Abers GA (2000) Hydrated subducted crust at 100-250 km depth. Earth Planet Sci Lett 176:323–330
Article
Google Scholar
Abers GA (2005) Seismic low-velocity layer at the top of subducting slabs: observations, predictions, and systematics. Phys Earth Planet Int 149:7–29
Article
Google Scholar
Abers GA, van Keken PE, Kneller EA, Ferris A, Stachnik JC (2006) The thermal structure of subduction zones constrained by seismic imaging: implications for slab dehydration and wedge flow. Earth Planet Sci Lett 241:387–397
Article
Google Scholar
Amiguet E, Reynard B, Caracas R, Van de Moortèle B, Hilairet N, Wang Y (2012) Creep of phyllosilicates at the onset of plate tectonics. Earth Planet Sci Lett 345–348:142–150. doi:10.1016/j.epsl.2012.06.033
Article
Google Scholar
Audet P, Burgmann R (2014) Possible control of subduction zone slow-earthquake periodicity by silica enrichment. Nature 510:389–392. doi:10.1038/nature13391
Article
Google Scholar
Audet P, Schwartz S (2013) Hydrologic control of forearc strength and seismicity in the Costa Rican subduction zone. Nat Geosci 6:852–855. doi:10.1038/ngeo1927
Article
Google Scholar
Audet P, Bostock MG, Christensen NI, Peacock SM (2009) Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457:76–78. doi:10.1038/nature07650
Article
Google Scholar
Baba K, Utada H, Goto T, Kasaya T, Shimizu H, Tada N (2010) Electrical conductivity imaging of the Philippine Sea upper mantle using seafloor magnetotelluric data. Phys Earth Planet Int 183:44–62. doi:10.1016/j.pepi.2010.09.010
Article
Google Scholar
Bascou J, Barruol G, Vauchez A, Mainprice D, Egydio-Silva M (2001) EBSD-measured lattice-preferred orientations and seismic properties of eclogites. Tectonophysics 342:61–80
Article
Google Scholar
Bebout GE, Penniston-Dorland SC (2016) Fluid and mass transfer at subduction interfaces—The field metamorphic record. Lithos 240–243:228–258. doi:10.1016/j.lithos.2015.10.007
Article
Google Scholar
Bezacier L, Reynard B, Bass JD, Sanchez-Valle C, Van de Moortele BV (2010a) Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth Planet Sci Lett 289:198–208. doi:10.1016/j.epsl.2009.11.009
Bezacier L, Reynard B, Bass JD, Wang J, Mainprice D (2010b) Elasticity of glaucophane, seismic velocities and anisotropy of the subducted oceanic crust. Tectonophysics 494:201–210. doi:10.1016/j.tecto.2010.09.011
Bezacier L, Reynard B, Bass JD, Cardon H, Montagnac G (2013) High-pressure elasticity of serpentine, and seismic properties of the hydrated mantle wedge. J Geophys Res-Solid Earth 118:1–9. doi:10.1002/jgrb.50076
Article
Google Scholar
Bostock MG, Hyndman RD, Rondenay S, Peacock SM (2002) An inverted continental Moho and serpentinization of the forearc mantle. Nature 417:536–538
Article
Google Scholar
Brasse H, Eydam D (2008) Electrical conductivity beneath the Bolivian Orocline and its relation to subduction processes at the South American continental margin. J Geophys Res Solid Earth 113:B07109. doi:10.1029/2007jb005142
Article
Google Scholar
Brasse H, Kapinos G, Mutschard L, Alvarado GE, Worzewski T, Jegen M (2009) Deep electrical resistivity structure of northwestern Costa Rica. Geophys Res Lett 36:L02310. doi:10.1029/2008gl036397
Article
Google Scholar
Cao Y, Jung H, Song S (2013) Petro-fabrics and seismic properties of blueschist and eclogite in the North Qilian suture zone, NW China: implications for the low-velocity upper layer in subducting slab, trench-parallel seismic anisotropy, and eclogite detectability in the subduction zone. J Geophys Res Solid Earth 118:3037–3058. doi:10.1002/jgrb.50212
Article
Google Scholar
Chantel J, Mookherjee M, Frost DJ (2012) The elasticity of lawsonite at high pressure and the origin of low velocity layers in subduction zones. Earth Planet Sci Lett 349–350:116–125
Article
Google Scholar
Chernak LJ, Hirth G (2010) Deformation of antigorite serpentinite at high temperature and pressure. Earth Planet Sci Lett 296:23–33. doi:10.1016/j.epsl.2010.04.035
Article
Google Scholar
Christensen NI (1996) Poisson’s ratio and crustal seismology. J Geophys Res 101:3139–3156
Article
Google Scholar
Christensen NI (2004) Serpentinites, peridotites, and seismology. Int Geol Rev 46:795–816
Article
Google Scholar
Debret B, Koga KT, Nicollet C, Andreani M, Schwartz S (2014) F, Cl and S input via serpentinite in subduction zones: implications for the nature of the fluid released at depth. Terra Nova 26:96–101. doi:10.1111/ter.12074
Article
Google Scholar
Deschamps F, Guillot S, Godard M, Chauvel C, Andreani M, Hattori K (2010) In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chem Geol 269:262–277. doi:10.1016/j.chemgeo.2009.10.002
Article
Google Scholar
Deschamps F, Godard M, Guillot S, Hattori K (2013) Geochemistry of subduction zone serpentinites: A review. Lithos 178:96–127. 10.1016/j.lithos.2013.05.019
Article
Google Scholar
Dragert H, Wang K, James TS (2001) A silent slip event on the deeper Cascadia subduction interface. Science 292:1525–1528. doi:10.1126/science.1060152
Article
Google Scholar
Fujita K, Katsura T, Matsuzaki T, Ichiki M (2007) Electrical conductivity measurements of brucite under crustal pressure and temperature conditions. Earth Planets Space 59:645–648
Article
Google Scholar
Guo X, Yoshino T, Katayama I (2011) Electrical conductivity anisotropy of deformed talc rocks and serpentinites at 3 GPa. Phys Earth Planet Inter 188:69–81
Article
Google Scholar
Hacker BR, Peacock SM, Abers GA, Holloway SD (2003) Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J Geophys Res Solid Earth 108 108 (B1):2030. doi:10.1029/2001JB001129
Hasegawa A, Nakajima J, Kita S, Tsuji Y, Nii K, Okada T, Matsuzawa T, Zhao D (2008) Transportation of H2O in the NE Japan subduction zone as inferred from seismic observations. J Geophys Res 117:59–75
Google Scholar
Helffrich G, Abers GA (1997) Slab low-velocity layer in the eastern Aleutian subduction zone. Geophys J Int 130:640–648. doi:10.1111/j.1365-246X.1997.tb01858.x
Article
Google Scholar
Hilairet N, Reynard B, Wang YB, Daniel I, Merkel S, Nishiyama N, Petitgirard S (2007) High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science 318:1910–1913
Article
Google Scholar
Hirauchi K, Katayama I, Uehara S, Miyahara M, Takai Y (2010) Inhibition of subduction thrust earthquakes by low-temperature plastic flow in serpentine. Earth Planet Sci Lett 295:349–357. doi:10.1016/j.epsl.2010.04.007
Article
Google Scholar
Hurwitz S, Mariner RH, Fehn U, Snyder GT (2005) Systematics of halogen elements and their radioisotopes in thermal springs of the Cascade Range, Central Oregon, Western USA. Earth Planet Sci Lett 235:700–714. doi:10.1016/j.epsl.2005.04.029
Article
Google Scholar
Hyndman R, Peacock S (2003) Serpentinization of the forearc mantle. Earth Planet Sci Lett 212:417–432
Article
Google Scholar
Hyndman RD, Shearer PM (1989) Water in the lower continental crust—modeling magnetotelluric and seismic-reflection results. Geophys J Int 98:343–365
Article
Google Scholar
Hyndman RD, Wang K (1993) Thermal constrains on the zone of major thrust earthquake failure—the Cascadia subduction zone. J Geophys Res 98:2039–2060. doi:10.1029/92jb02279
Article
Google Scholar
Hyndman RD, McCrory PA, Wech A, Kao H, Ague J (2015) Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition. J Geophys Res Solid Earth 120:4344–4358. doi:10.1002/2015jb011920
Article
Google Scholar
Ichiki M, Baba K, Toh H, Fuji-Ta K (2009) An overview of electrical conductivity structures of the crust and upper mantle beneath the northwestern Pacific, the Japanese Islands, and continental East Asia. Gondwana Res 16:545–562. doi:10.1016/j.gr.2009.04.007
Article
Google Scholar
Ito E, Harris DM, Anderson AT (1983) Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim Cosmochim Acta 47:1613–1624, http://dx.doi.org/10.1016/0016-7037(83)90188-6
Article
Google Scholar
Iwamori H (1998) Transportation of H2O and melting in subduction zones. Earth Planet Sci Lett 160:65–80. doi:10.1016/s0012-821x(98)00080-6
Article
Google Scholar
Ji S, Shao T, Michibayashi K, Long C, Wang Q, Kondo Y, Zhao W, Wang H, Salisbury MH (2013) A new calibration of seismic velocities, anisotropy, fabrics, and elastic moduli of amphibole-rich rocks. J Geophys Res Solid Earth 118:4699–4728. doi:10.1002/jgrb.50352
Article
Google Scholar
Kastner M, Solomon EA, Harris RN, Torres ME (2014) Chapter 4.4.3 - Fluid Origins, Thermal Regimes, and Fluid and Solute Fluxes in the Forearc of Subduction Zones. In: Ruediger Stein DKBFI, Hans-Christian L (eds) Developments in Marine Geology, vol Volume 7. Amsterdam, Netherlands: Elsevier. pp 671–733. doi:10.1016/B978-0-444-62617-2.00022-0
Katayama I, Hirauchi H, Michibayashi K, Ando J (2009) Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature 461:1114–1118. doi:10.1038/nature08513
Article
Google Scholar
Kawakatsu H, Watada S (2007) Seismic evidence for deep-water transportation in the mantle. Science 316:1468–1471
Article
Google Scholar
Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno M, Okuno M, Kobayashi T (2013) Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proc Natl Acad Sci U S A 110:9663–9668
Article
Google Scholar
Kawano S, Katayama I, Okazaki K (2011) Permeability anisotropy of serpentinite and fluid pathways in a subduction zone. Geology 39:939–942. doi:10.1130/g32173.1
Article
Google Scholar
Kawano S, Yoshino T, Katayama I (2012) Electrical conductivity of magnetite-bearing serpentinite during shear deformation. Geophys Res Lett 39. doi:10.1029/2012GL053652
Kita S, Okada T, Nakajima J, Matsuzawa T, Hasegawa A (2006) Existence of a seismic belt in the upper plane of the double seismic zone extending in the along-arc direction at depths of 70-100 km beneath NE Japan. Geophys Res Lett 33:L24310. doi:10.1029/2006gl028239
Article
Google Scholar
Kusuda C, Iwamori H, Nakamura H, Kazahaya K, Morikawa N (2014) Arima hot spring waters as a deep-seated brine from subducting slab. Earth Planets Space 66:119
Article
Google Scholar
Lafay R, Deschamps F, Schwartz S, Guillot S, Godard M, Debret B, Nicollet C (2013) High-pressure serpentinites, a trap-and-release system controlled by metamorphic conditions: example from the Piedmont zone of the western Alps. Chem Geol 343:38–54. doi:10.1016/j.chemgeo.2013.02.008
Article
Google Scholar
Lécuyer C, Reynard B (1996) High-temperature alteration of oceanic gabbros by seawater (Hess Deep, Ocean Drilling Program Leg 147): evidence from oxygen isotopes and elemental fluxes. J Geophys Res Solid Earth 101:15883–15897
Article
Google Scholar
Long MD, van der Hilst RD (2006) Shear wave splitting from local events beneath the Ryukyu arc: trench-parallel anisotropy in the mantle wedge. Phys Earth Planet Int 155:300–312. doi:10.1016/j.pepi.2006.01.003
Article
Google Scholar
Mainprice D (1990) An efficient FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput Geosci 16:385–393
Article
Google Scholar
Mainprice D, Ildefonse B (2009) Seismic anisotropy of subduction zone minerals-Contribution of hydrous phases. In: Subduction zone geodynamics, vol. Springer, Berlin Heidelberg, pp 63–84
Chapter
Google Scholar
Mariner RH, Presser TS, Evans WC, Pringle MKW (1990) Discharge rates of fluid and heat by thermal springs of the Cascade Range, Washington, Oregon, and northern California. J Geophys Res Solid Earth 95:19517–19531. doi:10.1029/JB095iB12p19517
Article
Google Scholar
Masuda H, Sakai H, Chiba H, Tsurumaki M (1985) Geochemical characteristics of Na-Ca-Cl-HCO3 type waters in Arima and its vicinity in the western Kinki district, Japan. Geochem J 19:149–162
Article
Google Scholar
Matsubara M, Obara K, Kasahara K (2009) High-VP/VS zone accompanying non-volcanic tremors and slow-slip events beneath southwestern Japan. Tectonophysics 472:6–17
Article
Google Scholar
Nakajima J (2014) Seismic attenuation beneath Kanto, Japan: evidence for high attenuation in the serpentinized subducting mantle. Earth Planets Space 66:12. doi:10.1186/1880-5981-66-12
Article
Google Scholar
Nakajima J, Tsuji Y, Hasegawa A, Kita S, Okada T, Matsuzawa T (2009) Tomographic imaging of hydrated crust and mantle in the subducting Pacific slab beneath Hokkaido, Japan: evidence for dehydration embrittlement as a cause of intraslab earthquakes. Gondwana Res 16:470–481. doi:10.1016/j.gr.2008.12.010
Article
Google Scholar
Nakamura H, Fujita Y, Nakai S, Yokoyama T, Iwamori H (2014) Rare earth elements and Sr-Nd-Pb isotopic analyses of the Arima hot spring waters, Southwest Japan: implications for origin of the Arima-type brine. J Geol Geosci 3:161
Google Scholar
Nikulin A, Levin V, Park J (2009) Receiver function study of the Cascadia megathrust: Evidence for localized serpentinization. Geochemistry, Geophysics, Geosystems 10(7). doi:10.1029/2009GC002376
Obara K (2002) Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296:1679–1681
Article
Google Scholar
Park J, Yuan H, Levin V (2004) Subduction zone anisotropy beneath Corvallis, Oregon: A serpentinite skid mark of trench-parallel terrane migration? J Geophys Res Solid Earth 109:B10306. doi:10.1029/12003JB002718
Peacock S (1993) Large-scale hydration of the lithosphere above subducting slabs. Chem Geol 108:49–59
Article
Google Scholar
Peacock SM, Wang K (1999) Seismic consequences of warm versus cool subduction metamorphism: examples from southwest and northeast Japan. Science 286:937–939
Article
Google Scholar
Peacock SM, Christensen NI, Bostock MG, Audet P (2011) High pore pressures and porosity at 35 km depth in the Cascadia subduction zone. Geology 39:471–474. doi:10.1130/g31649.1
Article
Google Scholar
Philippot P, Agrinier P, Scambelluri M (1998) Chlorine cycling during subduction of altered oceanic crust. Earth Planet Sci Lett 161:33–44, http://dx.doi.org/10.1016/S0012-821X(98)00134-4
Article
Google Scholar
Quist AS, Marshall WL (1968) Electrical conductances of aqueous sodium chloride solutions from 0 to 800 degrees and at pressures to 4000 bars. Journal of Physical Chemistry 72 (2):684–703.
Article
Google Scholar
Ramachandran K, Hyndman RD (2012) The fate of fluids released from subducting slab in Northern Cascadia. Solid Earth 3:121–129. doi:10.5194/se-3-121-2012
Article
Google Scholar
Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373. doi:10.1038/nature01961
Article
Google Scholar
Reynard B (2013) Serpentine in active subduction zones. Lithos 178:171–185, http://dx.doi.org/10.1016/j.lithos.2012.10.012
Article
Google Scholar
Reynard B, Bass JD (2014) Elasticity of lawsonite and seismological signature of metamorphism and water cycling in the subducting oceanic crust. J Metam Geol 32:479–487. doi:10.1111/jmg.12072
Article
Google Scholar
Reynard B, Nakajima J, Kawakatsu H (2010) Earthquakes and plastic deformation of anhydrous slab mantle in double Wadati Benioff zones. Geophys Res Lett 37. doi:10.1029/2010GL045494
Reynard B, Mibe K, Van de Moortele B (2011) Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones. Earth Planet Sci Lett 307:387–394. doi:10.1016/j.epsl.2011.05.013
Article
Google Scholar
Richard G, Monnereau M, Rabinowicz M (2007) Slab dehydration and fluid migration at the base of the upper mantle: implications for deep earthquake mechanisms. Geophys J Int 168:1291–1304. doi:10.1111/j.1365-246X.2006.03244.x
Article
Google Scholar
Rogers G, Dragert H (2003) Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip. Science 300:1942–1943
Article
Google Scholar
Saita H, Nakajima J, Shiina T, Kimura JI (2015) Slab-derived fluids, fore-arc hydration, and sub-arc magmatism beneath Kyushu, Japan. Geophys Res Lett 42:1685–1693. doi:10.1002/2015GL063084
Article
Google Scholar
Sakuma H, Ichiki M (2016) Electrical conductivity of NaCl-H2O fluid in the crust. J Geophys Res Solid Earth. doi:10.1002/2015JB012219
Google Scholar
Savov IP, Ryan JG, D’Antonio M, Kelley K, Mattie P (2005) Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg 125: implications for the elemental recycling at subduction zones. Geochem Geophys Geosys 6 doi:10.1029/2004gc000777
Sawamura S, Egoshi N, Setoguchi Y, Matsuo H (2007) Solubility of sodium chloride in water under high pressure. Fluid Phase Equilib 254:158–162, http://dx.doi.org/10.1016/j.fluid.2007.03.003
Article
Google Scholar
Scambelluri M, Piccardo GB, Philippot P, Robbiano A, Negretti L (1997) High salinity fluid inclusions formed from recycled seawater in deeply subducted alpine serpentinite. Earth Planet Sci Lett 148:485–499
Article
Google Scholar
Scambelluri M, Muntener O, Ottolini L, Pettke TT, Vannucci R (2004) The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth Planet Sci Lett 222:217–234. doi:10.1016/j.epsl.2004.02.012
Article
Google Scholar
Schmidt M, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379
Article
Google Scholar
Schubnel A, Benson P, Thompson B, Hazzard J, Young RP (2006) Quantifying damage, saturation and anisotropy in cracked rocks by inverting elastic wave velocities. In: Dresen G, Zang A, Stephansson O (eds) Rock damage and fluid transport, part I, vol. Birkhäuser, Basel, pp 947–973
Chapter
Google Scholar
Shao T, Ji S, Kondo Y, Michibayashi K, Wang Q, Xu Z, Sun S, Marcotte D, Salisbury MH (2014) Antigorite-induced seismic anisotropy and implications for deformation in subduction zones and the Tibetan Plateau. J Geophys Res Solid Earth 119:2068–2099. doi:10.1002/2013jb010661
Article
Google Scholar
Shelly DR, Beroza GC, Ide S, Nakamula S (2006) Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442:188–191. doi:10.1038/nature04931
Article
Google Scholar
Sleep NH, Blanpied ML (1992) Creep, compaction, and the weak rheology of major faults. Nature 359:687–692. doi:10.1038/359687a0
Article
Google Scholar
Song TRA, Kim Y (2012) Localized seismic anisotropy associated with long-term slow-slip events beneath southern Mexico. Geophys Res Lett 39:6. doi:10.1029/2012gl051324
Google Scholar
Song TRA, Helmberger DV, Brudzinski MR, Clayton RW, Davis P, Perez-Campos X, Singh SK (2009) Subducting slab ultra-slow velocity layer coincident with silent earthquakes in southern Mexico. Science 324:502–506. doi:10.1126/science.1167595
Article
Google Scholar
Spooner ETC, Fyfe WS (1973) Sub-sea-floor metamorphism, heat and mass-transfer. Contrib Mineral Petrol 42:287–304. doi:10.1007/bf00372607
Article
Google Scholar
Straub SM, Layne GD (2003) Decoupling of fluids and fluid-mobile elements during shallow subduction: evidence from halogen-rich andesite melt inclusions from the Izu arc volcanic front. Geochem Geophys Geosyst 4:9003. doi:10.1029/2002gc000349
Google Scholar
Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Int 183:73–90. doi:10.1016/j.pepi.2010.02.004
Article
Google Scholar
Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861
Article
Google Scholar
van Keken PE, Kiefer B, Peacock SM (2002) High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochemistry Geophysics Geosystems 3. doi:10.1029/2001gc000256
van Keken PE, Hacker BR, Syracuse EM, Abers GA (2011) Subduction factory 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res Solid Earth 116. doi:10.1029/2010jb007922
Vanko DA (1988) Temperature, pressure, and composition of hydrothermal fluids, with their bearing on the magnitude of tectonic uplift at mid-ocean ridges, inferred from fluid inclusions in oceanic layer 3 rocks. J Geophys Res Solid Earth 93:4595–4611. doi:10.1029/JB093iB05p04595
Article
Google Scholar
Wada I, Wang KL (2009) Common depth of slab-mantle decoupling: reconciling diversity and uniformity of subduction zones. Geochemistry Geophysics Geosystems 10. doi:10.1029/2009gc002570
Wada I, Wang KL, He JG, Hyndman RD (2008) Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization. J Geophys Res Solid Earth 113(B4). doi:10.1029/2007JB005190
Waff HS (1974) Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry. J Geophys Res 79:4003–4010
Article
Google Scholar
Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240. doi:10.1016/j.jvolgeores.2004.07.023
Article
Google Scholar
Wannamaker PE, Evans RL, Bedrosian PA, Unsworth MJ, Maris V, McGary RS (2014) Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity. Geochem Geophys Geosys 15:4230–4253. doi:10.1002/2014gc005509
Article
Google Scholar
Worzewski T, Jegen M, Kopp H, Brasse H, Taylor Castillo W (2011) Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone. Nat Geosci 4:108–111
Article
Google Scholar