Allen DE, Seyfried Jr WE. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at midocean ridges: an experimental study at 400 °C, 500 bars. Geochim Cosmochim Acta. 2003;67:1531–42.
Article
Google Scholar
Amend JP, McCollom TM. Energetics of biomolecule synthesis on early Earth. In: Zaikowski L, Friedrich JM, Seidel SR, editors. Chemical evolution II: from the origins of life to modern society. Washington, D.C.: American Chemical Society; 2009. p. 63–94.
Google Scholar
Amend JP, McCollom TM, Hentscher M, Bach W. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim Cosmochim Acta. 2011;75:5736–48.
Article
Google Scholar
Arndt N, Ginibre C, Chauvel C, Albarède F, Cheadle M, Herzberg C, et al. Were komatiites wet? Geology. 1998;26:739–42.
Article
Google Scholar
Arndt N, Lesher CM, Barnes SJ. Komatiite. Cambridge: Cambridge University Press; 2008.
Book
Google Scholar
Arth JG, Arndt NT, Naldrett AJ. Genesis of Archean komatiites from Munro Township, Ontario: trace-element evidence. Geology. 1977;5:590–4.
Article
Google Scholar
Berry AJ, Danyushevsky LV, O’Neill HSC, Newville M, Sutton SR. Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature. 2008;455:960–3.
Article
Google Scholar
Campbell IH, Griffiths RW, Hill RI. Melting in an Archean mantle plume—heads its basalts, tails its komatiites. Nature. 1989;339:697–9.
Article
Google Scholar
Canil D. Vanadium partitioning and the oxidation state of Archaean komatiite magma. Nature. 1997;389:842–5.
Article
Google Scholar
Canil D. Vanadium partitioning between orthopyroxene, spinel and silicate melt and the redox states of mantle source regions for primary magmas. Geochim Cosmochim Acta. 1999;63:557–72.
Article
Google Scholar
Charlou JL, Donval JP, Jean-Baptiste P, Dapoigny A, Rona PA. Gases and helium isotopes in high temperature solutions sampled before and after ODP Leg 158 drilling at TAG hydrothermal field (26°N, MAR). Geophys Res Lett. 1996a;23:3491–4.
Article
Google Scholar
Charlou JL, Fouquet Y, Donval JP, Auzende JM, Jean-Baptiste P, Stievenard M, et al. Mineral and gas chemistry of hydrothermal fluids on an ultrafast spreading ridge: East Pacific Rise, 17° to 19°S (Naudur cruise, 1993) phase separation processes controlled by volcanic and tectonic activity. J Geophys Res. 1996b;101:15899–919.
Article
Google Scholar
Charlou JL, J. P. Donval a ED, Jean-Baptiste P, Radford-Knoery J, Fouquet Y, Dapoigny A, et al. Compared geochemical signatures and the evolution of Menez Gwen (37°50′N) and Lucky Strike (37°17′N) hydrothermal fluids, south of the Azores Triple Junction on the Mid-Atlantic Ridge. Chem Geol. 2000;171:49–75.
Article
Google Scholar
Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem Geol. 2002;191:345–59.
Article
Google Scholar
Escartín J, Mével C, MacLeod CJ, McCaig AM. Constraints on deformation conditions and the origin of oceanic detachments: the Mid-Atlantic Ridge core complex at 15°45′N. Geochem Geophy Geosy. 2003;4:1067. doi:10.1029/2002GC000472.
Article
Google Scholar
Gallant RM, Von Damm KL. Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°–25°S, Central Indian Ridge. Geochem Geophy Geosy. 2006;7:Q06018. doi:10.01029/02005GC001067.
Article
Google Scholar
Grove TL, Parman SW. Thermal evolution of the Earth as recorded by komatiites. Earth Planet Sci Lett. 2004;219:173–87.
Article
Google Scholar
Harrison RJ, Putnis A. Magnetic properties of the magnetite-spinel solid solution: curie temperature, magnetic susceptibilities, and cation ordering. Am Mineral. 1996;81:375–84.
Google Scholar
Herzberg C. Depth and degree of melting of komatiites. J Geophys Res. 1992;97:4521–40.
Article
Google Scholar
Herzberg C, Condie K, Korenaga J. Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett. 2010;292:79–88.
Article
Google Scholar
Hsu H-W, Postberg F, Sekine Y, Shibuya T, Kempf S, Horányi M, et al. Ongoing hydrothermal activities within Enceladus. Nature. 2015;519:207–10.
Article
Google Scholar
Hunt CP, Moskowitz BM, Banerjee SK. Magnetic properties of rocks and minerals. In: Ahrens TJ, editor. Rock physics & phase relations: a handbook of physical constants. Washington, D. C.: American Geophysical Union; 1995. p. 189–204.
Chapter
Google Scholar
Inoue T, Sawamoto H. High pressure melting of pyrolite under hydrous condition and its geophysical implication. In: Syono Y, Manghnani MH, editors. High-pressure research: application to earth and planetary sciences. Washington D. C.: Terra, Tokyo and AGU; 1992. p. 323–31.
Chapter
Google Scholar
Inoue T, Rapp RP, Zhang J, Gasparik T, Weidner DJ, Irifune T. Garnet fractionation in a hydrous magma ocean and the origin of Al-depleted komatiites: melting experiments of hydrous pyrolite with REEs at high pressure. Earth Planet Sci Lett. 2000;177:81–7.
Article
Google Scholar
Janecky DR, Seyfried Jr WE. Hydrothermal serpentinization of peridotite within the oceanic crust: experimental investigations of mineralogy and major element chemistry. Geochim Cosmochim Acta. 1986;50:1357–78.
Article
Google Scholar
Kato S, Shibuya T, Nakamura K, Suzuki K, Rejishkumar VJ, Yamagishi A. Elemental dissolution of basalts with ultra-pure water at 340 °C and 40 MPa in a newly developed flow-type hydrothermal apparatus. Geochem J. 2013;47:89–92.
Article
Google Scholar
Kelley DS, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA, Lilley MD, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature. 2001;412:145–9.
Article
Google Scholar
Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science. 2005;307:1428–34.
Article
Google Scholar
Knauth LP. Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr Palaeoclimateol Palaeoecol. 2005;219:53–69.
Article
Google Scholar
Komiya T. Material circulation model including chemical differentiation within the mantle and secular variation of temperature and composition of the mantle. Phys Earth Planet Inter. 2004;146:333–67.
Article
Google Scholar
Kumagai H, Nakamura K, Toki T, Morishita T, Okino K, Ishibashi J-i, et al. Geological background of the Kairei and Edmond hydrothermal fields along the Central Indian Ridge: implications of their vent fluids’ distinct chemistry. Geofluids. 2008;8:239–51.
Article
Google Scholar
Lang SQ, Butterfield DA, Schulte M, Kelley DS, Lilley MD. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim Cosmochim Acta. 2010;74:941–52.
Article
Google Scholar
Lazar C, McCollom TM, Manning CE. Abiogenic methanogenesis during experimental komatiite serpentinization: implications for the evolution of the early Precambrian atmosphere. Chem Geol. 2012;326–327:102–12.
Article
Google Scholar
Lilley MD, Baross JA, I GL. Reduced gases and bacteria in hydrothermal fluids: the Galapagos spreading center and 21°N East Pacific Rise. In: Rona PA, Bostrom K, Laubier L, Smith Jr KL, editors. Hydrothermal processes at seafloor spreading centers. Marine Sciences: NATO Conference Series IV; 1983. p. 411–49.
Chapter
Google Scholar
Lilley MD, Butterfield DA, Lupton JE, Olson EJ. Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature. 2003;422:878–81.
Article
Google Scholar
Martin W, Baross J, Kelley D, Russell MJ. Hydrothermal vents and the origin of life. Nat Rev Microbiol. 2008;6:805–14.
Google Scholar
McCollom TM, Bach W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim Cosmochim Acta. 2009;73:856–75.
Article
Google Scholar
McCollom TM, Sherwood Lollar B, Lacrampe-Couloume G, Seewald JS. The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions. Geochim Cosmochim Acta. 2010;74:2717–40.
Article
Google Scholar
Moores EM. Pre-1 Ga (pre-Rodinian) ophiolites: their tectonic and environmental implications. Geol Soc Am Bull. 2002;114:80–95.
Article
Google Scholar
Morishita T, Nakamura K, Shibuya T, Kumagai H, Sato T, Okino K, et al. Petrology of peridotites and related gabbroic rocks around the Kairei hydrothermal field in the Central Indian Ridge. In: Ishibashi J, Okino K, Sunamura M, editors. Subseafloor biosphere linked to hydrothermal systems. Tokyo: Springer Japan; 2015. p. 177–93.
Google Scholar
Nakamura K, Morishita T, Bach W, Klein F, Hara K, Okino K, et al. Serpentinized troctolites exposed near the Kairei Hydrothermal Field, Central Indian Ridge: insights into the origin of the Kairei hydrothermal fluid supporting a unique microbial ecosystem. Earth Planet Sci Lett. 2009;280:128–36.
Article
Google Scholar
Nakamura K, Takai K. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems. Prog Earth Planet Sci. 2014;1:5. doi:10.1186/2197-4284-1-5.
Article
Google Scholar
Nesbitt RW, Sun SS, Purvis AC. Komatiites: geochemistry and genesis. Can Mineral. 1979;17:165–86.
Google Scholar
Ohta H, Maruyama S, Takahashi E, Watanabe Y, Kato Y. Field occurrence, geochemistry and petrogenesis of the Archean mid-oceanic ridge basalts (AMORBs) of the Cleaverville area, Pilbara Craton, Western Australia. Lithos. 1996;37:199–221.
Article
Google Scholar
Proskurowski G, Lilley MD, Kelley DS, Olson EJ. Low temperature volatile production at the Lost City hydrothermal field, evidence from a hydrogen stable isotope geothermometer. Chem Geol. 2006;229:331–43.
Article
Google Scholar
Puchtel IS, Blichert-Toft J, Touboul M, Walker RJ, Byerly GR, Nisbet EG, et al. Insights into early Earth from Barberton komatiites: evidence from lithophile isotope and trace element systematics. Geochim Cosmochim Acta. 2013;108:63–90.
Article
Google Scholar
Russell MJ, Hall AJ, Turner D. In vitro growth of iron sulphide chimneys: possible culture chambers for origin-of-life experiments. Terra Nova. 1989;1:238–41.
Article
Google Scholar
Russell MJ, Hall AJ, Martin W. Serpentinization as a source of energy at the origin of life. Geobiology. 2010;8:355–71. doi:10.1111/j.1472-4669.2010.00249.x.
Article
Google Scholar
Russell MJ, Barge L, Bhartia R, Bocanegra D, Bracher P, Branscomb E, et al. The drive to life on wet and icy worlds. Astrobiology. 2014;14:308–43.
Article
Google Scholar
Sekine Y, Shibuya T, Postberg F, Hsu H-W, Suzuki K, Masaki Y, et al. High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat Commun. 2015;6:8604. doi:10.1038/ncomms9604.
Article
Google Scholar
Seyfried Jr WE, Gordon PC, Dickson FW. A new reaction cell for hydrothermal solution equipment. Am Mineral. 1979;64:646–9.
Google Scholar
Seyfried Jr WE. Experimental and theoretical constraints on hydrothermal alteration processes at mid-ocean ridges. Annu Rev Earth Planet Sci. 1987;15:317–35.
Article
Google Scholar
Seyfried Jr WE, Foustoukos DI, Fu Q. Redox evolution and mass transfer during serpentinization: an experimental and theoretical study at 200 °C, 500 bar with implications for ultramafic-hosted hydrothermal systems at mid-ocean ridges. Geochim Cosmochim Acta. 2007;71:3872–86.
Article
Google Scholar
Shibuya T, Kitajima K, Komiya T, Terabayashi M, Maruyama S. Middle Archean ocean ridge hydrothermal metamorphism and alteration recorded in the Cleaverville area, Pilbara Craton, Western Australia. J Metamorph Geol. 2007;25:751–67.
Article
Google Scholar
Shibuya T, Komiya T, Nakamura K, Takai K, Maruyama S. Highly alkaline, high-temperature hydrothermal fluids in the early Archean ocean. Precambrian Res. 2010;182:230–8.
Article
Google Scholar
Shibuya T, Tahata M, Kitajima K, Ueno Y, Komiya T, Yamamoto S, et al. Depth variation of carbon and oxygen isotopes of calcites in Archean altered upper oceanic crust: implications for the CO2 flux from ocean to oceanic crust in the Archean. Earth Planet Sci Lett. 2012;321–322:64–73.
Article
Google Scholar
Shibuya T, Yoshizaki M, Masaki Y, Suzuki K, Takai K. Reactions between basalt and CO2-rich seawater at 250 and 350 °C, 500 bars: implications for the CO2 sequestration into the modern oceanic crust and the composition of hydrothermal vent fluid in the CO2-rich early ocean. Chem Geol. 2013;359:1–9.
Article
Google Scholar
Shimizu K, Komiya T, Hirose K, Shimizu N, Maruyama S. Cr-spinel, an excellent micro-container for retaining primitive melts − implications for a hydrous plume origin for komatiites. Earth Planet Sci Lett. 2001;189:177–88.
Article
Google Scholar
Sleep NH, Bird DK, Pope EC. Serpentinite and the dawn of life. Philos Trans R Soc Lond B Biol Sci. 2011;366:2857–69.
Article
Google Scholar
Suzuki K, Kato S, Shibuya T, Hirose T, Fuchida S, Kumar YR, et al. Development of hydrothermal and frictional experimental systems to simulate sub-seafloor water–rock–microbe interactions. In: Ishibashi J, Okino K, Sunamura M, editors. Subseafloor biosphere linked to hydrothermal systems. Tokyo: Springer Japan; 2015a. p. 71–85.
Google Scholar
Suzuki K, Shibuya T, Yoshizaki M, Hirose T. Experimental hydrogen production in hydrothermal and fault systems: significance for habitability of subseafloor H2 chemoautotroph microbial ecosystems. In: Ishibashi J, Okino K, Sunamura M, editors. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer Japan; 2015b. p. 87–94.
Google Scholar
Takahashi E, Scarfe CM. Melting of peridotite to 14 GPa and the genesis of komatiites. Nature. 1985;315:566–8.
Article
Google Scholar
Takai K, Nakamura K, Suzuki K, Inagaki F, Nealson KH, Kumagai H. Ultramafics-Hydrothermalism-Hydrogenesis-HyperSLiME (UltraH3) linkage: a key insight into early microbial ecosystem in the Archean deep-sea hydrothermal systems. Paleontol Res. 2006;10:269–82.
Article
Google Scholar
Viljoen MJ, Viljoen RP. Evidence for the existence of a mobile extrusive peridotitic magma from the Komati Formation of the Onverwacht Group. Geol Soc S Afr Spec Publ. 1969;2:87–113.
Google Scholar
Von Damm KL. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE, editors. Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. Washington DC: Geophysical Monograph. American Geophysical Union; 1995. p. 222–47.
Chapter
Google Scholar
Von Damm KL, Lilley MD. Diffuse flow hydrothermal fluids from 9°50′N East Pacific Rise: origin, evolution and biogeochemical controls. In: Wilcock WSD, DeLong EF, Kelley DS, Baross JA, Cary SC, editors. The subseafloor biosphere at mid-ocean ridges, Geophysical Monograph, vol. 144. Washington DC: American Geophysical Union; 2004. p. 245–68.
Chapter
Google Scholar
Wei K, Tronnes RG, Scarfe CM. Phase relations of aluminum-undepleted and aluminum-depleted komatiites at pressures of 4–12 GPa. J Geophys Res. 1990;95:15817–27.
Article
Google Scholar
Wetzel LR, Shock EL. Distinguishing ultramafic- from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions. J Geophys Res. 2000;105:8319–40.
Article
Google Scholar
Yoshizaki M, Shibuya T, Suzuki K, Shimizu K, Nakamura K, Takai K, et al. H2 generation by experimental hydrothermal alteration of komatiitic glass at 300 °C and 500 bars: a preliminary result from on-going experiment. Geochem J. 2009;43:e17–22.
Article
Google Scholar