Acharyya SK, Shah BA, Ashyiya ID, Pandy Y (2005) Arsenic contamination in groundwater from parts of Ambagarh-Chowki block, Chhattisgarh, India: source and release mechanism. Environ Geol 49:148–158
Article
Google Scholar
Akai J, Izumi K, Fukuhara H, Masuda H, Nakano H, Yoshimura T, Ohfuji H, HMd A, Akai K (2004) Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh. Appl Geochem 19:215–230
Article
Google Scholar
Amini M, Abbaspour KC, Berg M, Winkel L, Hug SJ, Hoehn E, Yang H, Johnson CA (2008) Statistical modeling of global geogenic arsenic contamination in groundwater. Environ Sci Technol 42:3669–3675
Article
Google Scholar
An D, He YG, Hu QX (1997) Poisoning by coal smoke containing arsenic and fluoride. Fluoride 30:29–32
Google Scholar
Andreae MO (1978) Distribution and speciation of arsenic in natural waters and some marine algae. Deep Sea Res 25:391–402
Article
Google Scholar
Awaya T, Oyama M, Ishizaka N, Ita K (2002) The amount of arsenic loads of river waters and hot springs in the Hakone-Yugawara area. Ann Rep Kanagawa Onsen Chigaku Kenkyujo 33:49–70 Japanese
Google Scholar
Bebout GE, Ryan JG, Leeman WP, Bebaout AE (1999) Fractionation of trace elements by subduction-zone metamorphism – effect of convergent-margin thermal evolution. Earth Planet Sci Lett 171:63–81
Article
Google Scholar
Berg M, Stengel C, Trang PTK, Viet PH, Sampson ML, Leng M, Samreth S, Fredricks D (2007) Magnitude of arsenic pollution in the Mekong and Red River deltas – Cambodia and Vietnam. Sci Total Environ 372:413–425
Article
Google Scholar
Blanes FS, Buchhamer EE, Giménez MC (2011) Natural contamination with arsenic and other trace elements in groundwater of the Central-West region of Chaco, Argentina. J Environ Sci Health, Part A 46:1197–1206
Article
Google Scholar
Boyle RW, Jonasson IR (1973) The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. J Geochem Explor 2:251–296
Article
Google Scholar
Breuer C, Pichler T (2013) Arsenic in marine hydrothermal fluids. Chem Geol 348:2–14
Article
Google Scholar
Bundschuh J, Litter MI, Parvez F, Roman-Ross G, Nicolli HB, Jean JS, Liu CW, Lopez D, Armienta MA, Guilherme LRG (2012) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Total Environ 429:2–35
Article
Google Scholar
Cai L, Yu K, Yang Y, Chen B-W, Li X-D, Zhang T (2013) Metanogenic exploration reveals high levels of microbial arsenic metabolism genes in activated sludge and coastal sediments. Environ Biotechnol 97:9579–9588
Article
Google Scholar
Camm GS, Glass HJ, Bryce DW, Butcher AR (2004) Characterisation of a mining-related arsenic-contaminated site, Cornwall, UK. J Geochem Explor 82:1–15
Article
Google Scholar
Charlet L, Polya DA (2006) Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster. Elements 2:91–96
Article
Google Scholar
Charnock JM, Polya DA, Gault AG, Wogelius RA (2007) Direct EXAFS evidence for incorporation of As5+ in the tetrahedral site of natural andraditic garnet. Am Mineral 92:1856–1861
Article
Google Scholar
Cox MS, Bell PF, Kover JL (1996) Arsenic supply characteristics of four cotton-producing soils. Plant Soil 180:11–17
Article
Google Scholar
Craw D, Chappell D, Reay A (2000) Environmental mercury and arsenic sources in fossil hydrothermal systems, Northland, New Zealand. Environ Geol 38:875–887
Article
Google Scholar
Cui B, Zhu M, Yang J, Yanxue J (2014) Identification of the sources of metals and arsenic in river sediments by multivariate analysis and geochemical approaches. J Soils Sed 14:1456–1468
Article
Google Scholar
Edmonds JS, Francesconi KA, Rippingale RJ, Morita M (1997) Arsenic transformations in short marine food chains studied by HPLC-ICP MS. Appl Organomet Chem 11:281–287
Article
Google Scholar
EPA (US Environmental Protection Agency) (2018) Groundwater and Drinking Water, National Primary Drinking water regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Inorganic (2018.05.28)
Even E, Masuda H, Shibata T, Nojima A, Chiba H, Yamanaka T (2017) Geochemical distribution and fate of arsenic in water and sediments of rivers from the Hokusetsu area, Japan. J Hydrol: Region Stud 9:34–47
Google Scholar
Farooqi A, Masuda H, Firdous N (2007a) Toxic fluoride and arsenic contaminated groundwater in Lahore and Kasur districts, Punjab, Pakistan and possible contaminant. Environ Poll 145:837–849
Article
Google Scholar
Farooqi M, Masuda H, Kusakabe M, Naseem M, Firdous N (2007b) Deteriorating quality and large extent of arsenic and fluoride contaminated alluvial aquifers from East Punjab Pakistan and factors controlling contaminant’s behavior. Geochem J 41:213–234
Article
Google Scholar
Fendorf S, Holly HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328:1123–1127
Article
Google Scholar
Fernández-Martínez A, Cuello GJ, Johnson MR, Bardellli F, Póman-Ross G, Charlet L, Trrillas X (2008) Arsenate incorporation in gypsum probed by neutron, x-ray scattering and density functional theory modeling. J Phys Chem A 112:5159–5166
Article
Google Scholar
Fujiwara S, Yamamoto K, Mimura K (2011) Dissolution processes of elements from subducting sediments into fluids: evidence from the chemical composition of the Sanbagawa pelitic schists. Geochem J 45:221–234
Article
Google Scholar
Ghosh D, Bhadury P, Bouth J (2014) Diversity of arsenite oxidizing bacterial communities in arsenic-rich deltaic aquifers in West Bengal, India. Front Microbiol 5, Article 602: doi: https://doi.org/10.3389/fmicb.2014.00602
Guo HM, Zhou YZ, Jia YF, Tang XH, Jiang YX, Lu H, Han SB, Zheng H, Cao YS, Zhao WG, Zhang D, Wei C, Norra S, Zhang FC (2016) Sulfur cycling-related biogeochemical processes of arsenic mobilization in the western Hetao basin, China: evidences from multiple isotope approaches. Environ Sci Technol 50:12650–12659
Article
Google Scholar
Gutiérrez-Caminero L, Weber B, Wurl J, Carrera-Muñoz M (2015) Tracing toxic elements sources using lead isotopes: an example from the San Antonio-El Triunfo mining district, Baja California Sur, México. Appl Geochem 59:23–32
Article
Google Scholar
Hasegawa H, Raman MA, Kitahara K, Itaya Y, Maki T, Ueda K (2010) Seasonal changes of arsenic speciation in lake waters in relation to eutrophication. Sci Total Environ 407:1418–1425
Article
Google Scholar
Hattori K, Arai S, Clarke DB (2002) Selenium, tellurium, arsenic and antimony contents of primary mantle sulfides. Can Mineral 40:637–650
Article
Google Scholar
Hattori K, Takahashi Y, Guillot S, Johanson B (2005) Occurrence of arsenic (V) in forearc mantle serpentinites based on X-ray absorption spectroscopy study. Geochim Cosmochim Acta 69:5585–5596
Article
Google Scholar
Health Canada (2017). Guidelines for Canadian drinking water quality—summary table. Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario
Hecht H, Oguchi T (2017) Global evaluation of erosion rates in relation to tectonics. Prog Earth Planet Sci 4:40. https://doi.org/10.1186/s40645-017-0156-3
Article
Google Scholar
Imai N, Terashima S, Ohta M, Mikoshiba M, Okai T, Tachibana Y, Togashi S, Matsuhisa Y, Kanai Y, Ueoka A, Taniguchi M (2004) Geochemical map of Japan. Geological survey of Japan, p 209
Google Scholar
Iskandar I, Koike K, Sendjaja P (2012) Identifying groundwater arsenic contamination mechanisms in relation to arsenic concentrations in water and host rocks. Environ Earth Sci 65:2015–2026
Article
Google Scholar
Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloid JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71
Article
Google Scholar
Jin K, Kobayashi S, Takeuchi S, Tatsumi K, Miura K, Narita K (2012) Determination of As (III) and As (V) in river water of Toyohira, Sapporo and speciation of arsenic compounds in cyanobacteria by HPLC-ICPMS. Rep Hokkaido Inst Pub Health 62:35–41
Google Scholar
JOGMEC (2012) Material flow of ore resources 2011: 44 Arsenic. http://mric.jogmec.go.jp/public/report/2011-07/As.pdf (Jan. 10, 2018)
Kawakami H, Nozaki H, Koga A (1956) Chemical study on Beppu Hoto spring (II) – trace elements of Peppu hot spring (II) distribution of arsenic. Nihon Kagaku Zasshi 77:1785–1789 Japanese
Article
Google Scholar
Kikawada K, Kawai S, Oi T (2006) Long term changes in the concentration of dissolved arsenic and its present supply in the Kusatsu hot springs Gunma Japan. Chikyukagaku (Geochemistry) 40:125–136 Japanese with English abstract
Google Scholar
Kikawada K, Kyomen K, Oi T (2009) Behavior of arsenic in Yukawa River of the Kusatsu hot spring resource area, Gunma prefecture, Japan. J Hot Spring Science 59:81–87 Japanese with English abstract
Google Scholar
Li Y, Audétat A (2012) Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. Earth Planet Sci Lett 355-356:327–340
Article
Google Scholar
Li Y, Audétat A (2015) Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb and Bi between sulfide phases and silicate melts. Geochim Cosmochim Acta 162:25–45
Article
Google Scholar
Majzlan J, Drahota P, Filippi M (2014) Parageneses and crystal chemistry of arsenic minerals. Rev Mineral Geochem 79:17–184
Article
Google Scholar
Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235
Article
Google Scholar
Masuda H, Mitamura M, Farooqi AM, Muhanmad N, Owada M, Okazaki K, Seddique AA (2010) Geologic structure and geochemical characteristics of sediments of fluoride and arsenic contaminated groundwater aquifer in Kalalanwala and its vicinity, Punjab, Pakistan. Geochem J 44:489–505
Article
Google Scholar
Masuda H, Okabayashi K, Maeda S, Seddique AA, Mitamura M, Shinoda K (2013) Sequential chemical extraction of arsenic and related elements from the Holocene sediments of Sonargaon, Bangladesh, in relation to formation of arsenic-contaminated groundwater. Geochem J 47:651–661
Article
Google Scholar
Masuda H, Shinoda K, Okudaira T, Takahashi Y, Noguchi N (2012) Chlorite – source of arsenic groundwater pollution in the Holocene aquifer of Bangladesh. Geochem J 46:381–391
Article
Google Scholar
Masuda H, Yamatani Y, Okai M (2005) Transformation of arsenic compounds in modern intertidal sediments of Iriomote Island, Japan. J Geochem Explor 87:73–81
Article
Google Scholar
Matschullat J (2000) Arsenic in geosphere – a review. Sci Total Environ 249:297–312
Article
Google Scholar
McDonough WF, Sun S-s (1995) The composition of the Earth. Chem Geol 120:223–253
Article
Google Scholar
McLaren RG, Naidu R, Smith J, Tiller KG (1998) Fraction and distribution of arsenic in soils contaminated by cattle dip. J Environ Qual 27:348–354
Article
Google Scholar
Minami H, Sato G, Watanuki K (1958) Concentrations of arsenic and lead of Tamagawa hot spring waters, Akita prefecture. Nihon Kagaku Zasshi 79:860–865 Japanese
Article
Google Scholar
Mukhopadhyay R, Rozen BP, Pung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEM Microbiol Rev 26:311–325
Article
Google Scholar
NHMRC, NRMMC (2011) Australian drinking water guidelines paper 6 national water quality management strategy. National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra
Google Scholar
Nickson R, McArthur JM, Ravencroft P, Burgess W, Ahmed KM (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413
Article
Google Scholar
Nicolli HB, Bundschuh J, Blanco MD, Tujchneider OC, Panarello HO, Dapena C, Rusansky JE (2012) Arsenic and associated trace-elements in groundwater from the Chaco-Panpean plain, Argentina: results from 100 years of research. Sci Total Environ 429:36–56
Article
Google Scholar
Nimick DA, Moore JN, Dalby CE, Savka MW (1998) The fate of geothermal arsenic in the Madison and Missouri Rivers, Montana and Wyoming. Water Resour Res 34:3051–3067
Article
Google Scholar
Nordstrom DK, Majzlan J, Königsberger E (2014) Thermodynamics properties for arsenic minerals and aqueous species. Rev Mineral Geochem 79:217–255
Article
Google Scholar
Norr PD Jr, Newson HE, Leeman WP, Ryan JG (1996) The role of hydrothermal fluids in the production of subduction zone magmas: evidence from siderophile and chalcophile trace elements and boron. Geochim Cosmochim Acta 60:587–611
Article
Google Scholar
Oguri T, Yoshinaga J, Tao H, Nakazato T (2014) Inorganic arsenic in the Japanese diet: daily intake and source. Archiv Environ Contam Toxic 66:100–112
Article
Google Scholar
Ohta A, Imai N, Terashima S, Tachibana Y, Ikehara K, Katayama H, Noda A (2010) Factors controlling regional spatial distribution of 53 elements in coastal sea sediments in northern Japan: comparison of geochemical data derived from stream and marine sediments. Appl Geochem 25:357–376
Article
Google Scholar
Okada H, Tada T, Chiba A, Nakazawa H, Mitsuhashi K, Ohara T (2002) Decontamination of geothermal water – removal of arsenic. Low Temp Sci 37:331–337 Japanese with English abstract
Google Scholar
Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944
Article
Google Scholar
Pascua C, Charnock J, Polya DA, Sato T, Yokoyama S, Minato M (2005) Arsenic-bearing smectite from the geothermal environment. Mineral Mag 69:897–906
Article
Google Scholar
Paul D, Kazy SK, Gupta AK, Pal T, Sar P (2015) Diversity, metabolic properties and arsenic mobilization potential of indigenous bacteria in arsenic contaminated groundwater of West Bengal, India. PLoS One 10:e0118735. https://doi.org/10.1371/journal.pone.0118735
Article
Google Scholar
Pollizzotto ML, Harvey CF, Sutton S, Fendorf S (2005) Processes conductive to the release and transport of arsenic into aquifers of Bangladesh. Proc Nat Acad Sci US 102:18819–18823
Article
Google Scholar
Quéméneur M, Cébron A, Billard P, Battaglia-Brunet F, Garrido F, Leyval C, Joulian C (2010) Population structure and abundance of arsenite-oxidizing bacteria along an arsenic pollution gradient in waters of the upper Isle River Basin, France. Appl Environ Microbiol 76:4566–4570
Article
Google Scholar
Quichsall AN, Bostick BC, Sampson ML (2008) Linking organic matter deposition and iron mineral transformations to groundwater arsenic levels in the Mekong delta, Cambodia. Appl Geochem 23:3088–3098
Article
Google Scholar
Radloff KA, Manning AR, Mailloux B, Zheng Y, Rahman MM, Huq MR, Ahmed KM, van Geen A (2008) Considerations for conducting incubations to study the mechanisms of As release in reducing groundwater aquifers. Appl Geochem 23:3224–3235
Article
Google Scholar
Rango T, Vengosh A, Dwyer G, Bianchini G (2013) Mobilization of arsenic and other naturally occurring contaminants in groundwaters of the Main Ethiopian Rift. Water Res 47:5801–5818
Article
Google Scholar
Razo I, Carrizales L, Castro J, Díez-Barriga F, Monroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Poll 152:129–152
Article
Google Scholar
Reimer KJ, Thompson JAJ (1988) Arsenic speciation in marine interstitial water. The occurrence of organoarsenicals Biogeochem 6:211–237
Article
Google Scholar
Ryan PC, Kim J, Wall AJ, Moen JC, Coremthal LG, Chow DR, Sullivan CM, Bright KS (2011) Ultra-mafic derived arsenic in a fractured bedrock aquifer. Appl Geochem 26:444–457
Article
Google Scholar
Saunders JA, Lee M-K, Shamsudduha M, Dhakal PUA, Chowdury MT, Ahmed KM (2008) Geochemistry and mineralogy of arsenic in (natural) anaerobic groundwaters. Appl Geochem 23:3205–3214
Article
Google Scholar
Savage KS, Ashley RP, Bird DK (2009) Geochemical evolution of a high arsenic, alkaline pit-lake in the Mother Lode Gold District, California. Econ Geol 104:1171–1211
Article
Google Scholar
Savage KS, Tingle TN, O’Day PA, Waychunas GA, Bird DK (2000) Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Appl Geochem 15:1219–1244
Article
Google Scholar
Seddique AA, Masuda H, Mitamura M, Shinoda K, Yamanaka T, Nakaya S, Ahmed KM (2011) Mineralogy and geochemistry of shallow sediments of Sonargaon, Bangladesh and implications for arsenic dynamics: focusing on the role of organic matter. Appl Geochem 2:587–599
Article
Google Scholar
Shimada N (1996) Geochemical conditions enhancing the solubilization of arsenic into groundwater in Japan. Appl Organomet Chem 10:667–674
Article
Google Scholar
Shimada N (2009) The essence of problems on groundwater and soil pollutions caused by naturally occurring heavy metals and harmful elements: arsenic. Oyo Technical Report 29:31–59 Japanese with English abstract
Google Scholar
Sigufusson B, Gislason SR, Meharg AA (2011) A field and reactive transport model study of arsenic in a basaltic rock aquifer. Appl Geochem 26:553–564
Article
Google Scholar
Sims KWW, Newsom HE, Gladney ES (1990) Chemical fractionation during formation of the Earth’s core and continental crust: clues from As, Sb, W, and Mo. In: HE Newson and JH Jones (Editors). Origin of the earth. Oxford Univ Press, New York, N. Y., pp. 291–317
Smedley PL, Kinniburgh DG (2002) A review of source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568
Article
Google Scholar
Smedley PL, Zhang M, Zhang G, Luo Z (2003) Mobilization of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl Geochem 18:1453–1477
Article
Google Scholar
Stauffer RE, Thompson JM (1984) Arsenic and antimony in geothermal waters of Yellow Stone National Park, Wyoming, USA. Geochim Cosmochim Acta 48:2547–2561
Article
Google Scholar
Takeuchi M, Kawahata H, Gupta LP, Kita N, Morishiba Y, Ono Y, Komai T (2007) Arsenic resistance and removal by marine and non-marine bacteria. J Biotechnol 127:434–442
Article
Google Scholar
Takeuchi M, Terada A, Nanba K, Kanai Y, Owaki M, Yoshida T, Kuroiwa T, Nirei H, Komai T (2005) Distribution and fate of biologically formed organoarsenicals in coastal marine sediment. Appl Organomet Chem 19:945–951
Article
Google Scholar
Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford
Google Scholar
van Geen A, Thoral S, Rose J, Garnier JM, Zheng Y, Bottero JY (2004) Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions, part II: evidence from sediment incubations. Geochim Cosmochim Acta 68:3475–3486
Article
Google Scholar
van Geen A, Zheng Y, Cheng Z, Aziz Z, Horneman A, Dhar RK, Mailloux B, Stute M, Weinman B, Goodbred S, Seddique AA, Hoque MA, Ahmed KM (2006) A transect of groundwater and sediment properties in Ariahazar, Bangladesh: further evidence of decoupling between As and Fe mobilization. Chem Geol 228:85–96
Article
Google Scholar
Vergasova LP, Krivovichev SV, Britvin SN, Burns PC, Ananiev VV (2004) Filatovite, K [(Al, Zn)2(As, Si)2O8], a new mineral species from the Tolbachik volcano, Kamchatka peninsula, Russia. Eur J Mineral 16:533–536
Article
Google Scholar
Webster JG, Nordtrom K (2003) Chapter 4 geothermal arsenic the source, transport and fate of arsenic in geothermal systems. In: Welch AH, Stollenwerk KG (eds) Arsenic in groundwater. Kluwer Academic Publishers, Boston, pp 101–125
Google Scholar
Webster-Brown JG, Lane V (2005) The environmental fate of geothermal arsenic in a major river system, New Zealand. In: Proceedings world geothermal congress 2005, Antalya, Turkey, 24–29 April
Google Scholar
Webster-Brown JG, Lane V, Webster KS (2000) Arsenic in the Waikato River – an update. In: Proc the 22nd geothermal workshop, New Zealand
Google Scholar
Wedepohl KH (1995) The composition of the continental-crust. Geochim Cosmochim Acta 59:1217–1232
Article
Google Scholar
WHO (World Health Organization) (2006) Guideline for drinking-water quality [electronic resource]: incorporating first addendum. Vol. 1, Recommendations. -3rd ed. WHO Press, Geneva, Switzerland, ISBN 92 4 154696 4. pp.515
Yamamura S, Amachi S (2014) Microbiology of inorganic arsenic: from metabolism to bioremediation. J Biosci Bioeng 118:1–9
Article
Google Scholar
You C-F, Castillo PR, Gieskes JM, Chan LH, Spivack AJ (1996) Trace element behavior in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zones. Earth Planet Sci Lett 140:41–52
Article
Google Scholar
Zhu W, Young LY, Yee N, Serfes M, Rhine ED, Renfelder JR (2008) Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite. Geochim Cosmochim Acta 72:5243–5250
Article
Google Scholar