Adams, J (1991) Multigrid software for elliptic partial differential equations: MUDPACK In: NCAR Technical Note-357+STR.. National Center for Atmospheric Research, Boulder CO.
Google Scholar
Anderson, DN, Buonsanto MJ, Codrescu M, Decker D, Fesen CG, Fuller-Rowell TJ, Reinisch BW, Richards PG, Roble RG, Schunk RW, Sojka JJ (1998) Intercomparison of physical models and observations of the ionosphere. J Geophys Res 103:2179–2192.
Article
Google Scholar
Aveiro, HC, Hysell DL (2010) Three-dimensional numerical simulation of equatorial F region plasma irregularities with bottomside shear flow. J Geophys Res 115:11321. doi:10.1029/2010JA015602.
Google Scholar
Aveiro, HC, Hysell DL, Park J, Lühr H (2011) Equatorial spread F-related currents: three-dimensional simulations and observations. Geophys Res Lett 38:21103. doi:10.1029/2011GL049586.
Article
Google Scholar
Aveiro, HC, Hysell DL (2012) Implications of the equipotential field line approximation for equatorial spread F analysis. Geophys Res Lett 39:11106. doi:10.1029/2012GL051971.
Article
Google Scholar
Aveiro, HC, Hysell DL, Caton RG, Groves KM, Klenzing J, Pfaff RF, Stoneback R, Heelis RA (2012) Three-dimensional numerical simulations of equatorial spread F: results and observations in the Pacific sector. J Geophys Res 117:03325. doi:10.1029/2011JA017077.
Article
Google Scholar
Aveiro, HC, Huba JD (2013) Equatorial spread F studies using SAMI3 with two-dimensional and three-dimensional electrostatics. Ann Geophys 31:2157–2162. doi:10.5194/angeo-31-2157-2013.
Article
Google Scholar
Carrano, CS, Rino CL (2016) A theory of scintillation for two-component power law irregularity spectra: overview and numerical results. Radio Sci 51:789–813. doi:10.1002/2015RS005903.
Article
Google Scholar
Duly, TM, Huba JD, Makela JJ (2014) Self-consistent generation of MSTIDs within the SAMI3 numerical model. J Geophys Res 119:6745–6757. doi:10.1002/2014JA020146.
Article
Google Scholar
Dungey, JW (1956) Convective diffusion in the equatorial F region. J Atmos Terr Phys 9:304–310.
Article
Google Scholar
Fang, T-W, Anderson D, Fuller-Rowell T, Akmaev R, Codrescu M, Millward G, Sojka J, Scherliess L, Eccles V, Retterer J, Huba J, Joyce G, Richmond A, Maute A, Crowley G, Ridley A, Vichare G (2013) Comparative studies of theoretical models in the equatorial ionosphere. In: Huba J, Schunk R, Khazanov G (eds) Modeling the Ionosphere-Thermosphere System, Geophysical Monograph Series, 133–144. American Geophysical Union, Washington. doi:10.1002/9781118704417.ch12.
Google Scholar
Farley, DT, Balsley BB, Woodman RF, McClure JP (1970) Equatorial spread F: implications of VHF radar observations. J Geophys Res 75:7199–7216.
Article
Google Scholar
Fujino, S, Murakami K (2013) A parallel variant of BiCGStar-Plus method reduced to single global synchronization. AsiaSim 2013 CCIS Ser 402:325–332. doi:10.1007/978-3-642-45037-2_30.
Article
Google Scholar
Hain, K (1987) The partial donor cell method. J Comput Phys 73:131–147.
Article
Google Scholar
Harten, A (1983) High resolution schemes for hyperbolic conservation laws. J Comput Phys 49:357–393.
Article
Google Scholar
Hines, CO (1960) Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38:1441–1481.
Article
Google Scholar
Huang, CS, Kelley MC (1996a) Nonlinear evolution of equatorial spread F: 1. On the role of plasma instabilities and spatial resonance associated with gravity wave seeding. J Geophys Res 101:283–292.
Article
Google Scholar
Huang, CS, Kelley MC (1996b) Nonlinear evolution of equatorial spread F: 2. Gravity wave seeding of rayleigh–taylor instability. J Geophys Res 101:293–302.
Article
Google Scholar
Huang, CS, Kelley MC (1996c) Nonlinear evolution of equatorial spread F: 3. Plasma bubbles generated by structured electric fields. J Geophys Res 101:303–313.
Article
Google Scholar
Huang, CS, Kelley MC (1996d) Nonlinear evolution of equatorial spread F: 4. Gravity waves, velocity shear, and day-to-day variability. J Geophys Res 101:24521–24532.
Article
Google Scholar
Huba, JD, Joyce G (2007) Equatorial spread F modeling: multiple bifurcated structures, secondary instabilities, large density ’bite-outs,’ and supersonic flows. Geophys Res Lett 34:07105. doi:10.1029/2006GL028519.
Article
Google Scholar
Huba, JD, Joyce G, Krall J (2008) Three-dimensional equatorial spread F modeling. Geophys Res Lett 35:10102. doi:10.1029/2008GL033509.
Article
Google Scholar
Huba, JD, Ossakow SL, Joyce G, Krall J, England SL (2009) Three-dimensional equatorial spread F modeling: zonal neutral wind effects. Geophys Res Lett 36:19106. doi:10.1029/2009GL040284.
Article
Google Scholar
Huba, JD, Joyce G (2010) Global modeling of equatorial plasma bubbles. Geophys Res Lett 37:17104. doi:10.1029/2010GL044281.
Google Scholar
Huba, JD, Krall J (2013) Impact of meridional winds on equatorial spread F: revisited. Geophys Res Lett 40:1268–1272. doi:10.1002/grl.50292.
Article
Google Scholar
Huba, JD, Wu TW, Makela JJ (2015) Electrostatic reconnection in the ionosphere. Geophys Res Lett 42:1626–1631. doi:10.1002/2015GL063187.
Article
Google Scholar
Hysell, DL, Jafari R, Fritts DC, Laughman B (2014a) Gravity wave effects on postsunset equatorial F region stability. J Geophys Res Space Physics 119:5847–5860. doi:10.1002/2014JA019990.
Article
Google Scholar
Hysell, DL, Jafari R, Milla MA, Meriwether JW (2014b) Data-driven numerical simulations of equatorial spread F in the Peruvian sector. J Geophys Res Space Phys 119:3815–3827. doi:10.1002/2014JA019889.
Article
Google Scholar
Hysell, DL, Milla MA, Condori L, Meriwether JW (2014c) Data-driven numerical simulations of equatorial spread F in the Peruvian sector: 2. Autumnal equinox. J Geophys Res Space Phys 119:6981–6993. doi:10.1002/2014JA020345.
Article
Google Scholar
Hysell, DL (2000) An overview and synthesis of plasma irregularities in equatorial spread F. J Atmos Sol Terr Phys 62:1037–1056.
Article
Google Scholar
Hysell, DL, Burcham JD (2002) Long term studies of equatorial spread F using the JULIA radar at Jicamarca. J Atmos Sol Terr Phys 64:1531–1543.
Article
Google Scholar
Hysell, DL, Kudeki E (2004) Collisional shear instability in the equatorial F region ionosphere. J Geophys Res 109:11301. doi:10.1029/2004JA010636.
Article
Google Scholar
Hysell, DL, Larsen MF, Swenson CM, Wheeler TF (2006) Shear flow effects at the onset of equatorial spread F. J Geophys Res 111:11317. doi:10.1029/2006JA011963.
Article
Google Scholar
Hysell, DL, Milla MA, Condori L, Vierinen J (2015) Data-driven numerical simulations of equatorial spread F in the Peruvian sector: 3. Solstice. J Geophys Res Space Phys 120:10809–10822. doi:10.1002/2015JA021877.
Article
Google Scholar
Kelley, MC, Larsen MF, LaHoz C, McClure JP (1981) Gravity wave initiation of equatorial spread F: a case study. J Geophys Res 86:9087–9100.
Article
Google Scholar
Kelley, MC, Seyler CE, Zargham S (1987) Collisional interchange instability: 2. A comparison of the numerical simulations with the in situ experimental data. J Geophys Res 92:10089–10094.
Article
Google Scholar
Kelley, MC, Hysell DL (1991) Equatorial spread-F and neutral atmospheric turbulence: a review and a comparative anatomy. J Atmos Terr Phys 53:695–708.
Article
Google Scholar
Kelley, MC (2009) The Earth’s ionosphere: plasma physics and electrodynamics. 2nd edn. Int Geophys Ser vol 96. Academic Press, Boston.
Google Scholar
Keskinen, MJ, Szuszczewicz EP, Ossakow SL, Holmes JC (1981) Nonlinear theory and experimental observations of the local collisional Rayleigh–Taylor instability in a descending equatorial spread F ionosphere. J Geophys Res 86:5785–5792.
Article
Google Scholar
Keskinen, MJ, Ossakow SL, Fejer BG (2003) Three-dimensional nonlinear evolution of equatorial ionospheric spread-F bubbles. Geophys Res Lett 30(16):1855. doi:10.1029/2003GL017418.
Article
Google Scholar
Keskinen, MJ, Vadas SL (2009) Three-dimensional nonlinear evolution of equatorial ionospheric bubbles with gravity wave seeding and tidal wind effects. Geophys Res Lett 36:12102. doi:10.1029/2009GL037892.
Article
Google Scholar
Keskinen, MJ (2010) Equatorial ionospheric bubble precursor. Geophys Res Lett 37:09106. doi:10.1029/2010GL042963.
Article
Google Scholar
Kherani, EA, Mascarenhas M, Sobral JHA, de Paula ER, Bertoni F (2005) A three-dimensional simulation of collisional-interchange-instability in the equatorial-low-latitude ionosphere. Space Sci Rev 121:253–269. doi:10.1007/s11214-006-6158-x.
Article
Google Scholar
Kintner, PM, Ledvina BM, de Paula ER (2007) GPS and ionospheric scintillations. Space Weather 5:09003. doi:10.1029/2006SW000260.
Article
Google Scholar
Krall, J, Huba JD, Ossakow SL, Joyce G (2010a) Why do equatorial ionospheric bubbles stop rising?Geophys Res Lett 37:09105. doi:10.1029/2010GL043128.
Article
Google Scholar
Krall, J, Huba JD, Ossakow SL, Joyce G (2010b) Equatorial spread F fossil plumes. Ann Geophys 28:2059–2069. doi:10.5194/angeo-28-2059-2010.
Article
Google Scholar
Krall, J, Huba JD, Fritts DC (2013a) On the seeding of equatorial spread F by gravity waves. Geophys Res Lett 40:661–664. doi:10.1002/GRL.50144.
Article
Google Scholar
Krall, J, Huba JD, Joyce G, Hei M (2013b) Simulation of the seeding of equatorial spread F by circular gravity waves. Geophys Res Lett 40:1–5. doi:10.1029/2012GL054022.
Article
Google Scholar
Krall, J, Huba JD, Joyce G, Zalesak ST (2009) Three-dimensional simulation of equatorial spread-F with meridional wind effects. Ann Geophys 27:1821–1830.
Article
Google Scholar
Krall, J, Huba JD, Ossakow SL, Joyce G, Makela JJ, Miller ES, Kelley MC (2011) Modeling of equatorial plasma bubbles triggered by non-equatorial traveling ionospheric disturbances. Geophys Res Lett 38:08103. doi:10.1029/2011GL046890.
Article
Google Scholar
Madala, RV (1978) An efficient direct solver for separable and non-separable elliptic equations. Mon Wea Rev 106:1735–1741.
Article
Google Scholar
McDonald, BE, Ossakow SL, Zalesak ST, Zabusky NJ (1981) Scale sizes and lifetimes of F region plasma cloud striations as determined by the condition of marginal stability. J Geophys Res 86:5775–5784.
Article
Google Scholar
Miller, ES, Makela JJ, Kelley MC (2009) Seeding of equatorial plasma depletions by polarization electric fields from middle latitudes: experimental evidence. Geophys Res Lett 36:18105. doi:10.1029/2009GL039695.
Article
Google Scholar
Retterer, JM (2010a) Forecasting low-latitude radio scintillation with 3-D ionospheric plume models: 1. Plume model. J Geophys Res 115:03306. doi:10.1029/2008JA013839.
Article
Google Scholar
Retterer, JM (2010b) Forecasting low-latitude radio scintillation with 3-D ionospheric plume models: 2. Scintillation calculation. J Geophys Res 115:03307. doi:10.1029/2008JA013840.
Article
Google Scholar
Retterer, JM (2005) Physics-based forecasts of equatorial radio scintillation for the communication and navigation outage forecasting system (c/nofs). Space Weather 3:12–03. doi:10.1029/2005SW000146.
Article
Google Scholar
Retterer, JM, Decker DT, Borer WS, Daniell Jr RE, Fejer BG (2005) Assimilative modeling of the equatorial ionosphere for scintillation forecasting: modeling with vertical drifts. J Geophys Res 110:11307. doi:10.1029/2002JA009613.
Article
Google Scholar
Retterer, JM, Gentile LC (2009) Modeling the climatology of equatorial plasma bubbles observed by DMSP. Radio Sci 44:0–31. doi:10.1029/2008RS004057.
Article
Google Scholar
Retterer, JM, Roddy P (2014) Faith in a seed: on the origins of equatorial plasma bubbles. Ann Geophys 32:485–498. doi:10.5194/angeo-32-485-2014.
Article
Google Scholar
Rino, CL, Tsunoda RT, Petriceks J, Livingston RC, Kelley MC, Baker KD (1981) Simultaneous rocket-borne beacon and in situ measurements of equatorial spread F—intermediate wavelength results. J Geophys Res 86:2411–2420.
Article
Google Scholar
Rino, CL, Carrano CS, Roddy P (2014) Wavelet-based analysis and power law classification of C/NOFS high-resolution electron density data. Radio Sci 49:680–688. doi:10.1002/2013RS005272.
Article
Google Scholar
Rino, CL, Carrano CS, Groves KM, Roddy PA (2016) A characterization of intermediate-scale spread F structure from four years of high-resolution C/NOFS satellite data. Radio Sci 51:779–788. doi:10.1002/2015RS005841.
Article
Google Scholar
Rino, CL, Yokoyama T, Carrano CS (2017) Characteristics of high-resolution simulated equatorial plasma bubbles. Prog Earth Planet Sci. (in press).
Saad, Y (1990) SPARSKIT: a basic tool kit for sparse matrix computations In: Tech. Rep. RIACS-90-20.. Research Institute for Advanced Computer Science, NASA Ames Research Center, Moffett Field.
Google Scholar
Saad, Y (2003) Iterative Methods for Sparse Linear Systems. 2nd edn. SIAM Publications, Philadelphia.
Book
Google Scholar
Scannapieco, AJ, Ossakow SL (1976) Nonlinear equatorial spread F. Geophys Res Lett 3:451–454.
Article
Google Scholar
Sekar, R, Suhasini R, Raghavarao R (1994) Effects of vertical winds and electric fields in the nonlinear evolution of equatorial spread F. J Geophys Res 99:2205–2213.
Article
Google Scholar
Sekar, R (2003) Plasma instabilities and their simulations in the equatorial F region—recent results. Space Sci Rev 107:251–262.
Article
Google Scholar
Singh, M, Szuszczewicz EP (1984) Composite equatorial spread F wave number spectra from medium to short wavelength. J Geophys Res 89:2313–2323.
Article
Google Scholar
Stolle, C, Lühr H, Rother M, Balasis G (2006) Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J Geophys Res 111:02304. doi:10.1029/2005JA011184.
Article
Google Scholar
Sultan, PJ (1996) Linear theory and modeling of the Rayleigh–Taylor instability leading to the occurrence of equatorial spread F. J Geophys Res 101:26875–26891.
Article
Google Scholar
Tsunoda, RT, White BR (1981) On the generation and growth of equatorial backscatter plumes 1. Wave structure in the bottomside F layer. J Geophys Res 86:3610–3616.
Article
Google Scholar
Tsunoda, RT (2007) Seeding of equatorial plasma bubbles with electric fields from an e
s-layer instability. J Geophys Res 112:06304. doi:10.1029/2006JA012103.
Article
Google Scholar
Tsunoda, RT (2015) Upwelling: a unit of disturbance in equatorial spread F. Prog Earth Planet Sci 2:9. doi:10.1186/s40645-015-0038-5.
Article
Google Scholar
Woodman, RF, LaHoz C (1976) Radar observations of F region equatorial irregularities. J Geophys Res 81:5447–5466.
Article
Google Scholar
Woodman, RF (2009) Spread F—an old equatorial aeronomy problem finally resolved?Ann Geophys 27:1915–1934.
Article
Google Scholar
Yabe, T, Xiao F, Utsumi T (2001) The constrained interpolation profile method for multiphase analysis. J Comput Phys 169:556–593.
Article
Google Scholar
Yabe, T, Mizoe H, Takizawa K, Moriki H, Im H-N, Ogata Y (2004) Higher-order schemes with CIP method and adaptive Soroban grid towards mesh-free scheme. J Comput Phys 194:57–77.
Article
Google Scholar
Yeh, KC, Liu C-H (1982) Radio wave scintillations in the ionosphere. Proc IEEE 70:324–360.
Article
Google Scholar
Yokoyama, T, Hysell DL (2010) A new midlatitude ionosphere electrodynamics coupling model (MIECO): latitudinal dependence and propagation of medium-scale traveling ionospheric disturbances. Geophys Res Lett 37:08105. doi:10.1029/2010GL042598.
Google Scholar
Yokoyama, T, Shinagawa H, Jin H (2014) Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model. J Geophys Res Space Phys 119:10474–10482. doi:10.1002/2014JA020708.
Article
Google Scholar
Yokoyama, T, Jin H, Shinagawa H (2015) West wall structuring of equatorial plasma bubbles simulated by three-dimensional HIRB model. J Geophys Res Space Physics 120:8810–8816. doi:10.1002/2015JA021799.
Article
Google Scholar
Yokoyama, T, Stolle C (2017) Low and midlatitude ionospheric plasma density irregularities and their effects on geomagnetic field. Space Sci Rev 206:495–519. doi:10.1007/s11214-016-0295-7.
Article
Google Scholar
Zalesak, ST (1979) Fully multidimensional flux-corrected transport algorithms for fluids. J Comput Phys 31:335–362.
Article
Google Scholar
Zalesak, ST, Ossakow SL (1980) Nonlinear equatorial spread F: spatially large bubbles resulting from large horizontal scale initial perturbations. J Geophys Res 85:2131–2142.
Article
Google Scholar
Zalesak, ST, Ossakow SL, Chaturvedi PK (1982) Nonlinear equatorial spread F: the effect of neutral winds and background conductivity. J Geophys Res 87:151–166.
Article
Google Scholar
Zargham, S, Seyler CE (1987) Collisional interchange instability: 1. Numerical simulations of intermediate-scale irregularities. J Geophys Res 92:10073–10088.
Article
Google Scholar
Zargham, S, Seyler CE (1989) Collisional and inertial dynamics of the ionospheric interchange instability. J Geophys Res 94:9009–9027.
Article
Google Scholar