Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58:2811–2827
Article
Google Scholar
Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–824
Article
Google Scholar
Bottinga Y, Weill DF (1970) Densities of liquid silicate systems calculated from partial molar volumes of oxide components. Am J Sci 269:169–182
Article
Google Scholar
Bottke WF, Vokrouhlický D, Marchi S, Swindle T, Scott ERD, Weirich JR, Levison H (2015) Dating the Moon-forming impact event with asteroidal meteorites. Science 348:321–323
Article
Google Scholar
Boyet M, Carlson RW (2005) 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309:576–581
Article
Google Scholar
Boyet M, Gannoun A (2013) Nucleosynthetic Nd isotope anomalies in primitive enstatite chondrites. Geochim Cosmochim Acta 121:652–666
Article
Google Scholar
Boyet M, Carlson RW, Borg LE, Horan M (2015) Sm–Nd systematics of lunar ferroan anorthositic suite rocks: constraints on lunar crust formation. Geochim Cosmochim Acta 148:203–218
Article
Google Scholar
Canup RM (2004) Dynamics of lunar formation. Annu Rev Astron Astrophys 42:441–475
Article
Google Scholar
Canup RM (2012) Forming a Moon with an Earth-like composition via a giant impact. Science 338:1052–1055
Article
Google Scholar
Carlson RW, Borg LE, Gaffney AM, Boyet M (2014) Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation. Philos Trans R Soc Lond A 372. doi: 10.1098/rsta.2013.0246
Caro G (2011) Early silicate Earth differentiation. Ann Rev Earth Planet Sci 39:31–58
Article
Google Scholar
Caro G, Bourdon B, Halliday AN, Quitté G (2008) Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature 452:336–339
Article
Google Scholar
Condie KC, O’Neill C (2010) The Archean-Proterozoic boundary: 500 My of tectonic transition in Earth history. Am J Sci 310:775–790
Article
Google Scholar
Corgne A, Liebske C, Wood BJ, Rubie DC, Frost DJ (2005) Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochim Cosmochim Acta 69:485–496
Article
Google Scholar
Ćuk M, Stewart ST (2012) Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338:1047–1052
Article
Google Scholar
Dasgupta R, Hirschmann MM (2007) A modified iterative sandwich method for determination of near-solidus partial melt compositions. II. Application to determination of near-solidus melt compositions of carbonated peridotite. Contrib Mineral Petrol 154:647–661
Article
Google Scholar
Davis FA, Hirschmann MM, Humayun M (2011) The composition of the incipient partial melt of garnet peridotite at 3 GPa and the origin of OIB. Earth Planet Sci Lett 308:380–390
Article
Google Scholar
Drake MJ, Righter K (2002) Determining the composition of the Earth. Nature 416:39–44
Article
Google Scholar
Falloon TJ, Green DH, Danyushevsky LV, McNeill AW (2008) The composition of near-solidus partial melts of fertile peridotite at 1 and 1 · 5 GPa: implications for the petrogenesis of MORB. J Pet 49:591–613
Article
Google Scholar
Fei H, Wiedenbeck M, Yamazaki D, Katsura T (2013) Small effect of water on upper-mantle rheology based on silicon self-diffusion coefficients. Nature 498:213–215
Article
Google Scholar
Fitoussi C, Bourdon B (2012) Silicon isotope evidence against an enstatite chondrite Earth. Science 335:1477–1480
Article
Google Scholar
Foley BJ, Bercovici D, Elkins-Tanton LT (2014) Initiation of plate tectonics from post-magma ocean thermochemical convection. J Geophys Res: Solid Earth 119:8538–8561
Article
Google Scholar
Frei D, Liebscher A, Franz G, Wunder B, Klemme S, Blundy J (2009) Trace element partitioning between orthopyroxene and anhydrous silicate melt on the lherzolite solidus from 1.1 to 3.2 GPa and 1,230 to 1,535 °C in the model system Na2O–CaO–MgO–Al2O3–SiO2. Contrib Mineral Petrol 157:473–490
Article
Google Scholar
Gasparik T (1989) Transformation of enstatite–diopside–jadeite pyroxenes to garnet. Contrib Mineral Petrol 102:389–405
Article
Google Scholar
Gasparik T (1990) A thermodynamic model for the enstatite-diopside join. Am Min 75:1080–1091
Google Scholar
Green DH, Hibberson WO, Rosenthal A, Kovács I, Yaxley GM, Faloon TJ, Brink F (2014) Experimental study of the influence of water on melting and phase assemblages in the upper mantle. J Petrol 55:2067–2096
Article
Google Scholar
Herzberg C, O’Hara MJ (2002) Plume-associated ultramafic magmas of Phanerozoic age. J Petrol 43:1857–1883
Article
Google Scholar
Herzberg C, Raterron P, Zhang J (2000). New experimental observations on the anhydrous solidus for peridotite KLB‐1. Geochem Geophys Geosyst 1. doi:10.1029/2000GC000089.
Herzberg C, Condie K, Korenaga J (2010) Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett 292:79–88
Article
Google Scholar
Hirschmann MM, Dasgupta R (2007) A modified iterative sandwich method for determination of near-solidus partial melt compositions. I. Theoretical considerations. Contrib Mineral Petrol 154:635–645
Article
Google Scholar
Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108
Article
Google Scholar
Hopkins MD, Harrison TM, Manning CE (2010) Constraints on Hadean geodynamics from mineral inclusions in >4Ga zircons. Earth Planet Sci Lett 298:367–376
Article
Google Scholar
Irving AJ (1977) Chemical variation and fractionation of KREEP basalt magmas. In Lunar Planet Sci Conf Proc 8:2433–2448
Google Scholar
Jackson MG, Carlson RW (2012) Homogeneous superchondritic 142Nd/144Nd in the mid-ocean ridge basalt and ocean island basalt mantle. Geochem Geophys Geosyst 13. doi:10.1029/2012GC004114
Jacobson SA, Morbidelli A, Raymond SN, O’Brien DP, Walsh KJ, Rubie DC (2014) Highly siderophile elements in Earth/’s mantle as a clock for the Moon-forming impact. Nature 508:84–87
Article
Google Scholar
Jung H, Katayama I, Jiang Z, Hiraga T, Karato SI (2006) Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics 421:1–22
Article
Google Scholar
Kanzaki M (1990) Melting of silica up to 7 GPa. J Am Ceram Soc 73:3706–3707
Article
Google Scholar
Karato SI, Paterson MS, FitzGerald JD (1986) Rheology of synthetic olivine aggregates: influence of grain size and water. J Geophys Res: Solid Earth 91:8151–8176
Article
Google Scholar
Katsura T, Yokoshi S, Song M, Kawabe K, Tsujimura T, Kubo A, Ito E, Tange Y, Tomioka N, Saito K, Nozawa A, Funakoshi KI (2004) Thermal expansion of Mg2SiO4 ringwoodite at high pressures. J Geophys Res 109. doi:10.1029/2004JB003094
Kawakami T, Hokada T (2010) Linking PT path with development of discontinuous phosphorus zoning in garnet during high-temperature metamorphism-an example from Luetzow-Holm Complex, East Antarctica. J Min Pet Sci 105:175–186
Article
Google Scholar
Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A, Pidgeon RT, Verpoort JD, DuFrane SA (2010) Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett 296:45–56
Article
Google Scholar
Kerrich R, Xie Q (2002) Compositional recycling structure of an Archean super-plume: Nb–Th–U–LREE systematics of Archean komatiites and basalts revisited. Contrib Min Petrol 142:476–484
Article
Google Scholar
Kinoshita N, Paul M, Kashiv Y, Collon P, Deibel CM, DiGiovine B, Greene JP, Henserson DJ, Jiang CL, Marley ST, Nakanishi T, Pardo RC, Rehm KE, Robertson D, Scott R, Schmitt C, Tang XD, Vondrasek R, Yokoyama A (2012) A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology in the solar system. Science 335:1614–1617
Article
Google Scholar
Klein EM (2004) Geochemistry of the igneous oceanic crust. In: Holland HD, Turekian KK (ed)Treatise on Geochemistry, Elsevier. Amsterdam 3:433–463
Google Scholar
Komiya T, Maruyama S, Hirata T, Yurimoto H, Nohda S (2004) Geochemistry of the oldest MORB and OIB in the Isua Supracrustal Belt, southern West Greenland: implications for the composition and temperature of early Archean upper mantle. Island Arc 13:47–72
Article
Google Scholar
Korenaga J (2009a) A method to estimate the composition of the bulk silicate Earth in the presence of a hidden geochemical reservoir. Geochim Cosmochim Acta 73:6952–6964
Article
Google Scholar
Korenaga J (2009b) Scaling of stagnant-lid convection with Arrhenius rheology and the effects of mantle melting. Geophys J Int 179:154–170
Article
Google Scholar
Korenaga J (2011) Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth. J Geophys Res 116. doi: 10.1029/2011JB008410
Korenaga J (2013) Initiation and evolution of plate tectonics on Earth: theories and observations. Ann Rev Earth Planet Sci 41:117–151
Article
Google Scholar
Korenaga J, Karato SI (2008) A new analysis of experimental data on olivine rheology. J Geophys Res: Solid Earth 113. doi: 10.1029/2007JB005100
Labrosse S, Hernlund JW, Coltice N (2007) A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450:866–869
Article
Google Scholar
Lee CTA, Yin QZ, Lenardic A, Agranier A, O’Neill CJ, Thiagarajan N (2007) Trace-element composition of Fe-rich residual liquids formed by fractional crystallization: implications for the Hadean magma ocean. Geochim Cosmochim Acta 71:3601–3615
Article
Google Scholar
Matsukage KN, Jing Z, Karato SI (2005a) Density of hydrous silicate melt at the conditions of Earth’s deep upper mantle. Nature 438:488–491
Article
Google Scholar
Matsukage KN, Nishihara Y, Karato SI (2005b) Seismological signature of chemical differentiation of Earth’s upper mantle. J Geophys Res 110. doi:10.1029/2004JB003504
McDonough WF, Sun SS (1995) The composition of the Earth. Chem geol 120:223–253
Article
Google Scholar
Mei S, Kohlstedt DL (2000a) Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime. J Geophys Res: Solid Earth 105:21457–21469
Article
Google Scholar
Mei S, Kohlstedt DL (2000b) Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime. J Geophys Res: Solid Earth 105:21471–21481
Article
Google Scholar
Mibe K, Fujii T, Yasuda A, Ono S (2006) Mg–Fe partitioning between olivine and ultramafic melts at high pressures. Geochim Cosmochim Acta 70:757–766
Article
Google Scholar
Moore WB, Webb AAG (2013) Heat-pipe earth. Nature 501:501–505
Article
Google Scholar
Nemchin A, Timms N, Pidgeon R, Geisler T, Reddy S, Meyer C (2009) Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nature geosci 2:133–136
Article
Google Scholar
Nielsen RL, Gallahan WE, Newberger F (1992) Experimentally determined mineral-melt partition coefficients for Sc, Y and REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite. Contrib Mineral Petrol 110:488–499
Article
Google Scholar
O’Neill C, Debaille V (2014) The evolution of Hadean–Eoarchaean geodynamics. Earth Planet Sci Lett 406:49–58
Article
Google Scholar
O’Neill C, Debaille V, Griffin W (2013) Deep earth recycling in the Hadean and constraints on surface tectonics. Am J Sci 313:912–932
Article
Google Scholar
Qin L, Carlson RW (2016) Nucleosynthetic isotope anomalies and their cosmochemical significance. Geochem J 50:43–65
Article
Google Scholar
Ringwood AE (1966) Chemical evolution of the terrestrial planets. Geochim Cosmochim Acta 30:41–104
Article
Google Scholar
Robin-Popieul CC, Arndt NT, Chauvel C, Byerly GR, Sobolev AV, Wilson A (2012) A new model for Barberton komatiites: deep critical melting with high melt retention. J Pet 53:2191–2229
Article
Google Scholar
Ryder G (1976) Lunar sample 15405: remnant of a KREEP basalt-granite differentiated pluton. Earth Planet Sci Lett 29:255–268
Article
Google Scholar
Ryder G, Stoeser DB, Wood JA (1977) Apollo 17 KREEPy basalt: a rock type intermediate between mare and KREEP basalts. Earth Planet Sci Lett 35:1–13
Article
Google Scholar
Salters VJ, Longhi J (1999) Trace element partitioning during the initial stages of melting beneath mid-ocean ridges. Earth Planet Sci Lett 166:15–30
Article
Google Scholar
Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243
Article
Google Scholar
Solomatov VS (1995) Scaling of temperature-and stress-dependent viscosity convection. Phys Fluid 7:266–274
Article
Google Scholar
Solomatov VS, Moresi LN (2000) Scaling of time-dependent stagnant lid convection: application to small-scale convection on Earth and other terrestrial planets. J Geophys Res: Solid Earth 105:21795–21817
Article
Google Scholar
Sprung P, Kleine T, Scherer EE (2013) Isotopic evidence for chondritic Lu/Hf and Sm/Nd of the Moon. Earth Planet Sci Lett 380:77–87
Article
Google Scholar
Suzuki T, Hirata T, Yokoyama TD, Imai T, Takahashi E (2012) Pressure effect on element partitioning between minerals and silicate melt: melting experiments on basalt up to 20 GPa. Phys Earth Planet Inter 208:59–73
Article
Google Scholar
Takahashi E (1986) Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. J Geophys Res 91:9367–9382
Article
Google Scholar
Takahashi E, Kushiro I (1983) Melting of a dry peridotite at high pressures and basalt magma genesis. Am Min 68:859–879
Google Scholar
Tarduno JA, Cottrell RD, Davis WJ, Nimmo F, Bono RK (2015) A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science 349:521–524
Article
Google Scholar
Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Pet 39:29–60
Article
Google Scholar
Walter MJ, Sisson TW, Presnall DC (1995) A mass proportion method for calculating melting reactions and application to melting of model upper mantle lherzolite. Earth Planet Sci Lett 13:77–90
Article
Google Scholar
Weiss BP, Elkins-Tanton LT (2013) Differentiated planetesimals and the parent bodies of chondrites. Ann Rev Earth Planet Sci 41:529–560
Article
Google Scholar
Zhang J, Li B, Utsumi W, Liebermann RC (1996) In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Phys Chem Min 23:1–10
Article
Google Scholar