.
Schulz M, Mudelsee M (2002) REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci. 28:421–426
Article
Google Scholar
Seno T, Takano T (1989) Seismotectonics at the Trench-Trench-Trench Triple Junction off Central Honshu. Pure and Applied Geophysics 129:27–40
Article
Google Scholar
Suganuma Y, Haneda Y, Kameo K, Kubota Y, Hayashi H, Itaki T, Okuda M, Head MJ, Sugaya M, Nakazato H, Igarashi A, Shikoku K, Hongo M, Watanabe M, Satoguchi Y, Takeshita Y, Nishida N, Izumi K, Kawamura K, Kawamata M, Okuno J, Yoshida T, Ogitsu I, Yabusaki H, Okada M (2018) Paleoclimatic and paleoceanographic records of Marine Isotope Stage 19 at the Chiba composite section, central Japan: a reference for the Early–Middle Pleistocene boundary. Quat Sci Rev 191:406–430. https://doi.org/10.1016/j.quascirev.2018.04.022
Suganuma Y, Okada M, Horie K, Kaiden H, Takehara M, Senda R, Kimura J, Kawamura K, Haneda Y, Kazaoka O, Head MJ (2015) Age of Matuyama–Brunhes boundary constrained by U-Pb zircon dating of a widespread tephra. Geology 43(6):491–494. https://doi.org/10.1130/G36625.1
Suzuki Y, Kodama K, Mitsunashi T, Oka S, Urabe A, Endo T, Horiguchi M, Eto T, Kikuchi T, Yamauchi S, Nakajima T, Tokuhashi S, Nirei H, Hara Y, Nakayama T, Nasu N, Kagami H, Kimura M, Honza E (1995) Explanatory text of geological map of Tokyo Bay and adjacent areas (2nd ed), scale 1:100,000 Miscellaneous Map series (20). Geol Surv Japan, p 109 (in Japanese with English abstract)
Takayama T (1967) First report on nannoplankton of the Upper Tertiary and Quaternary of the Southern Kwanto region, Japan. Jahrb Geol Bundesanst Wien 110:169–198
Google Scholar
Takayama T (1973) On the distribution of calcareous nannoplankton in the youngest Cenozoic of Japan, Memoirs of the Geological Society of Japan. Neogene Biostratigraphy and Radiometric Dating of Japan 8:45–63
Google Scholar
Takayama T, Sato T (1987) Coccolith Biostratigraphy of the North Atlantic Ocean, Deep Sea Drilling Project Leg 94. In: Ruddiman WF, Kidd RB, Thomas E et al. Init Repts DSDP, 94: Washington (U.S. Govt. Printing Office) 651–702. https://doi.org/10.2973/dsdp.proc.94.113.1987
Takeshita Y, Matsushima N, Teradaira H, Uchiyama T, Kumai H (2016) A marker tephra bed close to the Lower-Middle Pleistocene boundary: Distribution of the Ontake-Byakubi Tephra Bed in central Japan. Quat Int 397:27–38. https://doi.org/10.1016/j.quaint.2015.03.054
Tanaka Y (1991) Calcareous nannoplankton thanatocoenoses in surface sediments from seas around Japan. Tohoku Univ Sci Rep 2nd Ser (Geol) 61(2):127–198
Google Scholar
Tanaka Y (1997) Sedimentary processes from the shelf edge to the Okinawa Trough in the East China Sea based on the coccolith assemblages. Jour Sedimentol Soc Japan 44:33–41 (in Japanese with English abstract)
Tokuhashi S, Watanabe M (2008) 4.2 Kazusa Group and its corresponding formations. In: Amano K et al (eds) Sato M. Asakura, Kanto District, pp 281–292 (in Japanese)
Google Scholar
Tsuji T, Miyata Y, Okada M, Mita I, Nakagawa H, Sato Y, Nakamizu M (2005) High-resolution chronology of the lower Pleistocene Otadai and Umegase Formations of the Kazusa Group, Boso Peninsula, central Japan–Chronostratigraphy of the JNOC TR-3 cores based on oxygen isotope, magnetostratigraphy and calcareous nannofossil–. Jour Geol Soc Japan, 111: 1–20 (in Japanese with English abstract) https://doi.org/10.5575/geosoc.111.1
Tzedakis PC, Channell JET, Hodell DA, Kleiven HF, Skinner LC (2012) Determining the natural length of the current interglacial. Nat. Geosci. 5:138–141. https://doi.org/10.1038/ngeo1358
Article
Google Scholar
Unoki S, Kubota M (1996) Waves and currents in the ocean. Tokai University Press, p 356
Wei W (1993) Calibration of upper Pliocene-lower Pleistocene nannofossil events with oxygen isotope stratigraphy. Paleoceanography 8:85–99. https://doi.org/10.1029/92PA02504
Yasuda I (2003) Hydrographic structure and variability in the Kuroshio-Oyashio transition areas. Jour Oceanography 59:389–402. https://doi.org/10.1023/A:1025580313836
Article
Google Scholar
Young JR, Bown PR, Lees JA (2017) Nannotax3 website International Nannoplankton Association Accessed 21 Apr 2017. http://www.mikrotaxorg/Nannotax3