Balco G, Stone JO, Lifton NA, Dunai TJ: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10
Be and 26
Al measurements. Quat Geochronol 2008, 3: 174–195. 10.1016/j.quageo.2007.12.001
Article
Google Scholar
Berner RA, Lasaga AC, Garrels RM: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years. Am J Sci 1983, 283: 641–683. 10.2475/ajs.283.7.641
Article
Google Scholar
Bierman PR, Caffee M: Slow rates of rock surface erosion and sediment production across the Namib Desert and escarpment, southern Africa. Am J Sci 2001, 301: 326–358. 10.2475/ajs.301.4-5.326
Article
Google Scholar
Bierman PR, Steig EJ: Estimating rates of denudation using cosmogenic isotope abundances in sediment. Earth Surf Processes Landforms 1996, 21: 125–139. 10.1002/(SICI)1096-9837(199602)21:2<125::AID-ESP511>3.0.CO;2-8
Article
Google Scholar
Braucher R, Del Castillo P, Siame L, Hidy AJ, Bourles DL: Determination of both exposure time and denudation rate from an in situ-produced 10
Be depth profile: a mathematical proof of uniqueness. Model sensitivity and applications to natural cases. Quat Geochronol 2009, 4: 56–67. 10.1016/j.quageo.2008.06.001
Article
Google Scholar
Braucher R, Merchel S, Borgomano J, Bourles DL: Production of cosmogenic radionuclides at great depth: A multi element approach. Earth Planet Sci Lett 2011, 309: 1–9. 10.1016/j.epsl.2011.06.036
Article
Google Scholar
Brown ET, Stallard RF, Larsen MC, Raisbeck GM, Yiou F: Denudation rates determined from the accumulation of in situ-produced 10
Be in the Luquillo experimental forest, Puerto-Rico. Earth Planet Sci Lett 1995, 129: 193–202. 10.1016/0012-821X(94)00249-X
Article
Google Scholar
Clapp EM, Bierman PR, Schick AP, Lekach J, Enzel Y, Caffee M: Sediment yield exceeds sediment production in arid region drainage basins. Geology 2000, 28: 995–998. 10.1130/0091-7613(2000)28<995:SYESPI>2.0.CO;2
Article
Google Scholar
Cockburn HAP, Seidl MA, Summerfield MA: Quantifying denudation rates on inselbergs in the central Namib Desert using in situ-produced cosmogenic 10
Be and 26
Al. Geology 1999, 27: 399–402. 10.1130/0091-7613(1999)027<0399:QDROII>2.3.CO;2
Article
Google Scholar
Fukushimaken: Futaba fault survey, earthquake-related basic research grants FY 1998 report. Doc 1999, 3826: 109. Fukushima Fukushima
Google Scholar
Gosse JC, Phillips FM: Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 2001, 20: 1475–1560. 10.1016/S0277-3791(00)00171-2
Article
Google Scholar
Granger DE, Riebe CS: Cosmogenic nuclides in weathering and erosion. In Surface and Ground Water, Weathering, Denudation and Soils, vol. 5. Treatise on Geochemistry (Holland HG, Turekian KK (exec eds). Edited by: Drever JI. Elsevier, London; 2007:1–43.
Google Scholar
Granger DE, Kirchner JW, Finkel R: Spatially averaged long-term erosion rates measured from in situ-produced cosmogenic nuclides in alluvial sediment. J Geol 1996, 104: 249–257. 10.1086/629823
Article
Google Scholar
Hancock G, Kirwan M: Summit erosion rates deduced from 10
Be: implications for relief production in the Central Appalachians. Geology 2007, 35: 89–92. 10.1130/G23147A.1
Article
Google Scholar
Heimsath AM, Dietrich WE, Nishiizumi K, Finkel RC: Stochastic processes of soil production and transport: erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range. Earth Surf Processes Landforms 2001, 26: 531–552. 10.1002/esp.209
Article
Google Scholar
Heimsath AM, Chappell J, Dietrich WE, Nishiizumi K, Finkel RC: Late quaternary erosion in southeastern Australia: a field example using cosmogenic nuclides. Quat Int 2001, 83–85: 169–185.
Article
Google Scholar
Heimsath AM, Chappell J, Finkel RC, Fifield K, Alimanovic A: Escarpment erosion and landscape evolution in southeastern Australia. Geol Soc Am Spec Pap 2006, 398: 173–190.
Google Scholar
Heimsath AM, DiBiase RA, Whipple KX: Soil production limits and the transition to bedrock-dominated landscapes. Nat Geosci 2012, 5: 210–214. 10.1038/ngeo1380
Article
Google Scholar
Hein AS, Hulton NRJ, Dunai TJ, Schnabel C, Kaplan MR, Naylor M, Xu S: Middle Pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash gravels. Earth Planet Sci Lett 2009, 286: 184–197. 10.1016/j.epsl.2009.06.026
Article
Google Scholar
Heisinger B, Lal D, Jull AJT, Kubik P, Ivy-Ochs S, Neumaier S, Knie K, Lazarev V, Nolte E: Production of selected cosmogenic radionuclides by muons 1. Fast muons. Earth Planet Sci Lett 2002, 200: 345–355. 10.1016/S0012-821X(02)00640-4
Article
Google Scholar
Heisinger B, Lal D, Jull AJT, Kubik P, Ivy-Ochs S, Knie K, Nolte E: Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons. Earth Planet Sci Lett 2002, 200: 357–369. 10.1016/S0012-821X(02)00641-6
Article
Google Scholar
Henck AC, Huntington KW, Stone JO, Montgomery DR, Hallet B: Spatial controls on erosion in the Three Rivers Region, southeastern Tibet and southwestern China. Earth Planet Sci Lett 2011, 303: 71–83. 10.1016/j.epsl.2010.12.038
Article
Google Scholar
Hidy AJ, Pederson JL, Cragun WS, Gosse JC: Cosmogenic 10
Be exposure dating of Colorado river terraces at Lees Ferry, Arizona. Geol Soc Am Abstr 2005, 37–7: 296.
Google Scholar
Hidy AJ, Gosse JC, Pederson JL, Mattern JP, Finkel RC: A geologically constrained Monte Carlo approach to modeling exposure ages from profiles of cosmogenic nuclides: an example from Lees Ferry, Arizona. Geochem Geophys Geosyst 2010, 11: Q0AA10. doi:10.1029/2010GC003084 doi:10.1029/2010GC003084
Google Scholar
Kohl CP, Nishiizumi K: Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim Cosmochim Acta 1992, 56: 3583–3587. 10.1016/0016-7037(92)90401-4
Article
Google Scholar
Koike K: Geomorphological development of the northern part of the Abukuma Mountains. Komazawa Geography 1968, 4–5: 109–126.
Google Scholar
Lal D: Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and denudation models. Earth Planet Sci Lett 1991, 104: 424–439. 10.1016/0012-821X(91)90220-C
Article
Google Scholar
Larsen IJ, Almond PC, Eger A, Stone JO, Montgomery DR, Malcom B: Rapid soil production and weathering in the Western Alps, New Zealand. Science 2014, 343: 637–640. 10.1126/science.1244908
Article
Google Scholar
Matsumoto K, Yokoyama Y: Atmospheric Δ14
C reduction in simulations of Atlantic overturning circulation shutdown. Global Biogeochem Cycles 2013, 27: 1–9. doi:10.1002/gbc.20035
Article
Google Scholar
Matsushi Y, Wakasa S, Matsuzaki H, Matsukura Y: Long-term denudation rates of actively uplifting hillcrests in the Boso Peninsula, Japan, estimated from depth profiling of in situ-produced cosmogenic 10
Be and 26
Al. Geomorphology 2006, 82: 283–294. 10.1016/j.geomorph.2006.05.009
Article
Google Scholar
Meyer H, Hetzel R, Fügenschuh B, Strauss H: Determining the growth rate of topographic relief using in situ-produced 10
Be: a case study in the Black Forest, Germany. Earth Planet Sci Lett 2010, 290: 391–402. 10.1016/j.epsl.2009.12.034
Article
Google Scholar
Moon S, Chamberlain CP, Blisniuk K, Levine N, Rood DH, Hilley GE: Climatic control of denudation in the deglaciated landscape of the Washington Cascades. Nat Geosci 2011, 4: 469–473. 10.1038/ngeo1159
Article
Google Scholar
Niemi NA, Oskin ME, Burbank DW, Heimsath AM, Gabet EJ: Effects of bedrock landslides on cosmogenically determined erosion rates. Earth Planet Sci Lett 2005, 237: 480–498. 10.1016/j.epsl.2005.07.009
Article
Google Scholar
Nishiizumi K: Preparation of 26
Al AMS standards. Nucl Instrum Methods Phys Res B 2004, 223: 388–392.
Article
Google Scholar
Nishiizumi K, Lal D, Klein J, Middleton R, Arnold JR: Production of 10
Be and 26
Al by cosmic rays in terrestrial quartz in situ and implications for denudation rates. Nature 1986, 319: 134–136. 10.1038/319134a0
Article
Google Scholar
Nishiizumi K, Imamura M, Caffee MW, Southon JR, Finkel RC, McAninch J: Absolute calibration of 10
Be AMS standards. Nucl Instrum Methods Phys Res B 2007, 258: 403–413. 10.1016/j.nimb.2007.01.297
Article
Google Scholar
Portenga EW, Bierman PR: Understanding Earth’s eroding surface with 10
Be. GSA Today 2011, 21: 4–10.
Article
Google Scholar
Portenga EW, Bierman PR, Rizzo DM, Rood DH: Low rates of bedrock outcrop erosion in the central Appalachian Mountains inferred from in situ 10
Be. Geol Soc Am Bull 2013, 125: 201–215. 10.1130/B30559.1
Article
Google Scholar
Riebe CS, Kirchner JW, Granger DE, Finkel RC: Erosional equilibrium and disequilibrium in the Sierra Nevada, inferred from cosmogenic 26
Al and 10
Be in alluvial sediment. Geology 2000, 28: 803–806. 10.1130/0091-7613(2000)28<803:EEADIT>2.0.CO;2
Article
Google Scholar
Rixhon G, Braucher R, Bourles D, Siame L, Bovy B, Demoulin A: Quaternary river incision in NE Ardennes (Belgium) - insights from 10
Be/26
Al dating of river terraces. Quat Geochronol 2011, 6: 273–284. 10.1016/j.quageo.2010.11.001
Article
Google Scholar
Rodés Á, Pallàs R, Braucher R, Moreno X, Masana E, Bourlés DL: Effect of density uncertainties in cosmogenic 10
Be depth-profiles: dating a cemented Pleistocene alluvial fan (Carboneras Fault, SE Iberia). Quat Geochronol 2011, 6: 186–194. 10.1016/j.quageo.2010.10.004
Article
Google Scholar
Schaller M, von Blanckenburg F, Hovius N, Kubik PW: Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments. Earth Planet Sci Lett 2001, 188: 441–458. 10.1016/S0012-821X(01)00320-X
Article
Google Scholar
Shimizu F, Oyagi N: Landslide map, vol 6. Technical Note No. 125, NIED, Tsukuba, Japan; 1988.
Google Scholar
Shiroya K, Yokoyama Y, Matsuzaki H: Quantitative determination of long-term erosion rates of weathered granitic soil surfaces in western Abukuma, Japan using cosmogenic 10
Be and 26
Al depth profile. Geochem J 2010, 44: E23-E27. 10.2343/geochemj.1.0110
Article
Google Scholar
Shiroya K, Yokoyama Y, Obrochta SP, Harada N, Miyairi Y, Matsuzaki H: Melting history of the patagonian ice sheet during termination I inferred from marine sediments. Geochem J 2013, 47: 107–117. 10.2343/geochemj.2.0231
Article
Google Scholar
Siame LL, Bellier O, Braucher R, Sebrier M, Cushing M, Bourles D, Hamelin B, Baroux E, de Voogd B, Raisbeck G, Yiou F: Local erosion rates versus active tectonics: cosmic ray exposure modelling in Provence (south-east France). Earth Planet Sci Lett 2004, 220: 345–364. 10.1016/S0012-821X(04)00061-5
Article
Google Scholar
Siame LL, Angelier J, Chen RF, Godard V, Derrieux F, Bourles DL, Braucher R, Chang KJ, Chu HT, Lee JC: Erosion rates in an active orogen (NE-Taiwan): a confrontation of cosmogenic measurements with river suspended loads. Quat Geochronol 2011, 6: 246–260. 10.1016/j.quageo.2010.11.003
Article
Google Scholar
Stone JO: Air pressure and cosmogenic isotope production. J Geophys Res 2000, 105: 23753–23759. 10.1029/2000JB900181
Article
Google Scholar
von Blanckenburg F: The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet Sci Lett 2005, 237: 462–479. 10.1016/j.epsl.2005.06.030
Article
Google Scholar
Wittmann H, von Blanckenburg F, Maurice L, Guyot JL, Kubik PW: Recycling of Amazon floodplain sediment quantified by cosmogenic 26
Al and 10
Be. Geology 2011, 39: 467–470. 10.1130/G31829.1
Article
Google Scholar
Yamamoto T: The rate of fluvial incision during the Late Quaternary period in the Abukuma Mountains, northeast Japan, deduced from tephrochronology. Isl Arc 2005, 14: 199–212. 10.1111/j.1440-1738.2005.00464.x
Article
Google Scholar
Yokoyama Y, Esat TM: Global climate and sea level: enduring variability and rapid fluctuations over the past 150,000 years. Oceanography 2011, 24: 54–69. 10.5670/oceanog.2011.27
Article
Google Scholar
Yokoyama Y, Aze T, Murasawa H, Matsuzaki H: Terrestrial Cosmogenic Nuclides as a tool for studying earth surface processes. J Geol Soc Jpn 2005, 111: 693–700. 10.5575/geosoc.111.693
Article
Google Scholar