Amante C, Eakins BW (2009) ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis. In: NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. doi:https://doi.org/10.7289/V5C8276M. Accessed 23 Dec 2019
AMAP (2011) Snow, water, ice and permafrost in the Arctic (SWIPA): climate change and the cryosphere. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.
AMAP (2017) Snow, water, ice and permafrost in the Arctic (SWIPA) 2017. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway
Argus DF, Peltier WR, Drummond R, Moore AW (2014) The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based upon GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys J Int 198(1):537–563. https://doi.org/10.1093/gji/ggu140
Article
Google Scholar
Beilman DW, MacDonald GM, Smith LC, Reimer PJ (2009) Carbon accumulation in peatlands of West Siberia over the last 2000 years. Gloval Biogeochemical Cycles 23:GB1012. https://doi.org/10.1029/2007GB003112
Article
Google Scholar
Belyea LR, Baird AJ (2006) Beyond “The limits to peat bog growth”: cross-scale feedback in peatland development. Ecol Monogr 76(3):299–322
Article
Google Scholar
Bindshadler RA, Nowicki S, Abe-Ouchi A, Aschwanden A, Choi H, Fastook J, Granzow G, Greve R, Gutowski G, Herzfeld U, Jackson C, Johnson J, Khroulev C, Levermann A, Lipscomp WH, Martin MA, Morlighem M, Parizek BR, Pollard D, Price SF, Ren D, Saito F, Sato T, Seddik H, Seroussi H, Takahashi K, Walker R, Wang WL (2013) Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). J Glaciol 59(214). https://doi.org/10.3189/2013JoG12J125
Boudreau BP, Ruddick BR (1991) On a reactive continuum representation of organic matter diagenesis. Am J Sci 291:507–538
Article
Google Scholar
Braconnot P, Harrison SP, Kageyama M, Bartlein PJ, Masson-Delmotte V, Abe-Ouchi A, Otto-Bliesner B, Zhao Y (2012) Evaluation of climate models using palaeoclimatic data. Nat Clim Chang 2:417–424. https://doi.org/10.1038/NCLIMATE1456
Article
Google Scholar
Bradley RS (1999) Paleoclimatology: reconstructing climates of the Quaternary. Second edition Academic Press, San Diego
Google Scholar
Brown J, Ferrians OJ, Heginbottom JA, Melnikov ES (1998, revised 2001) Circum-arctic map of permafrost and ground ice conditions. National Snow and Ice Data Center, Digital media, Boulder, CO
Charman DJ, Amesbury MJ, Hinchliffe W, Hughes PDM, Mallon G, Blake WH, Daley TJ, Gallego-Sala AV, Mauquoy D (2019) Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America. Quat Sci Rev 121:110–119
Article
Google Scholar
Clymo RS (1984) The limits to peat bog growth. Philos Trans R Soc Lond B 303:605–654
Article
Google Scholar
Clymo RS (1992) Models of peat growth. Suo 43:127–136
Google Scholar
Dean JF, van derVelde Y, Garnett MH, Dinsmore KJ, Baxter R, Lessels JS, Smith P, Street LE (2018a) Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback. Environ Res Lett 13:034024
Article
Google Scholar
Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, Egger M, Jetten MSM, de Jong AEE, Meisel OH, Rasigraf O, Slomp CP, in’t Zandt MH, Dolman AJ (2018b) Methane feedbacks to the global climate system in a warmer world. Rev Geophys, 56:207–250. doi:https://doi.org/10.1002/2017RG000559
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteor Soc 137:553–597
Article
Google Scholar
Dyke AS (2005) Late quaternary vegetation history of northern North America based on pollen macrofossil, and faunal remains. Géog Phys Quatern 59(2-3):211–262
Google Scholar
French HM (2007) The periglacial environment. John Wiley & Sons Ltd., Chichester
Book
Google Scholar
French HM, Shur Y (2010) The principles of cryostratigraphy. Earth Sci Rev 101:190–206
Article
Google Scholar
Gido NAA, Bagherbandi M, Sjöberg LE, Tenze R (2019) Studying permafrost by integrating satellite and in situ data in the northern high-latitude regions. Acta Geophysica 67:721–734. https://doi.org/10.1007/s11600-019-00276-4
Article
Google Scholar
Hamilton TD, Craig JL, Sellmann PV (1988) The Fox permafrost tunnel: a late Quaternary geologic record in central Alaska. Geological Society of America Bulletin 100:948–969.
Article
Google Scholar
Harden JW, Sundquist ET, Stallard RF, Mark RK (1992) Dynamics of soil carbon during deglaciation of the Laurentide Ice Sheet. Science. 258(5090):1921–1924
Article
Google Scholar
Hugelius G, Tarnocai C, Broll G, Canadell JG, Kuhry P, Swanson DK (2013a) The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst Sci Data 5:3–13
Article
Google Scholar
Hugelius G, Bockheim JG, Camill P, Elberling B, Grosse G, Harden JW, Johnson K, Jorgenson T, Koven CD, Kuhry P, Michaelson G, Mishra U, Palmtag J, Ping C-L, O'Donnell J, Schirrmeister L, Schuur EAG, Sheng Y, Smith LC, Strauss J, Yu Z (2013b) A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth System Science Data 5:393–402. https://doi.org/10.5194/essd-5-393-2013
Article
Google Scholar
Hugelius G, Strauss J, Zubrzycki S, Harden JW, EAG S, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O’Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag, Kuhry P (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11(23):6573–6593
Article
Google Scholar
IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
Iwahana G, Uchida M, Liu L, Gong W, Meyer F, Guritz R, Yamanokuchi T, Hinzman L (2016) InSAR detection and field evidence for thermokarst after a tundra wildfire, using ALOS-PALSAR. Remote Sens 8(3):218
Article
Google Scholar
Kanevskiy M, Fortier D, Shur Y, Bray M, Jorgenson T. (2008) Detailed cryostratigraphic studies of syngenetic permafrost in the winze of the CRREL permafrost tunnel, Fox, Alaska. In: Kane DL, Hinkel KM (eds) Proceedings of the ninth international conference on permafrost, Fairbanks, 889–894
Kanevskiy M, Shur Y, Fortier D, Jorgenson MT, Stephani E (2011) Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure. Quat Res 75:584–596. https://doi.org/10.1016/j.yqres.2010.12.003
Article
Google Scholar
Klein ES, Booth RK, Yu Z, Mark BG, Stansell ND (2013) Hydrology-mediated differential response of carbon accumulation to late Holocene climate change at two peatlands in Southcentral Alaska. Quat Sci Rev 64:61–75
Article
Google Scholar
Kokelj SV, Burn CR (2003) Ground ice and soluble cations in near-surface permafrost, Inuvik, Northwest Territories, Canada. Permafr Periglac Process 14:275–289
Article
Google Scholar
Lenton TM (2012) Arctic climate tipping points. Ambio 41(1):10–22. https://doi.org/10.1007/s13280-011-0221-x
Article
Google Scholar
Liu C, Westman CJ, Berg B, Kutsch W, Wang GZ, Man R, Ilvesniemi H (2004) Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia. Glob Ecol Biogeogr 13(2):105–114. https://doi.org/10.1111/j.1466-882X.2004.00072.x
Article
Google Scholar
Loisel J, van Bellen S, Pelletier L, Talbot J, Hugelius G, Karran D, Yu Z, Nichols J, Holmquist J (2017) Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum. Earth Sci Rev 165:59–80
Article
Google Scholar
Luo Z, Wang G, Wang E (2019) Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate. Nat Commun 10:3688. https://doi.org/10.1038/s41467-019-11597-9
Article
Google Scholar
MacDonald GM, Beilman DW, Kremenetski KV, Sheng Y, Smith LC, Velichko AA (2006) Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314:285–288. https://doi.org/10.1126/science.1131722
Article
Google Scholar
MacDougall AH, Knutti R (2016) Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach. Biogeosciences 13:2123–2136. https://doi.org/10.5194/bg-13-2123-2016
Article
Google Scholar
Miyazaki S, Saito K, Mori J, Yamazaki T, Ise T, Arakida H, Hajima T, Iijima Y, Machiya H, Sueyoshi T, Yabuki H, Burke EJ, Hosaka M, Ichii K, Ikawa H, Ito A, Kotani A, Matsuura Y, Niwano M, Nitta T, O’ishi R, Ohta T, Park H, Sasai T, Sato A, Sato H, Sugimoto A, Suzuki R, Tanaka K, Yamaguchi S, Yoshimura K (2015) The GRENE-TEA model intercomparison project (GTMIP): overview and experiment protocol for Stage 1. Geosci Model Dev 8:2841–2856. https://doi.org/10.5194/gmd-8-2841-2015
Article
Google Scholar
Morris PJ, Swindles GT, Valdes PJ, Ivanovic RF, Gregoire LJ, Smith MW, Tarasov L, Haywood AM, Bacon KL (2018) Global peatland initiation driven by regionally asynchronous warming. PNAS 115(19):4851–4856. https://doi.org/10.1073/pnas.1717838115
Article
Google Scholar
Murton JB, Goslar T, Edwards ME, Bateman MD, Danilov PP, Savvinov GN, Gubin SV, Ghaleb B, Haile J, Kanevskiy M, Lozhkin AV, Lupachev AV, Murton DK, Shur Y, Tikhonov A, Vasil'chuk AC, Vasil'chuk YK, Wolfe SA (2015) Palaeoenvironmental interpretation of Yedoma silt (Ice Complex) deposition as cold-climate loess, Duvanny Yar, Northeast Siberia. Permafr Periglac Process 26(3):208–288. https://doi.org/10.1002/ppp.1843
Article
Google Scholar
Muskett RR, Romanovsky VE (2011) Alaskan permafrost groundwater storage changes derived from grace and ground measurements. Remote Sens 3:378–397. https://doi.org/10.3390/rs3020378
Article
Google Scholar
Narita K, Harada K, Saito K, Sawada Y, Fukuda M, Tsuyuzaki S (2015) Vegetation and permafrost thaw depth 10 years after a tundra fire in 2002, Seward Peninsula, Alaska. Arct Antarct Alp Res 47(3):547–559. https://doi.org/10.1657/AAAR0013-031
Article
Google Scholar
O’Neill HB, Wolfe SA, Duchesne C (2019) New ground ice maps for Canada using a paleogeographic modelling approach. Cryosphere 13:753–773. https://doi.org/10.5194/tc-13-753-2019
Article
Google Scholar
Olefeldt D, Goswami S, Grosse G, Hayes D, Hugelius G, Kuhry P, McGuire AD, Romanovsky VE, Sannel ABK, Schuur EAG, Turetsky MR (2016) Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Comm 7:13043. https://doi.org/10.1038/ncomms13043
Article
Google Scholar
Peltier WR, Argus DF, Drummond R (2015) Space geodesy constrains ice-age terminal deglaciation: the global ICE-6G_C (VM5a) model. Geophys. Res. Solid Earth 120:450–487. https://doi.org/10.1002/2014JB011176
Article
Google Scholar
Perruchoud D, Joos F, Fischlin A, Hajdas I, Bonani G (1999) Evaluating timescales of carbon turnover in temperate forest soils with radiocarbon data. Glob Biogeochem Cycles 13(2):555–573
Article
Google Scholar
Plaza C, Pegoraro E, Bracho R, Kathryn GC, Crummer G, Hutchings JA, Hicks Pries CE, Mauritz M, Natali SM, Salmon VG, Schädel C, Webb EE, Schuur EAF (2019) Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nat Geosci 12:627–631. https://doi.org/10.1038/s41561-019-0387-6
Article
Google Scholar
Plug LJ (2003) Ground-ice features and depth of peat across a mire chronosequence, NW Alaska. In Permafrost, Phillips, Springman & Arenson (eds), Proceedings of the Eighth International Conference on Permafrost, 901-906.
Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Amer Meteor Soc 85:381–394. https://doi.org/10.1175/BAMS-85-3-381
Article
Google Scholar
Saito K (2019) Re-visiting permafrost zonation classification by climate variables – considerations on elevation and snow factors –. Paper presented at the JSSI & JSSE Joint Conference on Snow and Ice Research, Yamagata University, Yamagata, 9 September 2019
Saito K, Machiya H (2018) Past 122-thousand-year frozen ground distribution north of 50°N: reconstructed advance and retreat. Paper presented at the 5th European Conference on Permafrost, Congress Center Le Majestic, Chamonix, 26 June 2018
Saito K, Marchenko S, Romanovsky V, Hendricks A, Bigelow N, Yoshikawa K, Walsh J (2014) Evaluation of LPM permafrost distribution in NE Asia reconstructed and downscaled from GCM simulations. Boreas 43:733–749. https://doi.org/10.1111/bor.12038
Article
Google Scholar
Saito K, Machiya H, Iwahana G, Yokohata T, Ohno H (2020) Conceptual model to simulate long-term soil organic carbon and ground ice budget with permafrost and ice sheets (SOC-ICE-v1.0). Geosci. Model Dev. Discuss. doi:https://doi.org/10.5194/gmd-2020-80
Schuur EAG, Abbott B, Network PC (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179. https://doi.org/10.1038/nature14338
Article
Google Scholar
Shur Y, French HM, Bray MT, Anderson DA (2004) Syngenetic permafrost growth: cryostratigraphic observations from the CRREL Tunnel near Fairbanks, Alaska. Permafr Periglac Process 15(4):339–347
Article
Google Scholar
Strauss J, Schirrmeister L, Grosse G, Fortier D, Hugelius G, Knoblauch C, Romanovsky V, Schädel C, Schneider von Deimling T, Schuur EAG, Shmelev D, Ulrich M, Veremeeva A (2017) Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci Rev 172:75–86. https://doi.org/10.1016/j.earscirev.2017.07.007
Article
Google Scholar
Stroeven AP, Hättestrand C, Kleman J, Heyman J, Fabel D, Fredind O, Goodfellow BW, Harbor JM, Jansen JD, Olsen L, Caffee MW, Fink D, Lundqvist J, Rosqvist GC, Strömberg B, Jansson KN (2016) Deglaciation of Fennoscandia. Quat Sci Rev 147:91–121. https://doi.org/10.1016/j.quascirev.2015.09.016
Article
Google Scholar
Svenning J-C, Sandel B (2013) Disequilibrium vegetation dynamics under future climate change. Am J Bot 100:1266–1286. https://doi.org/10.3732/ajb.1200469
Article
Google Scholar
Tarboton DG (1989) Terrain analysis using digital elevation models (TauDEM). Available via Hydrologi Research Group, Utah State University, http://hydrology.usu.edu/taudem/taudem5/. Accessed 23 Dec 2019
Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour Res 33(2):309–319
Article
Google Scholar
Turetsky MR, Abbott BW, Jones MC, Anthony KW, Olefeldt D, Schuur EAG, Grosse G, Kuhry P, Hugelius G, Koven C, Lawrence DM, Gibson C, Sannel ABK, McGuire AD (2020) Carbon release through abrupt permafrost thaw. Nat Geosci 13(138):138–143. https://doi.org/10.1038/s41561-019-0526-0
Article
Google Scholar
Vitt DH, Halsey LA, Bauer IE, Campbell C (2000) Spatial and temporal trends in carbon storage of peatlands of continental Western Canada through the Holocene. Can J Earth Sci 37:683–693
Article
Google Scholar
Wheeler JO, Hoffman PF, Card KD, Davidson A, Sanford BV, Okulitch AV, Roest WR (1996) Geological map of Canada. Geological Survey of Canada, "A" Series Map 1860A. doi:10.4095/208175
Willmott CJ, Matsuura K (2001) Terrestrial air temperature and precipitation: monthly and annual time series (1950 - 1999). Available via NOAA/OAR/ESRL PSD http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html. Accessed 23 Dec 2019
Yokohata T, Saito K, Takata K, Nitta T, Satoh Y, Hajima T, Sueyoshi T, Iwahana G (2020a) Model improvement and Future projection of permafrost processes in a global climate model. Submitted to the same SPEPS issue of Progress in Earth and Planetary Science.
Yokohata T, Saito K, Ito A, Ohno H, Tanaka K, Hajima T, Iwahana G (2020b) Future projection of climate change due to permafrost degradation with a simple numerical scheme. Submitted to the same SPEPS issue of Progress in Earth and Planetary Science.
Yoshikawa K, Bolton WR, Romanovsky VE, Fukuda M. Hinzman LD (2002) Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska. J Geophys Res 107:8148. doi:https://doi.org/10.1029/2001JD000438
Yu Z, Beilman DW, Jones MC (2008) Sensitivity of northern peatland carbon dynamics to Holocene climate change. Geophysical Monograph Series 184:55–69. https://doi.org/10.1029/2008GM000822
Article
Google Scholar