Agarwal A, Reznik B, Kontny A, Heissler S, Schilling F (2016) Lingunite-a high-pressure plagioclase polymorph at mineral interfaces in doleritic rock of the Lockne impact structure (Sweden). Sci Rep 6:25991

Article
Google Scholar

Agee CB, Li J, Shannon MC, Circone S (1995) Pressure-temperature phase diagram for the Allende meteorite. J Geophys Res: Solid Earth 100:17725–17740

Article
Google Scholar

Andrault D, Bolfan-Casanova N, Guignot N (2001) Equation of state of lower mantle (Al, Fe)-MgSiO_{3} perovskite. Earth Planet Sci Lett 193:501–508

Article
Google Scholar

Angel RJ, Finger LW, Hazen RM, Kanzaki M, Weidner DJ, Liebermann RC, Veblen DR (1989) Structure and twinning of single-crystal MgSiO_{3} garnet synthesized at 17 GPa and 1800 °C. Am Min 74:509–512

Google Scholar

Angel RJ, Chopelas A, Ross NL (1992) Stability of high-density clinoenstatite at upper-mantle pressures. Nature 358:322–324

Article
Google Scholar

Artemieva N, Morgan J, Party ES (2017) Quantifying the release of climate-active gases by large meteorite impacts with a case study of Chicxulub. Geophys Res Lett 44:10180–10188

Article
Google Scholar

Asimow PD, Lin C, Bindi L, Ma C, Tschauner O, Hollister LS, Steinhardt PJ (2016) Shock synthesis of quasicrystals with implications for their origin in asteroid collisions. Proc Natl Acad Sci USA 113:7077–7081

Article
Google Scholar

Bandfield JL (2007) High-resolution subsurface water-ice distributions on Mars. Nature 447:64–67

Article
Google Scholar

Barbaro A, Chiara Domeneghetti M, Litasov KD, Ferrière L, Pittarello L, Christ O, Lorenzon S, Alvaro M, Nestola F (2021) Origin of micrometer-sized impact diamonds in ureilites by catalytic growth involving Fe–Ni-silicide: the example of Kenna meteorite. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2021.06.022

Article
Google Scholar

Baziotis I, Asimow PD, Hu J, Ferriere L, Ma C, Cernok A, Anand M, Topa D (2018) High pressure minerals in the Chateau-Renard (L6) ordinary chondrite: implications for collisions on its parent body. Sci Rep 8:9851

Article
Google Scholar

Beck P, Gillet P, Gautron L, Daniel I, El Goresy A (2004) A new natural high-pressure (Na, Ca)-hexaluminosilicate [(Ca_{x}Na_{1−x})Al_{3+x}Si_{3−x}O_{11}] in shocked Martian meteorites. Earth Planet Sci Lett 219:1–12

Article
Google Scholar

Beck P, Barrat JA, Gillet P, Wadhwa M, Franchi IA, Greenwood RC, Bohn M, Cotten J, van de Moortèle B, Reynard B (2006) Petrography and geochemistry of the chassignite Northwest Africa 2737 (NWA 2737). Geochim Cosmochim Acta 70:2127–2139

Article
Google Scholar

Bendeliany N, St P, Vereschagin L (1966) A new modification of titanium dioxide stable at high pressure. Geokhimiya 5:499–502

Google Scholar

Berkley JL, Brown HG, Keil K, Carter NL, Mercier JCC, Huss G (1976) The Kenna ureilite: an ultramafic rock with evidence for igneous, metamorphic, and shock origin. Geochim Cosmochim Acta 40:1429–1437

Article
Google Scholar

Bindi L, Steinhardt PJ, Yao N, Lu PJ (2009) Natural quasicrystals. Science 324:1306–1309

Article
Google Scholar

Bindi L, Steinhardt PJ, Yao N, Lu PJ (2011) Icosahedrite, Al_{63}Cu_{24}Fe_{13}, the first natural quasicrystal. Am Min 96:928–931

Article
Google Scholar

Bindi L, Eiler JM, Guan Y, Hollister LS, MacPherson G, Steinhardt PJ, Yao N (2012) Evidence for the extraterrestrial origin of a natural quasicrystal. Proc Natl Acad Sci USA 109:1396–1401

Article
Google Scholar

Bindi L, Yao N, Lin C, Hollister LS, Andronicos CL, Distler VV, Eddy MP, Kostin A, Kryachko V, MacPherson GJ, Steinhardt WM, Yudovskaya M, Steinhardt PJ (2015a) Decagonite, Al_{71}Ni_{24}Fe_{5}, a quasicrystal with decagonal symmetry from the Khatyrka CV3 carbonaceous chondrite. Am Min 100:2340–2343

Article
Google Scholar

Bindi L, Yao N, Lin C, Hollister LS, Andronicos CL, Distler VV, Eddy MP, Kostin A, Kryachko V, MacPherson GJ, Steinhardt WM, Yudovskaya M, Steinhardt PJ (2015b) Natural quasicrystal with decagonal symmetry. Sci Rep 5:9111

Article
Google Scholar

Bindi L, Chen M, Xie X (2017) Discovery of the Fe-analogue of akimotoite in the shocked Suizhou L6 chondrite. Sci Rep 7:42674

Article
Google Scholar

Bindi L, Griffin WL, Panero WR, Sirotkina E, Bobrov A, Irifune T (2018a) Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites. Sci Rep 8:5457

Article
Google Scholar

Bindi L, Pham J, Steinhardt PJ (2018b) Previously unknown quasicrystal periodic approximant found in space. Sci Rep 8:16271

Article
Google Scholar

Bindi L, Brenker FE, Nestola F, Koch TE, Prior DJ, Lilly K, Krot AN, Bizzarro M, Xie X (2019) Discovery of asimowite, the Fe-analog of wadsleyite, in shock-melted silicate droplets of the Suizhou L6 and the Quebrada Chimborazo 001 CB3.0 chondrites. Am Min 104:775–778

Article
Google Scholar

Bindi L, Dmitrienko VE, Steinhardt PJ (2020a) Are quasicrystals really so rare in the Universe? Am Min 105:1121–1125

Article
Google Scholar

Bindi L, Nespolo M, Krivovichev SV, Chapuis G, Biagioni C (2020b) Producing highly complicated materials. Nature does it better. Rep Prog Phys 83:106501

Bindi L, Shim S-H, Sharp TG, Xie X (2020c) Evidence for the charge disproportionation of iron in extraterrestrial bridgmanite. Sci Adv 6:eaay7893

Bindi L, Welch MD, Bendeliani AA, Bobrov AV (2020d) Si-rich Mg-sursassite Mg_{4}Al_{5}Si_{7}O_{23}(OH)_{5} with octahedrally coordinated Si: a new ultrahigh-pressure hydrous phase. Am Min 105:1432–1435

Article
Google Scholar

Bindi L, Sinmyo R, Bykova E, Ovsyannikov SV, McCammon C, Kupenko I, Ismailova L, Dubrovinsky L, Xie X (2021) Discovery of elgoresyite, (Mg, Fe)_{5}Si_{2}O_{9}: implications for novel iron-magnesium silicates in rocky planetary interiors. ACS Earth Space Chem 5(8):2124–2130

Article
Google Scholar

Binns RA, Davis RJ, Reed SJB (1969) Ringwoodite, Natural (Mg, Fe)_{2}SiO_{4} spinel in the Tenham meteorite. Nature 221:943–944

Article
Google Scholar

Brenker FE, Nestola F, Brenker L, Peruzzo L, Harris JW (2021) Origin, properties, and structure of breyite: the second most abundant mineral inclusion in super-deep diamonds. Am Min 106:38–43

Article
Google Scholar

Britvin SN, Rudashevsky NS, Krivovichev SV, Burns PC, Polekhovsky YS (2002) Allabogdanite, (Fe, Ni)_{2}P, a new mineral from the Onello meteorite: the occurrence and crystal structure. Am Min 87:1245–1249

Article
Google Scholar

Britvin SN, Shilovskikh VV, Pagano R, Vlasenko NS, Zaitsev AN, Krzhizhanovskaya MG, Lozhkin MS, Zolotarev AA, Gurzhiy VV (2019) Allabogdanite, the high-pressure polymorph of (Fe, Ni)_{2}P, a stishovite-grade indicator of impact processes in the Fe–Ni–P system. Sci Rep 9:1047

Article
Google Scholar

Bundy FP, Hall HT, Strong HM, Wentorfjun RH (1955) Man-made diamonds. Nature 176:51–55

Article
Google Scholar

Bundy FP, Kasper JS (1967) Hexagonal diamond—a new form of carbon. J Chem Phys 46:3437–3446

Article
Google Scholar

Cavosie AJ, Erickson TM, Timms NE (2015) Nanoscale records of ancient shock deformation: Reidite (ZrSiO_{4}) in sandstone at the ordovician rock elm impact crater. Geology 43:315–318

Article
Google Scholar

Chalifoux WA, Tykwinski RR (2010) Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nat Chem 2:967–971

Article
Google Scholar

Chao ECT, Shoemaker EM, Madsen BM (1960) First natural occurrence of coesite. Science 132:220–222

Article
Google Scholar

Chao ECT, Fahey JJ, Littler J, Milton DJ (1962) Stishovite, SiO_{2}, a very high pressure new mineral from meteor crater, Arizona. J Geophys Res 67:419–421

Article
Google Scholar

Chen M, Sharp TG, El Goresy A, Wopenka B, Xie X (1996) The majorite-pyrope + magnesiowüstite assemblage: constraints on the history of shock veins in chondrites. Science 271:1570–1573

Article
Google Scholar

Chen M, Shu J, Mao H-k, Xie X, Hemley RJ (2003a) Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proc Natl Acad Sci USA 100:14651–14654

Article
Google Scholar

Chen M, Shu J, Xie X, Mao H-k (2003b) Natural CaTi_{2}O_{4}-structured FeCr_{2}O_{4} polymorph in the Suizhou meteorite and its significance in mantle mineralogy. Geochim Cosmochim Acta 67:3937–3942

Article
Google Scholar

Chen M, Chen J, Xie X, Xu J (2007) A microstructural investigation of natural lamellar ringwoodite in olivine of the shocked Sixiangkou chondrite. Earth Planet Sci Lett 264:277–283

Article
Google Scholar

Chen M, Shu J, Mao H-k (2008) Xieite, a new mineral of high-pressure FeCr_{2}O_{4} polymorph. Sci Bull 53:3341–3345

Article
Google Scholar

Chen M, Yin F, Li X, Xie X, Xiao W, Tan D (2013) Natural occurrence of reidite in the Xiuyan crater of China. Meteorit Planet Sci 48:796–805

Article
Google Scholar

Chen M, Shu J, Xie X, Tan D (2019) Maohokite, a post-spinel polymorph of MgFe_{2}O_{4} in shocked gneiss from the Xiuyan crater in China. Meteorit Planet Sci 54:495–502

Article
Google Scholar

Coes L (1953) A new dense crystalline silica. Science 118:131

Article
Google Scholar

Collerson KD, Hapugoda S, Kamber BS, Williams Q (2000) Rocks from the mantle transition zone: majorite-bearing xenoliths from malaita, southwest pacific. Science 288:1215–1223

Article
Google Scholar

Cox MA, Cavosie AJ, Bland PA, Miljković K, Wingate MT (2018) Microstructural dynamics of central uplifts: reidite offset by zircon twins at the Woodleigh impact structure, Australia. Geology 46:983–986

Article
Google Scholar

DeCarli PS, Jamieson JC (1961) Formation of diamond by explosive shock. Science 134:92–92

Google Scholar

DeCarli PS, Milton DJ (1965) Stishovite: synthesis by shock wave. Science 147:144

Article
Google Scholar

Dera P, Prewitt CT, Boctor NZ, Hemley RJ (2002) Characterization of a high-pressure phase of silica from the Martian meteorite Shergotty. Am Min 87:1018–1023

Article
Google Scholar

Dera P, Lavina B, Borkowski LA, Prakapenka VB, Sutton SR, Rivers ML, Downs RT, Boctor NZ, Prewitt CT (2008) High-pressure polymorphism of Fe_{2}P and its implications for meteorites and Earth’s core. Geophys Res Lett 35:L10301

Article
Google Scholar

Dubrovinsky L, El Goresy A, Gillet P, Wu X, Simionivici A (2009) A novel natural shock-induced high-pressure polymorph of FeTiO_{3} with the Li-Niobate structure from the Ries crater Germany. Meteorit Planet Sci 44:A64

Google Scholar

El Goresy A, Donnay G (1968) A new allotropic form of carbon from the Ries crater. Science 161:363–364

Article
Google Scholar

El Goresy A, Dubrovinsky L, Sharp TG, Saxena SK, Chen M (2000) A monoclinic post-stishovite polymorph of silica in the shergotty meteorite. Science 288:1632–1635

Article
Google Scholar

El Goresy A, Chen M, Dubrovinsky L, Gillet P, Graup G (2001) An ultradense polymorph of rutile with seven-coordinated titanium from the Ries crater. Science 293:1467–1470

Article
Google Scholar

El Goresy A, Dubrovinsky LS, Gillet P, Mostefaoui S, Graup G, Drakopoulos M, Simionovici AS, Swamy V, Masaitis VL (2003) A new natural, super-hard, transparent polymorph of carbon from the Popigai impact crater, Russia. C R Geosci 335:889–898

Article
Google Scholar

El Goresy A, Dera P, Sharp TG, Prewitt CT, Chen M, Dubrovinsky L, Wopenka B, Boctor NZ, Hemley RJ (2008) Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. Eur J Miner 20:523–528

Article
Google Scholar

El Goresy A, Dubrovinsky L, Gillet P, Graup G, Chen M (2010) Akaogiite: An ultra-dense polymorph of TiO_{2} with the baddeleyite-type structure, in shocked garnet gneiss from the Ries crater, Germany. Am Min 95:892–895

Article
Google Scholar

El Goresy A, Gillet P, Miyahara M, Ohtani E, Ozawa S, Beck P, Montagnac G (2013) Shock-induced deformation of shergottites: shock-pressures and perturbations of magmatic ages on Mars. Geochim Cosmochim Acta 101:233–262

Article
Google Scholar

Erickson TM, Pearce MA, Reddy SM, Timms NE, Cavosie AJ, Bourdet J, Rickard WD, Nemchin AA (2017) Microstructural constraints on the mechanisms of the transformation to reidite in naturally shocked zircon. Contrib Mineral Petrol 172:6

Article
Google Scholar

Finger LW, Hazen RM, Zhang J, Ko J, Navrotsky A (1993) The effect of Fe on the crystal structure of wadsleyite β-(Mg_{1 − x}Fe_{x})_{2}SiO_{4}, 0.00 ≤ x ≤ 0.40. Phys Chem Miner 19:361–368

Article
Google Scholar

Fritz J, Greshake A (2009) High-pressure phases in an ultramafic rock from Mars. Earth Planet Sci Lett 288:619–623

Article
Google Scholar

Fritz J, Greshake A, Klementova M, Wirth R, Palatinus L, Trønnes RG, Fernandes VA, Böttger U, Ferrière L (2020) Donwilhelmsite, [CaAl_{4}Si_{2}O_{11}], a new lunar high-pressure Ca-Al-silicate with relevance for subducted terrestrial sediments. Am Min 105:1704–1711

Article
Google Scholar

Frondel C, Marvin UB (1967) Lonsdaleite, a hexagonal polymorph of diamond. Nature 214:587–589

Article
Google Scholar

Fukimoto K, Miyahara M, Sakai T, Ohfuji H, Tomioka N, Kodama Y, Ohtani E, Yamaguchi A (2020) Back-transformation mechanisms of ringwoodite and majorite in an ordinary chondrite. Meteorit Planet Sci 55:1749–1763

Article
Google Scholar

Fukunaga K, Matsuda J-i, Nagao K, Miyamoto M, Ito K (1987) Noble-gas enrichment in vapour-growth diamonds and the origin of diamonds in ureilites. Nature 328:141–143

Article
Google Scholar

Gasparik T (1990) Phase relations in the transition zone. J Geophys Res Solid Earth 95:15751–15769

Article
Google Scholar

Gasparik T (2003) Phase diagrams for geoscientists. Springer, Berlin, p 462

Book
Google Scholar

Gautron L, Angel RJ, Miletich R (1999) Structural characterisation of the high-pressure phase CaAl_{4}Si_{2}O_{11}. Phys Chem Miner 27:47–51

Article
Google Scholar

German VN, Podurets MA, Trunin RF (1973) Shock compression of quartz to 90 GPa. J Exp Theor Phys 37:107–115

Google Scholar

Gillet P, Chen M, Dubrovinsky L, El Goresy A (2000) Natural NaAlSi_{3}O_{8}-hollandite in the shocked sixiangkou meteorite. Science 287:1633–1636

Article
Google Scholar

Glass B, Liu S (2001) Discovery of high-pressure ZrSiO_{4} polymorph in naturally occurring shock-metamorphosed zircons. Geology 29:371–373

Article
Google Scholar

Glass BP, Liu S, Leavens PB (2002) Reidite: an impact-produced high-pressure polymorph of zircon found in marine sediments. Am Min 87:562–565

Article
Google Scholar

Goodrich CA, Scott ERD, Fioretti AM (2004) Ureilitic breccias: clues to the petrologic structure and impact disruption of the ureilite parent asteroid. Geochemistry 64:283–327

Article
Google Scholar

Grieve RAF, Langenhorst F, Stöffler D (1996) Shock metamorphism of quartz in nature and experiment: II Significance in geoscience. Meteorit Planet Sci 31:6–35

Article
Google Scholar

Guo Z, Li Y, Liu S, Xu H, Xie Z, Li S, Li X, Lin Y, Coulson IM, Zhang M (2020) Discovery of nanophase iron particles and high pressure clinoenstatite in a heavily shocked ordinary chondrite: Implications for the decomposition of pyroxene. Geochim Cosmochim Acta 272:276–286

Article
Google Scholar

Gurov EP, Gurova EP, Rakitskaya RB (1995) Impact diamonds in the craters of the Ukrainian shield. Meteoritics 30:515

Google Scholar

Guyot F, Reynard B (1992) Pressure-induced structural modifications and amorphization in olivine compounds. Chem Geol 96:411–420

Article
Google Scholar

Hallis LJ, Huss GR, Nagashima K, Taylor GJ, Stöffler D, Smith CL, Lee MR (2017) Effects of shock and Martian alteration on Tissint hydrogen isotope ratios and water content. Geochim Cosmochim Acta 200:280–294

Article
Google Scholar

Heinemann S, Sharp TG, Seifert F, Rubie DC (1997) The cubic-tetragonal phase transition in the system majorite (Mg_{4}Si_{4}O_{12}) – pyrope (Mg_{3}Al_{2}Si_{3}O_{12}), and garnet symmetry in the Earth’s transition zone. Phys Chem Miner 24:206–221

Article
Google Scholar

Herd C, Walton EL, Ziegler K, Vaci Z, Agee C, Muttik N (2016) The Northwest Africa 10416 olivine-phyric Martian basalt: product of magma mixing, assimilation and alteration. In: 47th lunar and planetary science conference, p. 2527.pdf

Hollister LS, Bindi L, Yao N, Poirier GR, Andronicos CL, MacPherson GJ, Lin C, Distler VV, Eddy MP, Kostin A, Kryachko V, Steinhardt WM, Yudovskaya M, Eiler JM, Guan Y, Clarke JJ, Steinhardt PJ (2014) Impact-induced shock and the formation of natural quasicrystals in the early solar system. Nat Commun 5:4040

Article
Google Scholar

Holtstam D, Broman C, Söderhielm J, Zetterqvist A (2003) First discovery of stishovite in an iron meteorite. Meteorit Planet Sci 38:1579–1583

Article
Google Scholar

Hough RM, Gilmour I, Pillinger CT, Arden JW, Gilkess KWR, Yuan J, Milledge HJ (1995) Diamond and silicon carbide in impact melt rock from the Ries impact crater. Nature 378:41–44

Article
Google Scholar

Hu J, Sharp TG (2016) High-pressure phases in shock-induced melt of the unique highly shocked LL6 chondrite Northwest Africa 757. Meteorit Planet Sci 51:1353–1369

Article
Google Scholar

Hu J, Sharp TG (2017) Back-transformation of high-pressure minerals in shocked chondrites: low-pressure mineral evidence for strong shock. Geochim Cosmochim Acta 215:277–294

Article
Google Scholar

Hu S, Li Y, Gu L, Tang X, Zhang T, Yamaguchi A, Lin Y, Changela H (2020) Discovery of coesite from the martian shergottite Northwest Africa 8657. Geochim Cosmochim Acta 286:404–417

Article
Google Scholar

Imae N, Ikeda Y (2010) High-pressure polymorphs of magnesian orthopyroxene from a shock vein in the Yamato-000047 lherzolitic shergottite. Meteorit Planet Sci 45:43–54

Google Scholar

Inoue T, Weidner DJ, Northrup PA, Parise JB (1998) Elastic properties of hydrous ringwoodite (γ-phase) in Mg_{2}SiO_{4}. Earth Planet Sci Lett 160:107–113

Article
Google Scholar

Irifune T (1993) Phase transformations in the earth’s mantle and subducting slabs: Implications for their compositions, seismic velocity and density structures and dynamics. Island Arc 2:55–71

Article
Google Scholar

Irifune T, Ringwood AE, Hibberson WO (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet Sci Lett 126:351–368

Article
Google Scholar

Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H (2003) Ultrahard polycrystalline diamond from graphite. Nature 421:599–600

Article
Google Scholar

Ito E, Matsui Y, Suito K, Kawai N (1974) Synthesis of γ-Mg_{2}SiO_{4}. Phys Earth Planet Inter 8:342–344

Article
Google Scholar

Ito E, Matsui Y (1978) Synthesis and crystal-chemical characterization of MgSiO_{3} perovskite. Earth Planet Sci Lett 38:443–450

Article
Google Scholar

Ito E, Yamada H (1982) Stability relations of silicate spinels, ilmenites, and perovskites. In: Akimoto S, Manghnani MH (eds) High-pressure research in geophysics. Center of Academic Publications, Tokyo, pp 405–419

Chapter
Google Scholar

Ito E, Takahashi E (1989) Postspinel transformations in the system Mg_{2}SiO_{4}-Fe_{2}SiO_{4} and some geophysical implications. J Geophys Res Solid Earth 94:10637–10646

Article
Google Scholar

Ito S, Suzuki K, Inagaki M, Naka S (1980) High-pressure modifications of CaAl_{2}O_{4} and CaGa_{2}O_{4}. Mater Res Bull 15:925–932

Article
Google Scholar

Jaret SJ, Woerner WR, Phillips BL, Ehm L, Nekvasil H, Wright SP, Glotch TD (2015) Maskelynite formation via solid-state transformation: evidence of infrared and X-ray anisotropy. J Geophys Res Planets 120:570–587

Article
Google Scholar

Jeanloz R (1979) Ringwoodite: complex aggregate misidentified as a high-pressure spinel structure. In: 10th Lunar and planetary science conference, pp 619–621

Kaneko S, Miyahara M, Ohtani E, Arai T, Hirao N, Sato K (2015) Discovery of stishovite in Apollo 15299 sample. Am Min 100:1308–1311

Article
Google Scholar

Kato T, Kumazawa M (1985) Garnet phase of MgSiO_{3} filling the pyroxene–ilmenite gap at very high temperature. Nature 316:803–805

Article
Google Scholar

Kato T, Nakata N, Ohtani E, Onuma K (1998) Melting experiments on the forsterite-pyrope system at 8 and 13.5 GPa. Phys Earth Planet Inter 107:97–102

Article
Google Scholar

Kato Y, Sekine T, Kayama M, Miyahara M, Yamaguchi A (2017) High-pressure polymorphs in Yamato-790729 L6 chondrite and their significance for collisional conditions. Meteorit Planet Sci 52:2570–2585

Article
Google Scholar

Kawai N, Tachimori M, Ito E (1974) A high pressure hexagonal form of MgSiO_{3}. Proc Jpn Acad 50:378–380

Article
Google Scholar

Kayama M, Tomioka N, Ohtani E, Seto Y, Nagaoka H, Götze J, Miyake A, Ozawa S, Sekine T, Miyahara M, Tomeoka K, Matsumoto M, Shoda N, Hirao N, Kobayashi T (2018) Discovery of moganite in a lunar meteorite as a trace of H_{2}O ice in the Moon’s regolith. Sci Adv 4:eaar4378

Article
Google Scholar

Kieffer SW (1971) Shock metamorphism of the Coconino sandstone at meteor crater, Arizona. J Geophys Res 76:5449–5473

Article
Google Scholar

Kimura M, Chen M, Yoshida Y, El Goresy A, Ohtani E (2004) Back-transformation of high-pressure phases in a shock melt vein of an H-chondrite during atmospheric passage: implications for the survival of high-pressure phases after decompression. Earth Planet Sci Lett 217:141–150

Article
Google Scholar

Kimura M, Yamaguchi A, Miyahara M (2017) Shock-induced thermal history of an EH3 chondrite, Asuka 10164. Meteorit Planet Sci 52:24–35

Article
Google Scholar

Kitamura M, Goto T, Syono Y (1977) Intergrowth textures of diaplectic glass and crystal in shock-loaded P-anorthite. Contrib Mineral Petrol 61:299–304

Article
Google Scholar

Koeberl C, Masaitis VL, Shafranovsky GI, Gilmour I, Langenhorst F, Schrauder M (1997) Diamonds from the Popigai impact structure, Russia. Geology 25:967–970

Article
Google Scholar

Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the α, β and γ phases of (Mg, Fe)_{2}SiO_{4}. Contrib Mineral Petrol 123:345–357

Article
Google Scholar

Kring DA, Tikoo SM, Schmieder M, Riller U, Rebolledo-Vieyra M, Simpson SL, Osinski GR, Gattacceca J, Wittmann A, Verhagen CM, Cockell CS, Coolen MJL, Longstaffe FJ, Gulick SPS, Morgan JV, Bralower TJ, Chenot E, Christeson GL, Claeys P, Ferrière L, Gebhardt C, Goto K, Green SL, Jones H, Lofi J, Lowery CM, Ocampo-Torres R, Perez-Cruz L, Pickersgill AE, Poelchau MH, Rae ASP, Rasmussen C, Sato H, Smit J, Tomioka N, Urrutia-Fucugauchi J, Whalen MT, Xiao L, Yamaguchi KE (2020) Probing the hydrothermal system of the Chicxulub impact crater. Sci Adv 6:eaaz3053

Article
Google Scholar

Ksanda CJ, Henderson EP (1939) Identification of diamond in the canyon diablo iron. Am Min 24:677–680

Google Scholar

Kubo T, Kimura M, Kato T, Nishi M, Tominaga A, Kikegawa T, Funakoshi K (2010) Plagioclase breakdown as an indicator for shock conditions of meteorites. Nat Geosci 3:41–45

Article
Google Scholar

Kubo T, Kato T, Higo Y, Funakoshi K-i (2015) Curious kinetic behavior in silica polymorphs solves seifertite puzzle in shocked meteorite. Sci Adv 1:1500075

Article
Google Scholar

Kubo T, Kono M, Imamura M, Kato T, Uehara S, Kondo T, Higo Y, Tange Y, Kikegawa T (2017) Formation of a metastable hollandite phase from amorphous plagioclase: a possible origin of lingunite in shocked chondritic meteorites. Phys Earth Planet Inter 272:50–57

Article
Google Scholar

Kunz GF (1888) Diamonds in meteorites. Science 11:118–119

Article
Google Scholar

Kusaba K, Syono Y, Kikuchi M, Fukuoka K (1985) Shock behavior of zircon: phase transition to scheelite structure and decomposition. Earth Planet Sci Lett 72:433–439

Article
Google Scholar

Kuwayama Y, Hirose K, Sata N, Ohishi Y (2005) The pyrite-type high-pressure form of silica. Science 309:923–925

Article
Google Scholar

Langenhorst F, Poirier J-P (2000) Anatomy of black veins in Zagami: clues to the formation of high-pressure phases. Earth Planet Sci Lett 184:37–55

Article
Google Scholar

Langenhorst F (2002) Shock metamorphism of some minerals: basic introduction and microstructural observations. Bull Czech Geol Surv 77:265–282

Google Scholar

Lin C, Hollister LS, MacPherson GJ, Bindi L, Ma C, Andronicos CL, Steinhardt PJ (2017) Evidence of cross-cutting and redox reaction in Khatyrka meteorite reveals metallic-Al minerals formed in outer space. Sci Rep 7:1637

Article
Google Scholar

Litasov KD, Bekker TB, Sagatov NE, Gavryushkin PN, Krinitsyn PG, Kuper KE (2020) (Fe, Ni)_{2}P allabogdanite can be an ambient pressure phase in iron meteorites. Sci Rep 10:8956

Article
Google Scholar

Liu L-G (1974) Silicate perovskite from phase transformations of pyrope-garnet at high pressure and temperature. Geophys Res Lett 1:277–280

Article
Google Scholar

Liu L-G (1975) Post-oxide phases of forsterite and enstatite. Geophys Res Lett 2:417–419

Article
Google Scholar

Liu L-G, Ringwood AE (1975) Synthesis of a perovskite-type polymorph of CaSiO_{3}. Earth Planet Sci Lett 28:209–211

Article
Google Scholar

Liu L-G (1976) The high-pressure phases of MgSiO_{3}. Earth Planet Sci Lett 31:200–208

Article
Google Scholar

Liu L-G (1978) High-pressure phase transformations of albite, jadeite and nepheline. Earth Planet Sci Lett 37:438–444

Article
Google Scholar

Liu L-G, El Gorsey A (2007) High-pressure phase transitions of the feldspars, and further characterization of lingunite. Int Geol Rev 49:854–860

Article
Google Scholar

Liu M, Artyukhov VI, Lee H, Xu F, Yakobson BI (2013) Carbyne from first principles: chain of C atoms, a nanorod or a nanorope. ACS Nano 7:10075–10082

Article
Google Scholar

Liu X (2006) Phase relations in the system KAlSi_{3}O_{8}–NaAlSi_{3}O_{8} at high pressure–high temperature conditions and their implication for the petrogenesis of lingunite. Earth Planet Sci Lett 246:317–325

Article
Google Scholar

Lowery CM, Bralower TJ, Owens JD, Rodríguez-Tovar FJ, Jones H, Smit J, Whalen MT, Claeys P, Farley K, Gulick SP (2018) Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature 558:288–291

Article
Google Scholar

Ma C, Tschauner O, Beckett JR, Liu Y, Rossman GR, Zhuravlev K, Prakapenka V, Dera P, Taylor LA (2015) Tissintite, (Ca, Na, □)AlSi_{2}O_{6}, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite. Earth Planet Sci Lett 422:194–205

Article
Google Scholar

Ma C, Tschauner O, Beckett JR, Liu Y, Rossman GR, Sinogeikin SV, Smith JS, Taylor LA (2016) Ahrensite, γ-Fe_{2}SiO_{4}, a new shock-metamorphic mineral from the Tissint meteorite: implications for the tissint shock event on Mars. Geochim Cosmochim Acta 184:240–256

Article
Google Scholar

Ma C, Tschauner O (2017) Zagamiite, IMA 2015–022a. CNMNC newsletter No. 36. Min M 81:403–409

Article
Google Scholar

Ma C, Tschauner O, Beckett JR, Rossman GR, Prescher C, Prakapenka VB, Bechtel HA, MacDowell A (2018) Liebermannite, KAlSi_{3}O_{8}, a new shock-metamorphic, high-pressure mineral from the Zagami Martian meteorite. Meteorit Planet Sci 53:50–61

Article
Google Scholar

Ma C, Tschauner O, Beckett J (2019a) A closer look at Martian meteorites: Discovery of the new mineral Zagamiite, CaAl_{2}Si_{3}._{5}O_{11}, a shock-metamorphic, high-pressure, calcium aluminosilicate. In: Ninth international conference on Mars, 6138.pdf

Ma C, Tschauner O, Beckett JR, Liu Y, Greenberg E, Prakapenka VB (2019b) Chenmingite, FeCr_{2}O_{4} in the CaFe_{2}O_{4}-type structure, a shock-induced, high-pressure mineral in the Tissint martian meteorite. Am Min 104:1521–1525

Article
Google Scholar

Ma C, Tschauner O, Bindi L, Beckett JR, Xie X (2019c) A vacancy-rich, partially inverted spinelloid silicate, (Mg, Fe, Si)_{2}(Si,□)O_{4}, as a major matrix phase in shock melt veins of the Tenham and Suizhou L6 chondrites. Meteorit Planet Sci 54:1907–1918

Article
Google Scholar

Ma C, Tschauner O, Kong M, Beckett J, Greenberg E, Prakapenka V, Lee Y (2020) Discovery of a highly-defective, shock-induced, high-pressure albitic jadeite, (Na,Ca,□_{1/4})(Al, Si)Si_{2}O_{6}: natural occurrence of a clinopyroxene with excess Si. In: 51st Lunar and planetary science conference, 1712.pdf

Ma C, Beckett J, Prakapenka V (2021a) Discovery of new high-pressure mineral Tschaunerite, (Fe^{2+})(Fe^{2+}Ti^{4+})O_{4}, a shock-induced, post-spinel phase in the Martian meteorite Shergotty. In: 52nd lunar and planetary science conference, 1720.pdf

Ma C, Tschauner O, Beckett J, Prakapenka V (2021b) Discovery of Feiite (Fe^{2+}_{2}(Fe^{2+}Ti^{4+})O_{5}) and Liuite (GdFeO_{3}-Type FeTiO_{3}), two new shock-induced, high-pressure minerals in the Martian meteorite Shergotty. In: 52nd lunar and planetary science conference, 1681.pdf

MacPherson GJ, Andronicos CL, Bindi L, Distler VV, Eddy MP, Eiler JM, Guan Y, Hollister LS, Kostin A, Kryachko V, Steinhardt WM, Yudovskaya M, Steinhardt PJ (2013) Khatyrka, a new CV3 find from the Koryak Mountains, Eastern Russia. Meteorit Planet Sci 48:1499–1514

Article
Google Scholar

Madon M, Poirier JP (1983) Transmission electron microscope observation of α, β and γ (Mg, Fe)_{2}SiO_{4} in shocked meteorites: planar defects and polymorphic transitions. Phys Earth Planet Inter 33:31–44

Article
Google Scholar

Malone L, Boonsue S, Spray J, Wittmann A (2010) Zircon-reidite relations in breccias from the Chesapeake Bay impact structure. In: 41st lunar and planetary science conference, 2286.pdf

Martini J (1978) Coesite and stishovite in the Vredefort dome, South Africa. Nature 272:715–717

Article
Google Scholar

Martini J (1991) The nature, distribution and genesis of the coesite and stishovite associated with the pseudotachylite of the Vredefort Dome, South Africa. Earth Planet Sci Lett 103:285–300

Article
Google Scholar

Maruyama S, Tomioka N (2011) Ca–Al–Fe-rich inclusion in the Vigarano CV3 chondrite. Meteorit Planet Sci 46:690–700

Article
Google Scholar

Mason B, Nelen J, White JS (1968) Olivine-garnet transformation in a meteorite. Science 160:66–67

Article
Google Scholar

Meier MMM, Bindi L, Heck PR, Neander AI, Spring NH, Riebe MEI, Maden C, Baur H, Steinhardt PJ, Wieler R, Busemann H (2018) Cosmic history and a candidate parent asteroid for the quasicrystal-bearing meteorite Khatyrka. Earth Planet Sci Lett 490:122–131

Article
Google Scholar

Mikouchi T, Zolensky M, Ivanova M, Tachikawa O, Komatsu M, Le L, Gounelle M (2009) Dmitryivanovite: A new high-pressure calcium aluminum oxide from the Northwest Africa 470 CH3 chondrite characterized using electron backscatter diffraction analysis. Am Min 94:746–750

Milton DJ, de Carli PS (1963) Maskelynite: formation by explosive shock. Science 140:670–671

Article
Google Scholar

Ming LC, Kim YH, Manghnani MH, Usha-Devi S, Ito E, Xie HS (1991) Back transformation and oxidation of (Mg, Fe)_{2}SiO_{4} spinels at high temperatures. Phys Chem Miner 18:171–179

Article
Google Scholar

Miyahara M, El Goresy A, Ohtani E, Nagase T, Nishijima M, Vashaei Z, Ferroir T, Gillet P, Dubrovinsky L, Simionovici A (2008) Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins. Proc Natl Acad Sci USA 105:8542–8547

Article
Google Scholar

Miyahara M, El Goresy A, Ohtani E, Kimura M, Ozawa S, Nagase T, Nishijima M (2009) Fractional crystallization of olivine melt inclusion in shock-induced chondritic melt vein. Phys Earth Planet Inter 177:116–121

Article
Google Scholar

Miyahara M, Ohtani E, Kimura M, El Goresy A, Ozawa S, Nagase T, Nishijima M, Hiraga K (2010) Coherent and subsequent incoherent ringwoodite growth in olivine of shocked L6 chondrites. Earth Planet Sci Lett 295:321–327

Article
Google Scholar

Miyahara M, Ohtani E, Kimura M, Ozawa S, Nagase T, Nishijima M, Hiraga K (2011a) Evidence for multiple dynamic events and subsequent decompression stage recorded in a shock vein. Earth Planet Sci Lett 307:361–368

Article
Google Scholar

Miyahara M, Ohtani E, Ozawa S, Kimura M, El Goresy A, Sakai T, Nagase T, Hiraga K, Hirao N, Ohishi Y (2011b) Natural dissociation of olivine to (Mg, Fe)SiO_{3} perovskite and magnesiowustite in a shocked Martian meteorite. Proc Natl Acad Sci USA 108:5999–6003

Article
Google Scholar

Miyahara M, Kaneko S, Ohtani E, Sakai T, Nagase T, Kayama M, Nishido H, Hirao N (2013a) Discovery of seifertite in a shocked lunar meteorite. Nat Commun 4:1737

Article
Google Scholar

Miyahara M, Ozawa S, Ohtani E, Kimura M, Kubo T, Sakai T, Nagase T, Nishijima M, Hirao N (2013b) Jadeite formation in shocked ordinary chondrites. Earth Planet Sci Lett 373:102–108

Article
Google Scholar

Miyahara M, Ohtani E, Yamaguchi A, Ozawa S, Sakai T, Hirao N (2014) Discovery of coesite and stishovite in eucrite. Proc Natl Acad Sci USA 111:10939–10942

Article
Google Scholar

Miyahara M, Ohtani E, El Goresy A, Lin Y, Feng L, Zhang J-C, Gillet P, Nagase T, Muto J, Nishijima M (2015) Unique large diamonds in a ureilite from Almahata Sitta 2008 TC_{3} asteroid. Geochim Cosmochim Acta 163:14–26

Article
Google Scholar

Miyahara M, Ohtani E, El Goresy A, Ozawa S, Gillet P (2016) Phase transition processes of olivine in the shocked Martian meteorite tissint: clues to origin of ringwoodite-, bridgmanite- and magnesiowüstite-bearing assemblages. Phys Earth Planet Inter 259:18–28

Article
Google Scholar

Miyahara M, Ohtani E, Yamaguchi A (2017) Albite dissociation reaction in the Northwest Africa 8275 shocked LL chondrite and implications for its impact history. Geochim Cosmochim Acta 217:320–333

Article
Google Scholar

Miyahara M, Ohtani E, Nishijima M, El Goresy A (2019) Olivine melting at high pressure condition in the chassignite Northwest Africa 2737. Phys Earth Planet Inter 291:1–11

Article
Google Scholar

Miyahara M, Yamaguchi A, Saitoh M, Fukimoto K, Sakai T, Ohfuji H, Tomioka N, Kodama Y, Ohtani E (2020) Systematic investigations of high-pressure polymorphs in shocked ordinary chondrites. Meteorit Planet Sci 55:2619–2651

Article
Google Scholar

Miyahara M, Yamaguchi A, Ohtani E, Tomioka N, Kodama Y (2021) Complicated pressure–temperature path recorded in the eucrite Padvarninkai. Meteorit Planet Sci. https://doi.org/10.1111/maps.13724

Article
Google Scholar

Mizutani H, Takagi Y, Kawakami S-I (1990) New scaling laws on impact fragmentation. Icarus 87:307–326

Article
Google Scholar

Moore RO, Gurney JJ (1985) Pyroxene solid solution in garnets included in diamond. Nature 318:553–555

Article
Google Scholar

Morgan JV, Gulick SPS, Bralower T, Chenot E, Christeson G, Claeys P, Cockell C, Collins GS, Coolen MJL, Ferrière L, Gebhardt C, Goto K, Jones H, Kring DA, Le Ber E, Lofi J, Long X, Lowery C, Mellett C, Ocampo-Torres R, Osinski GR, Perez-Cruz L, Pickersgill A, Poelchau M, Rae A, Rasmussen C, Rebolledo-Vieyra M, Riller U, Sato H, Schmitt DR, Smit J, Tikoo S, Tomioka N, Urrutia-Fucugauchi J, Whalen M, Wittmann A, Yamaguchi KE, Zylberman W (2016) The formation of peak rings in large impact craters. Science 354:878–882

Article
Google Scholar

Morrison SM, Hazen RM (2021) An evolutionary system of mineralogy, Part IV: planetesimal differentiation and impact mineralization (4566 to 4560 Ma). Am Min 106:730–761

Article
Google Scholar

Murakami M, Hirose K, Ono S, Ohishi Y (2003) Stability of CaCl_{2}-type and α-PbO_{2}-type SiO_{2} at high pressure and temperature determined by in-situ X-ray measurements. Geophys Res Lett 30:1207

Article
Google Scholar

Murayama JK, Nakai S, Kato M, Kumazawa M (1986) A dense polymorph of Ca_{3}(PO_{4})_{2}: a high pressure phase of apatite decomposition and its geochemical significance. Phys Earth Planet Inter 44:293–303

Article
Google Scholar

Nabiei F, Badro J, Dennenwaldt T, Oveisi E, Cantoni M, Hebert C, El Goresy A, Barrat JA, Gillet P (2018) A large planetary body inferred from diamond inclusions in a ureilite meteorite. Nat Commun 9:1327

Article
Google Scholar

Nagai T, Ohtaka O, Yamanaka T (1997) Kinetic studies of the α-quartz-coesite transformation of SiO_{2}. Mineral J 19:147–154

Article
Google Scholar

Nakamuta Y, Aoki Y (2000) Mineralogical evidence for the origin of diamond in ureilites. Meteorit Planet Sci 35:487–493

Article
Google Scholar

Nakamuta Y, Toh S (2013) Transformation of graphite to lonsdaleite and diamond in the Goalpara ureilite directly observed by TEM. Am Min 98:574–581

Article
Google Scholar

Nakatsuka A, Yoshiasa A, Yamanaka T, Ohtaka O (1999) Symmetry change of majorite solid-solution in the system Mg_{3}Al_{2}Si_{3}O_{12}-MgSiO_{3}. Am Min 84:1135–1143

Article
Google Scholar

Németh P, Garvie LAJ, Aoki T, Dubrovinskaia N, Dubrovinsky L, Buseck PR (2014) Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat Commun 5:5447

Article
Google Scholar

Németh P, Garvie LAJ (2020) Extraterrestrial, shock-formed, cage-like nanostructured carbonaceous materials. Am Min 105:276–281

Article
Google Scholar

Nestola F, Burnham AD, Peruzzo L, Tauro L, Alvaro M, Walter MJ, Gunter M, Anzolini C, Kohn SC (2016) Tetragonal almandine-pyrope phase, TAPP: finally a name for it, the new mineral jeffbenite. Min M 80:1219–1232

Article
Google Scholar

Nestola F, Korolev N, Kopylova M, Rotiroti N, Pearson DG, Pamato MG, Alvaro M, Peruzzo L, Gurney JJ, Moore AE, Davidson J (2018) CaSiO_{3} perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature 555:237–241

Article
Google Scholar

Nestola F, Goodrich CA, Morana M, Barbaro A, Jakubek RS, Christ O, Brenker FE, Domeneghetti MC, Dalconi MC, Alvaro M, Fioretti AM, Litasov KD, Fries MD, Leoni M, Casati NPM, Jenniskens P, Shaddad MH (2020) Impact shock origin of diamonds in ureilite meteorites. Proc Natl Acad Sci USA 117:25310–25318

Article
Google Scholar

Nishio-Hamane D, Shimizu A, Nakahira R, Niwa K, Sano-Furukawa A, Okada T, Yagi T, Kikegawa T (2010) The stability and equation of state for the cotunnite phase of TiO_{2} up to 70 GPa. Phys Chem Miner 37:129–136

Article
Google Scholar

Ohfuji H, Irifune T, Litasov KD, Yamashita T, Isobe F, Afanasiev VP, Pokhilenko NP (2015) Natural occurrence of pure nano-polycrystalline diamond from impact crater. Sci Rep 5:14702

Article
Google Scholar

Ohira I, Ohtani E, Sakai T, Miyahara M, Hirao N, Ohishi Y, Nishijima M (2014) Stability of a hydrous δ-phase, AlOOH–MgSiO_{2}(OH)_{2}, and a mechanism for water transport into the base of lower mantle. Earth Planet Sci Lett 401:12–17

Article
Google Scholar

Ohtani E, Kagawa N, Fujino K (1991) Stability of majorite (Mg, Fe)SiO_{3} at high pressures and 1800 °C. Earth Planet Sci Lett 102:158–166

Article
Google Scholar

Ohtani E, Moriwaki K, Kato T, Onuma K (1998) Melting and crystal–liquid partitioning in the system Mg_{2}SiO_{4}–Fe_{2}SiO_{4} to 25 GPa. Phys Earth Planet Inter 107:75–82

Article
Google Scholar

Ohtani E, Kimura Y, Kimura M, Takata T, Kondo T, Kubo T (2004) Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size. Earth Planet Sci Lett 227:505–515

Article
Google Scholar

Ohtani E, Ozawa S, Miyahara M, Ito Y, Mikouchi T, Kimura M, Arai T, Sato K, Hiraga K (2011) Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface. Proc Natl Acad Sci USA 108:463–466

Article
Google Scholar

Okuchi T, Seto Y, Tomioka N, Matsuoka T, Albertazzi B, Hartley NJ, Inubushi Y, Katagiri K, Kodama R, Pikuz TA, Purevjav N, Miyanishi K, Sato T, Sekine T, Sueda K, Tanaka KA, Tange Y, Togashi T, Umeda Y, Yabuuchi T, Yabashi M, Ozaki N (2021) Ultrafast olivine-ringwoodite transformation during shock compression. Nat Commun 12:4305

Article
Google Scholar

Ono S, Tange Y, Katayama I, Kikegawa T (2004) Equations of state of ZrSiO_{4} phases in the upper mantle. Am Min 89:185–188

Article
Google Scholar

Ozawa S, Ohtani E, Miyahara M, Suzuki A, Kimura M, Ito Y (2009) Transformation textures, mechanisms of formation of high-pressure minerals in shock melt veins of L6 chondrites, and pressure-temperature conditions of the shock events. Meteorit Planet Sci 44:1771–1786

Article
Google Scholar

Ozawa S, Miyahara M, Ohtani E, Koroleva ON, Ito Y, Litasov KD, Pokhilenko NP (2014) Jadeite in Chelyabinsk meteorite and the nature of an impact event on its parent body. Sci Rep 4:5033

Article
Google Scholar

Pan B, Xiao J, Li J, Liu P, Wang C, Yang G (2015) Carbyne with finite length: The one-dimensional *sp* carbon. Sci Adv 1:e1500857

Article
Google Scholar

Pang R-L, Harries D, Pollok K, Zhang A-C, Langenhorst F (2018) Vestaite, (Ti^{4+}Fe^{2+})Ti_{3}^{4+}O_{9}, a new mineral in the shocked eucrite Northwest Africa 8003. Am Min 103:1502–1511

Article
Google Scholar

Pang RL, Zhang AC, Wang SZ, Wang RC, Yurimoto H (2016) High-pressure minerals in eucrite suggest a small source crater on Vesta. Sci Rep 6:26063

Article
Google Scholar

Papike JJ (eds) (2018) Planetary materials. In: Reviews in mineralogy and geochemistry 36. Walter de Gruyter GmbH & Co KG, New Mexico

Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:221–224

Article
Google Scholar

Perrillat JP, Daniel I, Lardeaux JM, Cardon H (2003) Kinetics of the coesite–quartz transition: application to the exhumation of ultrahigh-pressure rocks. J Petrol 44:773–788

Article
Google Scholar

Price GD, Putnis A, Agrell SO, Smith DGW (1983) Wadsleyite, natural beta -(Mg, Fe)_{2}SiO_{4} from the Peace River meteorite. Can Mineral 21:29–35

Google Scholar

Putnis A, Price GD (1979) High-pressure (Mg, Fe_{)2}SiO_{4} phases in the Tenham chondritic meteorite. Nature 280:217–218

Article
Google Scholar

Riller U, Poelchau MH, Rae AS, Schulte FM, Collins GS, Melosh HJ, Grieve RA, Morgan JV, Gulick SP, Lofi J (2018) Rock fluidization during peak-ring formation of large impact structures. Nature 562:511–518

Article
Google Scholar

Ringwood AE (1958a) The constitution of the mantle—II: further data on the olivine-spinel transition. Geochim Cosmochim Acta 15:18–29

Article
Google Scholar

Ringwood AE (1958b) The constitution of the mantle—I: thermodynamics of the olivine-spinel transition. Geochim Cosmochim Acta 13:303–321

Article
Google Scholar

Ringwood AE, Major A (1966a) Synthesis of Mg_{2}SiO_{4}-Fe_{2}SiO_{4} spinel solid solutions. Earth Planet Sci Lett 1:241–245

Article
Google Scholar

Ringwood AE, Major A (1966b) High-pressure transformations in pyroxenes. Earth Planet Sci Lett 1:351–357

Article
Google Scholar

Ringwood AE, Reid AF, Wadsley AD (1967) High-pressure KAlSi_{3}O_{8}, an aluminosilicate with sixfold coordination. Acta Crystallogr 23:1093–1095

Article
Google Scholar

Ringwood AE, Major A (1970) The system Mg_{2}SiO_{4}·Fe_{2}SiO_{4} at high pressures and temperatures. Phys Earth Planet Inter 3:89–108

Article
Google Scholar

Rucks MJ, Whitaker ML, Glotch TD, Parise JB, Jaret SJ, Catalano T, Dyar MD (2018) Making tissintite: mimicking meteorites in the multi-anvil. Am Min 103:1516–1519

Article
Google Scholar

Satta N. (2021) High pressure minerals in the Earth and Moon: understanding the lunar impact history and Earth’s deep water cycle. Doctoral thesis, Bayreuth, https://doi.org/10.15495/EPub_UBT_00005517

Sato H, Endo S, Sugiyama M, Kikegawa T, Shimomura O, Kusaba K (1991) Baddeleyite-type high-pressure phase of TiO_{2}. Science 251:786–788

Article
Google Scholar

Sharp TG, Lingemann CM, Dupas C, Stöffler D (1997) Natural occurrence of MgSiO_{3}-ilmenite and evidence for MgSiO_{3}-perovskite in a shocked L chondrite. Science 277:352–355

Article
Google Scholar

Sharp TG, El Goresy A, Wopenka B, Chen M (1999) A post-stishovite SiO_{2} polymorph in the meteorite Shergotty: implications for impact events. Science 284:1511–1513

Article
Google Scholar

Sharp TG, DeCarli PS (2006) Shock effects in meteorites. Univ of Arizona Press, Tucson, pp 653–677

Google Scholar

Sharp TG, Xie Z, de Carli PS, Hu J (2015) A large shock vein in L chondrite roosevelt county 106: evidence for a long-duration shock pulse on the L chondrite parent body. Meteorit Planet Sci 50:1941–1953

Article
Google Scholar

Shinmei T, Tomioka N, Fujino K, Kuroda K, Irifune T (1999) In situ X-ray diffraction study of enstatite up to 12 GPa and 1473 K and equations of state. Am Min 84:1588–1594

Article
Google Scholar

Smith JV, Mason B (1970) Pyroxene-garnet transformation in Coorara meteorite. Science 168:832–833

Article
Google Scholar

Smith PPK, Buseck PR (1982) Carbyne forms of carbon: do they exist? Science 216:984–986

Article
Google Scholar

Spray JG, Boonsue S (2018) Quartz–coesite–stishovite relations in shocked metaquartzites from the Vredefort impact structure, South Africa. Meteorit Planet Sci 53:93–109

Article
Google Scholar

Stähle V, Altherr R, Koch M, Nasdala L (2007) Shock-induced growth and metastability of stishovite and coesite in lithic clasts from suevite of the Ries impact crater (Germany). Contrib Mineral Petrol 155:457–472

Article
Google Scholar

Stähle V, Altherr R, Nasdala L, Ludwig T (2010) Ca-rich majorite derived from high-temperature melt and thermally stressed hornblende in shock veins of crustal rocks from the Ries impact crater (Germany). Contrib Mineral Petrol 161:275–291

Article
Google Scholar

Stähle V, Altherr R, Nasdala L, Trieloff M, Varychev A (2017) Majoritic garnet grains within shock-induced melt veins in amphibolites from the Ries impact crater suggest ultrahigh crystallization pressures between 18 and 9 GPa. Contrib Mineral Petrol. https://doi.org/10.1007/s00410-017-1404-7

Article
Google Scholar

Stishov S, Popova S (1961) A new dense modification of silicon oxide. Geokhimiya 10:923–926

Google Scholar

Stöffler D (1971) Coesite and stishovite in shocked crystalline rocks. J Geophys Res 76:5474–5488

Article
Google Scholar

Stöffler D (1984) Glasses formed by hypervelocity impact. J Non-Cryst Solids 67:465–502

Article
Google Scholar

Stöffler D, Ostertag R, Jammes C, Pfannschmidt G, Gupta PS, Simon S, Papike J, Beauchamp R (1986) Shock metamorphism and petrography of the Shergotty achondrite. Geochim Cosmochim Acta 50:889–903

Article
Google Scholar

Stöffler D, Klaus K, Scott E (1991) Shock metamorphism of ordinary chondrites. Geochim Cosmochim Acta 55:3845–3867

Article
Google Scholar

Stöffler D, Hamann C, Metzler K (2018) Shock metamorphism of planetary silicate rocks and sediments: proposal for an updated classification system. Meteorit Planet Sci 53:5–49

Article
Google Scholar

Suttle MD, Twegar K, Nava J, Spiess R, Spratt J, Campanale F, Folco L (2019) A unique CO-like micrometeorite hosting an exotic Al–Cu–Fe-bearing assemblage—close affinities with the Khatyrka meteorite. Sci Rep 9:12426

Article
Google Scholar

Takenouchi A, Mikouchi T, Kobayashi T, Sekine T, Yamaguchi A, Ono H (2019) Fine-structures of planar deformation features in shocked olivine: a comparison between Martian meteorites and experimentally shocked basalts as an indicator for shock pressure. Meteorit Planet Sci 54:1990–2005

Article
Google Scholar

Tange Y, Takahashi E (2004) Stability of the high-pressure polymorph of zircon (ZrSiO_{4}) in the deep mantle. Phys Earth Planet Inter 143:223–229

Article
Google Scholar

Tani R, Tomioka N, Kayama M, Chang Y, Nishido H, Das K, Rae A, Ferrière L, Gulick SP, Morgan JV (2018) Microstructural observations of quartz from the basement rocks of the Chicxulub impact structure and shock pressure estimation. In: AGU fall meeting abstracts, PP51D-1167

Timms NE, Pearce MA, Erickson TM, Cavosie AJ, Rae AS, Wheeler J, Wittmann A, Ferrière L, Poelchau MH, Tomioka N (2019) New shock microstructures in titanite (CaTiSiO_{5}) from the peak ring of the Chicxulub impact structure. Mexico Contrib Mineral Petrol 174:38. https://doi.org/10.1007/s00410-019-1565-7

Article
Google Scholar

Tiwari K, Ghosh S, Miyahara M, Ray D (2021) Shock-induced incongruent melting of olivine in Kamargaon L6 chondrite. Geophys Res Lett 48:e2021GL093592

Article
Google Scholar

Tomioka N, Fujino K (1997) Natural (Mg, Fe)SiO_{3}-ilmenite and -perovskite in the Tenham meteorite. Science 277:1084–1086

Article
Google Scholar

Tomioka N, Fujino K (1999) Akimotoite, (Mg, Fe)SiO_{3}, a new silicate mineral of the ilmenite group in the Tenham chondrite. Am Min 84:267–271

Article
Google Scholar

Tomioka N, Mori H, Fujino K (2000) Shock-induced transition of NaAlSi_{3}O_{8} feldspar into a hollandite structure in a L6 chondrite. Geophys Res Lett 27:3997–4000

Article
Google Scholar

Tomioka N, Fujino K, Ito E, Katsura T, Sharp T, Kato T (2002) Microstructures and structural phase transition in (Mg, Fe)SiO_{3} majorite. Eur J Miner 14:7–14

Article
Google Scholar

Tomioka N, Kimura M (2003) The breakdown of diopside to Ca-rich majorite and glass in a shocked H chondrite. Earth Planet Sci Lett 208:271–278

Article
Google Scholar

Tomioka N, Miyahara M, Ito M (2016) Discovery of natural MgSiO_{3} tetragonal garnet in a shocked chondritic meteorite. Sci Adv 2:e1501725

Article
Google Scholar

Tomioka N, Miyahara M (2017) High-pressure minerals in shocked meteorites. Meteorit Planet Sci 52:2017–2039

Article
Google Scholar

Tomioka N, Okuchi T (2017) A new high-pressure form of Mg_{2}SiO_{4} highlighting diffusionless phase transitions of olivine. Sci Rep 7:17351

Article
Google Scholar

Tomioka N, Bindi L, Okuchi T, Miyahara M, Iitaka T, Li Z, Kawatsu T, Xie X, Purevjav N, Tani R, Kodama Y (2021) Poirierite, a dense metastable polymorph of magnesium iron silicate in shocked meteorites. Commun Earth Environ 2:16. https://doi.org/10.1038/s43247-020-00090-7

Article
Google Scholar

Tommasini S, Bindi L, Petrelli M, Asimow PD, Steinhardt PJ (2021) Trace element conundrum of natural quasicrystals. ACS Earth Space Chem 5:676–689

Article
Google Scholar

Treiman AH, Dyar MD, McCanta M, Noble SK, Pieters CM (2007) Martian dunite NWA 2737: petrographic constraints on geological history, shock events, and olivine color. J Geophys Res 112:E04002

Google Scholar

Trieloff M, Jessberger EK, Herrwerth I, Hopp J, Fiéni C, Ghélis M, Bourot-Denise M, Pellas P (2003) Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature 422:502–506

Article
Google Scholar

Tsai A-P, Inoue A, Masumoto T (1987) Preparation of a new Al–Cu–Fe quasicrystal with large grain sizes by rapid solidification. J Mater Sci Lett 6:1403–1405

Article
Google Scholar

Tsai A-P, Inoue A, Masumoto T (1989) New decagonal Al–Ni–Fe and Al–Ni–Co alloys prepared by liquid quenching. Mater Trans 30:150–154

Article
Google Scholar

Tschauner O, Ma C, Beckett JR, Prescher C, Prakapenka VB, Rossman GR (2014) Mineralogy. Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science 346:1100–1102

Article
Google Scholar

Tschauner O, Huang S, Greenberg E, Prakapenka VB, Ma C, Rossman GR, Shen AH, Zhang D, Newville M, Lanzirotti A, Tait K (2018) Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth’s deep mantle. Science 359:1136–1139

Article
Google Scholar

Tschauner O, Huang S, Yang S, Humayun M (2020a) Davemaoite, IMA 2020–012a. In: CNMNC newsletter 58. Eur J Mineral 32

Tschauner O, Ma C, Lanzirotti A, Newville MG (2020b) Riesite, a new high pressure polymorph of TiO_{2} from the ries impact structure. Minerals 10:78

Article
Google Scholar

Tschauner O, Ma C, Spray JG, Greenberg E, Prakapenka VB (2021) Stöfflerite, (Ca, Na)(Si, A_{l})_{4}O_{8} in the hollandite structure: a new high-pressure polymorph of anorthite from martian meteorite NWA 856. Am Min 106:650–655

Article
Google Scholar

Tschermak G (1872) Die meteoriten von Schergotty und Gopalpur. Sitzber Akad Wiss Wien Math Naturwiss Kl Abt I 65:122–146

Google Scholar

Tschermak G (1883) Beitrag zur Klassifakation der Meteoriten. Sitzber Akad Wiss Wien Math Naturwiss Kl Abt I 88:347–371

Google Scholar

Urey HC (1956) Diamonds, meteorites, and the origin of the Solar system. Astrophys J 124:623–637

Article
Google Scholar

van de Moortèle B, Reynard B, McMillan PF, Wilson M, Beck P, Gillet P, Jahn S (2007) Shock-induced transformation of olivine to a new metastable (Mg, Fe)_{2}SiO_{4} polymorph in Martian meteorites. Earth Planet Sci Lett 261:469–475

Article
Google Scholar

Vishnevsky S, Dolgov Y, Kovaleva L, Pal’chik N (1975) Stishovite from the Popigai structure rocks. Russ Geol Geophys 10:156–159

Google Scholar

Vollmer C, Hoppe P, Brenker FE, Holzapfel C (2007) Stellar MgSiO_{3} perovskite: a shock-transformed stardust silicate found in a meteorite. Astrophys J 666:L49–L52

Article
Google Scholar

Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB, Gaillou E, Wang J, Steele A, Shirey SB (2011) Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334:54–57

Article
Google Scholar

Walton EL, Sharp TG, Hu J, Filiberto J (2014) Heterogeneous mineral assemblages in martian meteorite Tissint as a result of a recent small impact event on Mars. Geochim Cosmochim Acta 140:334–348

Article
Google Scholar

Weisberg MK, McCoy TJ, Krot AN (2006) Systematics and evaluation of meteorite classification. In: Lauretta DS, McSween HY (eds) Meteorites and the early solar system II. The University of Arizona Press, Arizona, pp 19–52

Chapter
Google Scholar

Weisberg MK, Kimura M (2010) Petrology and Raman spectroscopy of high pressure phases in the Gujba CB chondrite and the shock history of the CB parent body. Meteorit Planet Sci 45:873–884

Article
Google Scholar

Whittaker AG, Kintner PL (1969) Carbon: Observations on the new allotropic form. Science 165:589–591

Article
Google Scholar

Whittaker AG, Watts EJ, Lewis RS, Anders E (1980) Carbynes: carriers of primordial noble gases in meteorites. Science 209:1512–1514

Article
Google Scholar

Wirth R (2009) Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol 261:217–229

Article
Google Scholar

Xie X, Minitti ME, Chen M, Ho-k M, Wang D, Shu J, Fei Y (2002a) Natural high-pressure polymorph of merrillite in the shock veins of the Suizhou meteorite. Geochim Cosmochim Acta 66:2439–2444

Article
Google Scholar

Xie X, Minitti ME, Chen M, Mao H-K, Wang D, Shu J, Fei Y (2004) Tuite, gamma-Ca_{3}(PO_{4})_{2}: a new mineral from the Suizhou L6 chondrite. Eur J Miner 15:1001–1005

Article
Google Scholar

Xie X, Gu X, Yang H, Chen M, Li K (2020) Wangdaodeite, the LiNbO_{3}-structured high-pressure polymorph of ilmenite, a new mineral from the Suizhou L6 chondrite. Meteorit Planet Sci 55:184–192

Article
Google Scholar

Xie Z, Tomioka N, Sharp TG (2002b) Natural occurrence of Fe_{2}SiO_{4}-spinel in the shocked Umbarger L6 chondrite. Am Min 87:1257–1260

Article
Google Scholar

Xie Z, Sharp T, Decarli P (2003) Estimating shock pressures from high-pressure minerals in shock-induced melt veins of the chondrites. In: Lunar and planetary science conference, p 1280.pdf

Xie Z, Sharp TG (2004) High-pressure phases in shock-induced melt veins of the Umbarger L6 chondrite: constraints of shock pressure. Meteorit Planet Sci 39:2043–2054

Article
Google Scholar

Xie Z, Sharp TG, DeCarli PS (2006) High-pressure phases in a shock-induced melt vein of the Tenham L6 chondrite: constraints on shock pressure and duration. Geochim Cosmochim Acta 70:504–515

Article
Google Scholar

Xie Z, Sharp TG (2007) Host rock solid-state transformation in a shock-induced melt vein of Tenham L6 chondrite. Earth Planet Sci Lett 254:433–445

Article
Google Scholar

Xie Z, Sharp TG, Leinenweber K, DeCarli PS, Dera P (2011) A new mineral with an olivine structure and pyroxene composition in the shock-induced melt veins of Tenham L6 chondrite. Am Min 96:430–436

Article
Google Scholar

Yagi A, Suzuki T, Akaogi M (1994) High pressure transitions in the system KAlSi_{3}O_{8}-NaAlSi_{3}O_{8}. Phys Chem Miner 21:12–17

Article
Google Scholar

Yoshida M, Miyahara M, Yamaguchi A, Tomioka N, Sakai T, Ohfuji H, Maeda F, Ohira I, Ohtani E, Kamada S, Suga H, Ohigashi T, Inagaki Y (2021) Elucidation of impact event recorded in the lherzolitic shergottite NWA 7397. Meteorit Planet Sci. https://doi.org/10.1111/maps.13735

Article
Google Scholar

Zhang A-C, Jiang Q-T, Tomioka N, Guo Y-J, Chen J-N, Li Y, Sakamoto N, Yurimoto H (2021) Widespread tissintite in strongly shock-lithified lunar regolith breccias. Geophys Res Lett. https://doi.org/10.1029/2020GL091554:2020GL091554

Article
Google Scholar

Zhang J, Herzberg C (1994) Melting experiments on anhydrous peridotite KLB-1 from 5.0 to 22.5 GPa. J Geophys Res Solid Earth 99:17729–17742

Article
Google Scholar