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Abstract 

A moment magnitude 6.2 crustal earthquake occurred in northern Thailand on May 5, 2014, and its aftershocks 
exhibit several lineaments with conjugate pattern, involving geometric complexity in a multi-segmented fault system 
of the Phayao Fault Zone. However, a relationship between those geometric complexities and the rupture evolu-
tion of the 2014 Thailand earthquake is still elusive, which is critical to understand complex nature of the earthquake 
physics and to assess the hazard. Here, we elaborated the newly developed potency density tensor inversion method, 
used it to invert the globally observed teleseismic P waveforms, and estimated the spatiotemporal distribution of 
both the slip and the fault geometry. We found the complex rupture evolution consisting of two rupture episodes 
along a conjugated strike-slip fault system that comprises two distinct fault planes. The first episode originated at 
the hypocenter and the rupture propagated south along the north–northeast to south–southwest fault plane. The 
second episode was triggered at around 5 km north from the epicenter, and the rupture propagated along the east–
northeast to west–southwest fault plane and terminated at the west end of the source area at 5 s hypocentral time. 
Our work demonstrates that our potency density tensor inversion can be applied to the smaller-scale magnitude-6 
class earthquakes, and it resolves the complex rupture process controlled by the underlying geometric complexity in 
the fault system.
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1  Introduction
The seismicity of Thailand is relatively low: less than 10 
earthquakes with a magnitude greater than 5 have been 
registered since the 1970s (ISC 2021) (Fig. 1). Although 
situated in a low seismicity zone, Thailand is surrounded 
by major active faults, such as the Sagaing Fault in Myan-
mar and the major Aliao Shan-Red River fault north of 
Thailand (Morley et  al. 2011) (Fig.  1). These faults are 

subject to a progressive clockwise strain rotation caused 
by the motions induced by the escape tectonics from 
the Tibetan Plateau to SE Asia and the Sumatra–Anda-
man subduction zone (Huchon et al. 1994; Leloup et al. 
2001; Morley 2002, 2007; Morley et  al. 2011). Thailand 
has complex geological structures that include multi-
ple active fault zones (Morley 2002; Morley et  al. 2011) 
(Fig.  1). Many active fault zones in Thailand are part of 
a strike-slip fault system trending northeast–southwest 
and northwest–southeast (Charusiri and Pum-Im 2009; 
Morley et al. 2011). These trends are a result of the devel-
opment of the major Cenozoic rift basin that is subject 
to a north–south compression and east–west extension. 
Geological records suggest that there is historical seis-
micity since the Late Quaternary in the northern part 
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of Thailand associated with the active fault zones (Fen-
ton et  al. 2003; Pailoplee and Charusiri 2016). One of 
the largest historical earthquakes in 1545 collapsed an 
immense pagoda in Wat Chedi Luang temple in Chiang 
Mai province (Kázmér et al. 2011) (Fig. 1).

The largest recent earthquake in Thailand, which is a 
focus of this study, had a moment magnitude (MW) 6.2 
and occurred in the northern part of the country on 
5 May 2014 (GCMT 2014; Pananont et  al. 2017). The 
2014 Thailand earthquake affected 7 provinces, dam-
aged more than 7000 buildings, and caused 1 death and 
107 injuries (Lhamphoonsup et al. 2014; Wechbunthung 
2014; Wiwegwin and Kosuwan 2014). The geological 
field survey was taken 54 days after the earthquake, and 
they show that there is no direct evidence of the surface 
rupture. However, they found many secondary damage 
effects from the ground shacking such the liquefaction 
concentrating near the epicenter and the ground cracks 
which show the pattern toward south and southwest 
from the epicenter (Pananont et  al. 2017). The analyses 
of synthetic aperture radar (SAR) images were hampered 
by the regional dense vegetation, which prevented the 
instrument from measuring co-seismic surface defor-
mation, including the surface rupture trace around the 
source region (Nardkulpat et al. 2017).

The source region is situated in the Phayao Fault Zone 
(PFZ) (Fenton et al. 2003; Pailoplee et al. 2009), and the 
epicenter of the 2014 Thailand earthquake (Noisagool 

et al. 2016; Pananont et al. 2017; TMD 2014; USGS 2014) 
is located at the transition zone within the conjugated 
fault system of two major active strike-slip faults: the Mae 
Lao Fault (MLF) trending ENE-WSW and the Phan Fault 
(PF) trending N-S (Noisagool et al. 2016; Pananont et al. 
2017) (Fig. 2). A relocated hypocenter of the 2014 Thai-
land earthquake determined by the double-difference 
algorithm HypoDD (Pananont et  al. 2017) is located at 
19.733° N and 99.689° E with a 5.2 km hypocentral depth 

Fig. 1  Seismo-tectonics summary of the study region. The beach 
ball shows the GCMT solution of the 2014 Thailand earthquake 
(GCMT 2014). The star is the mainshock epicenter. The dots show 
the seismicity (M 5 or larger) between 1970 and 2014 from the ISC 
Bulletin (ISC 2021). The rectangle denotes the map region of Fig. 2. 
The lines are the active faults (Styron and Pagani 2020). The right 
panel shows the tectonic setting. The black line shows the plate 
boundaries (Bird et al. 2003). IN: India Plate, EU; Eurasia Plate, SU; 
Sunda Plate. The arrow shows the relative plate motion with the 
convergence of the India Plate toward the fixed Eurasia Plate (DeMets 
et al. 2010). The bathymetry/topography is from SRTM15 + (Tozer 
et al. 2019)

Fig. 2  The study area of the 2014 Thailand earthquake. The open 
star shows the mainshock hypocenter. The large beach ball shows 
the GCMT solution of the 2014 Thailand earthquake (Dziewonski 
et al. 1981; Ekström et al. 2012). The small beach balls show the 
focal mechanism of the relocated aftershocks with the moment 
magnitude larger than 4.2 (Pananont et al. 2017). The pink lines 
highlight the aftershock lineations of the NSTA and EWTA. The black 
lines are the active faults of the Phayao Fault Zone (DMR 2016; 
Kanthiya et al. 2019): MLF; Mae Lao fault, PF; Phan fault, MSF; Mae 
Suai fault, MSBF; Mae Suai Boundary fault, and MJF; Mae Jai fault. The 
topography is from SRTM15 + (Tozer et al. 2019). The lower panel 
shows the cross section of the aftershocks projected along the EWTA 
within – 4/+ 10 km width across the projected track. The dashed 
line denotes the projected location of the hypocenter. The bottom 
panel shows the cross section of the aftershocks projected along the 
NSTA within ± 3 km width across the projected track. The open star 
denotes the mainshock hypocenter (Pananont et al. 2017)
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that is between the middle of the MLF and the top of the 
PF (Fig. 2). The centroid moment tensor solution shows 
the nodal planes orienting NNW-SSE and ENE-WSW 
with MW 6.2 (GCMT 2014). The relocated aftershocks 
during the first week from the HypoDD (Pananont et al. 
2017) can be divided into two major groups: the N-S 
trending aftershocks (NSTA) and the ENE-WSW trend-
ing aftershocks (EWTA) (Fig.  2). The aftershocks focus 
within 4–6  km depth range at the western edge of the 
EWTA, whereas the aftershocks along the NSTA domi-
nate 2–10  km deep around the hypocenter (Pananont 
et al. 2017). The regional moment tensor solutions of the 
aftershocks (Pananont et  al. 2017) are located along the 
NSTA and EWTA, with their strike directions aligned 
with the trends of the NSTA and EWTA (Fig. 2).

The regional moment tensor solutions of the main-
shock and the aftershocks (Noisagool et  al. 2016) show 
that the principal compressive stress orientation is NNE-
SSW (N18°E) that is consistent with the regional stress 
orientation in northern Thailand (Heidbach et  al. 2016; 
Noisagool et al. 2016; Simons et al. 2007). The high shear 
stress zone is related to the strike orientation of the 
active MLF that is close to the EWTA: N30°E–N50°E. 
This high shear stress zone contributes to the initiation 
of slip based on Mohr–Coulomb failure criteria (Noisa-
gool et al. 2016). Pananont et al. (2017) studied the after-
shocks sequence occurring within hours by analyzing the 
changes in the stress field due to the rupture, for which 
they computed the Coulomb stress changes: they sug-
gested that the mainshock occurred on the right-lateral 
faulting along the NSTA. They argued that the complex 

rupture process has produced the complicated pattern of 
the aftershock distribution. However, the source mecha-
nism of the 2014 Thailand earthquake has not been 
clearly understood; whether the rupture evolves along 
the apparent conjugate fault system is inferred from 
the aftershock distribution. The detailed imaging of the 
source process of the 2014 Thailand earthquake should 
be a critical basis to illuminate the causative relationship 
between the rupture evolution and the geometric com-
plexity in the fault system for the smaller-scale, M6-class 
earthquake, which has been difficult to investigate in a 
means of finite-fault inversion.

A possibility for a complex fault geometry can be 
expected from a simple observation of the teleseismic 
waveforms. If an earthquake occurs along a single, simple 
fault plane, the teleseismic waveforms at stations within 
the same quadrant of the focal mechanism are expected 
to be similar without being contaminated by too many 
reflection/refraction phases. In the case of the 2014 Thai-
land earthquake, the stations TIP and ARU are in the same 
quadrant of the GCMT moment tensor solution (Fig.  3). 
The waveforms of the TIP and ARU stations show the dif-
ferent waveform shape and amplitude, which is unexpected 
if the earthquake rupture propagates along a single flat 
plane with a constant slip vector (e.g., Tadapansawut et al. 
2021). This may imply that the mainshock mechanism 
may involve geometric complexity. We note that the dif-
ference in data may also arise from small variations in the 
travel path, which can be associated with polarity changes 
of P-wave and may include more complexity in the seis-
mogram. In addition, the aftershock distribution with two 

Fig. 3  The station distribution and waveform examples of the 2014 Thailand earthquake. a The selected self-normalized waveform traces at the TIP 
and ARU stations. Time zero means the first arrival of the P-wave. b The station distribution (triangle) for the potency density tensor inversion. The 
yellow star denotes the epicenter. The dashed lines show epicentral distances at 30° and 90°. The solid lines are the GCMT nodal direction of strikes 
at 67° and 337°
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major trends of the NSTA and EWTA (Fig.  2) also sug-
gests the complexity of fault geometry of the mainshock. 
To resolve the possible complex fault geometry, we apply 
a new framework of the potency density tensor inversion 
algorithm for teleseismic body waveforms (Yamashita et al. 
2021). We introduce a relative weight smoothness con-
straint that is proportional to the components of each basis 
moment tensor (Kikuchi and Kanamori 1991) into the 
potency density tensor inversion of Shimizu et  al., (2020) 
which can mitigate the effect of the modeling errors origi-
nating from the uncertainty of Green’s function (Yagi and 
Fukahata 2011) as well as the uncertainty of fault geome-
try (Ragon et al. 2018) (see details in the Method section). 
This method can simultaneously estimate the distribution 
of the focal mechanism and the slip along the assumed 
model plane; it enables the reconstruction of complex 
rupture processes, including those occurring along faults 
containing fault bends and those consisting of multiple 
subevents, without a priori assumption of the fault geom-
etry (Tadapansawut et al. 2021; Yamashita et al. 2021). The 
improved potency density tensor inversion framework has 
been applied to large earthquakes such as the 2020 MW 7.7 
Caribbean earthquake (Tadapansawut et al. 2021) and the 
2018 MW 7.9 Gulf of Alaska earthquake (Yamashita et al. 
2021), but it has never been applied to smaller-scale M6-
class earthquakes like the 2014 Thailand earthquake. In 
this study, we apply the potency density tensor inversion 
method to the teleseismic body waves of the 2014 Thailand 
earthquake. We estimate the spatiotemporal distribution of 
both the slip and the fault geometry. We then discuss the 
detailed source process of the 2014 Thailand Earthquake, 
which is controlled by the geometric complexity of the fault 
system.

2 � Method
To construct a rupture model of the 2014 Thailand earth-
quake, we apply the potency density tensor inversion of 
Shimizu et al. (2020). The method can estimate the spati-
otemporal distribution of the potency-rate density ten-
sor including the fault geometry information along the 
assumed model plane without a priori fault geometry 
assumption; it represents the shear-slip vectors with five 
basis double-couple moment tensor components (Kikuchi 
and Kanamori 1991). The observation equation is defined 
as

where uj is the teleseismic waveform at station j . Gqj is 
Green’s function for the q th component of the basis dou-
ble-couple moment tensor at station j , and δGqj is the 
error of Green’s function. Ḋq is the potency-rate density 

uj(t) =

5
∑

q=1

∫

S

(

Gqj(t, ξ)+ δGqj(t, ξ)
)

∗ Ḋq(t, ξ)dξ + ebj(t)

function for the q th component of the basis double-
couple moment tensor at the source location ξ of the 
assumed model plane ( S ). ebj is the background Gaussian 
noise. We introduce the data covariance matrix, which 
mitigates the effect of the modeling error related to the 
error of Green’s function, following Yagi and Fukahata 
(2011). This approach makes it possible to evaluate the 
information from observed data correctly and to obtain 
a stable solution even under the assumption of a source 
process model with a high degree of freedom (e.g., Dupu-
tel et  al. 2014; Shimizu et  al. 2020; Yagi and Fukahata 
2011).

In order to obtain a stable distribution of the potency-
rate density function, we apply smoothing constraints 
and the strength of the smoothing constraints is objec-
tively evaluated using the Akaike’s Bayesian informa-
tion criterion (ABIC) (Akaike 1980). ABIC can be used 
to objectively determine the optimal relative weights of 
information from observed data and prior constraints, 
thus preventing over-fitting (e.g., Fukahata and Wright 
2008; Yabuki and Matsu’ura 1992; Yagi and Fukahata 
2008). In the smoothing constraints proposed by Shimizu 
et  al. (2020), the potency-rate density of the domi-
nant basis component becomes smoother than those 
of the minor components, because of the spatiotempo-
ral smoothing constraint which was introduced by the 
Gaussian with a same covariance into the potency-rate 
density function without distinction for all five basis 
double-couple components (Yamashita et  al. 2021). To 
mitigate this bias due to the smoothing constraints, we 
apply a new framework of the relative weight smooth-
ness constraint (Tadapansawut et  al. 2021; Yamashita 
et al. 2021): It adds an inverse relative weight parameter 
( 1/Wq ) to the standard deviation of each basis compo-
nent that is proportional to the double-couple compo-
nent of the GCMT moment tensor solution (Additional 
file 1: Fig. S1). To avoid the instability of the solution due 
to the extremely small relative standard deviation, we set 
the minimum weight smoothness constraint to 5% of the 
maximum relative standard deviation. We confirmed that 
slight changes in the minimum weight do not affect the 
inversion solution through sensitivity tests perturbing 
the minimum weight to 10% and 20% (Additional file 1: 
Fig. S2; Text S1). This new framework has been proven 
efficient for the analyses of the source process of the 2018 
Gulf of Alaska earthquake (Yamashita et al. 2021) and the 
2020 Caribbean earthquake (Tadapansawut et al. 2021).

Before applying our newly developed inversion method 
to the real dataset in the following sections, we first 
evaluate the resolvability of this approach by perform-
ing a numerical test using synthetic waveforms based 
on the dipping planes of conjugate faults, which are akin 
to the hypothesized fault system of the 2014 Thailand 
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earthquake (see Numerical test section). The numerical 
test shows that the inverted solution can well reproduce 
the input, which suggests that the potency density ten-
sor inversion can resolve complex ruptures even for cases 
of smaller-scale (M6-class) events consisting of multiple 
rupture segments and with geometric changes in the 
fault system.

3 � Data and model setting
For the analysis of the 2014 Thailand earthquake rup-
ture, we use 25 vertical components of the globally 
observed teleseismic waveforms (Fig. 3b) obtained from 
the Global Seismographic Network and the Federation of 
Digital Seismograph Network provided by Incorporated 
Research Institutions for Seismology Data Management 
Center. The data are selected based on signal-to-noise 
ratio high-enough to distinguish the P-wave arrival and 
to ensure azimuth coverage (Fig. 3). Although the earth-
quake magnitude is small, the waveform at the first 10 s 
can be distinguished from the noise level (Additional 
file  1: Fig. S3). We manually pick the first arrival of 
P-wave and convert it into a velocity waveform to remove 
the instrument response. Then, we resample it at 0.5  s. 
Following Kikuchi and Kanamori (1991), we calculate 
Green’s function at 0.1  s sampling rate for the compo-
nents of each basis moment tensor. The finer sampling of 
Green’s function with respect to the observed waveform 
sampling ensures sufficient resolution for the time shift 
relating to location of each sub-fault to the hypocenter. 
After this, we resample Green’s function at 0.5  s, which 
is the waveform sampling rate. The simplified 1-D near-
source structure model (Wongwai et al. 2013) is applied 
to calculate the Haskell propagation matrix for Green’s 
function (Additional file  1: Table  S1). The sensitivity of 
the near-source structure model is evaluated by test-
ing different models (Additional file 1: Fig. S4; Text S1), 
and we find that the obtained characteristics of the seis-
mic source process can be reproduced using different 
structure model. The attenuation time constant t* for 
the teleseismic P-waveform is about 1 s (Yagi and Fuka-
hata 2011), and the amplitude of the signal below 1  s is 
very weak, so the signal is not affected by aliasing even 
if the sampling interval is shorter than 1  s (Additional 
file 1: Fig. S5). Therefore, following Shimizu et al. (2020), 
we do not apply a low-pass filter to both the observed 
waveforms and the theoretical Green’s functions to avoid 
complicating the structure of the observation and mod-
eling errors by applying a low-pass filter to the errors. By 
adopting this approach, it is possible to construct a seis-
mic source model which can explain the observed data 
undistorted by the low-pass filter (Additional file 1: Fig. 
S3). The assumed model plane is confined by the relo-
cated aftershock distribution and covers the NSTA and 

EWTA that are the expected rupture fault planes. We set 
up the horizontal model plane assuming that the varia-
tion of slip in the depth direction is negligible; however, 
such a supposition can produce a very smooth solu-
tion that will impair the interpretation of the rupturing 
path or the fault geometry. This problem is distinct in 
the conjugate strike-slip fault earthquakes with multiple 
fault planes because if the model space is wide and cov-
ers unnecessary space where the slip is unlikely to occur, 
then the unnecessary slip is squeezed out from the actual 
slip due to the smoothing effects. To mitigate this issue, 
Yamashita et  al. (2021) restricted the horizontal model 
plane only to the aftershock region and obtained a non-
rectangular plane; in that way, the rupture propagation 
is captured in detail and the solution is more stable. We 
assume the model plane to have a strike of 60° and a dip 
of 0°. The model plane is a non-rectangular horizontal 
model plane with a maximum total length of 30 km along 
the EWTA and 18 km along the NSTA. The sub-fault has 
a dimension of 2 × 2 km2 and lies along the strike and the 
dip. The moment rate function for each sub-fault is rep-
resented as a linear B-spline function with a 0.5 s inter-
val. The total rupture duration is set at 8.0  s. We tested 
alternative assumptions of the total rupture duration 
(Additional file 1: Fig. S6; Text S1) and found that 0–5 s 
is robustly resolved, but later period, e.g., during 5–8 s, is 
affected by the assumption of total duration. So we here 
focus our discussion on the robust rupture process dur-
ing 0–5  s in the following sections. The maximum rup-
ture velocity is set at 3.6 km/s which is equal to the first 
layer shear wave velocity (Vs) of the simplified structure 
model (Wongwai et al. 2013) (Additional file 1: Table S1). 
We tested the sensitivity of the solution against the maxi-
mum rupture velocity assumption, where we found that 
the assumption of rupture velocity does not affect the 
solution (Additional file  1: Fig. S7; Text S1). As the ini-
tial rupture point, we use the relocated hypocenter with 
coordinates 19.733°N, 99.689°E at 5 km depth where the 
aftershocks exists along both the NSTA and the EWTA 
(Pananont et al. 2017). The sensitivity of the assumption 
of the model domain depth has been evaluated by testing 
with alternative depths at 4 km and 6 km (see Stability of 
the solution subsection), and we find that the fault geom-
etry and rupturing paths are robustly resolved.

4 � Numerical test
We perform a numerical test using synthetic waveforms 
to evaluate a resolvability of our approach for multiplicity 
of the source process involving the geometric change of 
the fault system of the smaller-scale earthquake. The syn-
thetic rupture process is assumed to take place along the 
purely vertical fault planes of two different faults: Faults 1 
and 2 (Fig. 4). We generate the synthetic waveforms at 25 
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teleseismic stations (Fig. 3b), which are the same stations 
that we use for the analyses of the 2014 Thailand earth-
quake. Each fault model consists of a set of 1 × 1  km2 
sub-fault grids situated along the strike and the dip. The 
total fault length for Fault 1 is 10  km and for Fault 2 is 
20 km; the width of both faults is 8 km. The input source 
model is composed of a spatially variable slip distribution 
along the strike and is symmetrically distributed cen-
tered at depth of the hypocenter along the dip (Fig. 5a). 
The input total seismic moment is 0.76 × 1019 N m (MW 
6.5). We assume that the rupture initiates at the hypo-
center on Fault 1. Then, the rupture front propagates uni-
laterally toward south along Fault 1 at a constant speed 
of 3.6 km/s (Fig. 5e). The rupture on Fault 2 initiates at 
its eastern edge at 1.0 s hypocentral time and propagates 
unilaterally toward the southwest (Fig. 5e) at a constant 
speed of 3.6  km/s. We generate the synthetic waveform 
by using Green’s function incorporating Gaussian noise 
and then adding the background Gaussian noise (Addi-
tional file 1: Fig. S8). Then, we invert the synthetic wave-
forms using the potency density tensor inversion method 
adopted in this study. The numerical experiment is per-
formed in the same setting of the 2014 Thailand earth-
quake analysis. The model plane is a non-rectangular 
horizontal model plane covering the input sources, and 
the depth of the model plane, 5 km, corresponds to the 
potency centroid depth of the input model (Fig. 4). The 
output total seismic moment is 0.75 × 1019  N  m (MW 
6.5). The moment rate function (Fig.  5d) is consistent 
with that of the input (Fig. 5b) and shows minor moment 
release at ~ 2  s and main moment release at 4–6  s. The 
resolved spatiotemporal rupture evolution shows that 
the rupture originates at the hypocenter and propagates 
southwards along Fault 1 during the first second. Then, 
a rupture occurs on the east end of Fault 2 and propa-
gates in the southwest direction (Fig.  5f ). Although the 
rupture regions obtained in each time window tend to 

be smoother, the focal mechanisms at each time win-
dow are consistent with the fault geometry of the input 
faults. To confirm the validity of our method, we also 
conducted numerical tests with two other input models 
and confirmed that the solution features are reproduced 
(Additional file  1: Figs. S9 and S10). Overall, the spati-
otemporal distribution of the potency-rate density tensor 
agrees with that of the assigned input model. The results 
of this numerical test show that, under the present con-
ditions, the potency density tensor inversion can resolve 
complex ruptures even for cases of smaller-scale events 
consisting of multiple rupture segments and with geo-
metric changes in the fault system.

5 � Results
The total moment tensor solution, calculated by the 
integration of all potency-rate density tensors, exhibits 
strike-slip faulting with the two nodal planes striking at 
250° (ENE-WSW) and 340° (NNW-SSE) (Fig.  6a). The 
moment rate function shows at least two rupture epi-
sodes: one during 0–2.0 s and the other during 2.0–4.5 s. 
The highest moment rate occurs at around 3.5 s (Fig. 6b). 
The total seismic moment is 0.30 × 1019  N  m (MW 6.2), 
which is larger than the GCMT solution 0.23 × 1019 N m 
(MW 6.2). The larger seismic moment in our work is 
probably due to our model covering a wider area that 
includes the aftershock distribution along the NSTA and 
EWTA.

The static distribution of the potency density reveals 
two large potency zones located in the middle of the 
EWTA and the NSTA. The larger potency density in the 
middle of the EWTA is around 1.3  m, and the potency 
density in the NSTA near the epicenter is around 1.1 m 
(Fig.  6c). One of the nodal plane distributions of the 
potency density tensor shows that the strike orientation 
is at NNE-SSW along the NSTA and at ENE-WSW along 
the EWTA (Fig. 6c).

The P-axis in Fig.  7 is calculated from the potency 
density tensor at each sub-fault along the model plane 
(Fig.  6). The P-axis azimuth distribution exhibits two 
distinct orientations at ENE-WSW in the middle of the 
NSTA and at NNE-SSW in the middle of the EWTA 
(Fig.  7). The P-axis azimuth histogram shows the twin 
peaks at 20° and 50° (measured clockwise from north), 
where the first peak of the P-axis azimuth (~ 20°) cor-
responds to the ones in the EWTA, whereas the second 
peak (~ 50°) is from the NSTA’s (Fig. 7).

The spatiotemporal distribution of the potency-rate 
density exhibits two rupture episodes, one along the 
NSTA and the other along the EWTA (Fig. 8a). The initial 
rupture of the mainshock originates at the hypocenter in 
the first 1.5 s and propagates south along the NSTA. The 
second rupture occurs at the eastern edge of the EWTA 

Fig. 4  The 3D view of the input and assumed model geometries. The 
rectangles are the input fault planes (Fault 1 and Fault 2). The dashed 
polygon is the assumed horizontal model plane for the potency 
density tensor inversion. The star shows the initial rupture point. The 
shadow gray solid line, dotted line, and star are map views of the 
input and inversion model settings
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between 1.0 s and 1.5 s and propagates southwest along 
the EWTA (Fig. 8a). The second rupture has the highest 
potency rate in the middle of the EWTA between 2.0 and 
3.0 s and terminates at the west end of the EWTA at 5.0 s. 
These two rupture episodes coincide with the dominant 
peaks seen in the moment rate function (Fig.  6). The 
spatiotemporal distribution of the moment tensor solu-
tion shows two dominant patterns of strike-slip fault-
ing (Fig.  8b): one with a strike at NNE-SSW near the 
epicenter occurred between 0.5 and 1.5  s and the other 

with a strike at ENE-WSW northwest from the epicenter 
occurred between 1.5 and 4.0 s.

6 � Discussion
6.1 � Stability of the solution
In this study, the horizontal model plane has been set at 
hypocenter at 5  km depth, even though an actual fault 
rupture propagates not only horizontal but also in the 
depth direction. The results of the numerical experiment 
show that we can estimate the complex rupture processes 

Fig. 5  Summary of the numerical test. a The map view of the input potency density tensors. b The input moment rate function. e The 
spatiotemporal distribution of the input potency-rate density tensors. Only the nonzero potency-rate density tensor located at the same depth as 
the hypocenter is shown. c–f Similar as the panels a–c but for the output solution. The star indicates the initial rupture point. The solid lines show 
the input faults. The dotted line denotes the assumed horizontal model plane
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of the two fault planes by assuming a horizontal model 
plane at the potency centroid depth. In order to evalu-
ate the modeling sensitivity to the assumption of model 
domain depth, we tested alternative assumptions of 
the model plane depth at 4 km and 6 km. The moment 
rate functions show different peaks among the alterna-
tive solutions. The timing of the dominant peak of the 
moment rate is shifted from 4 to 3  s from shallower to 
deeper hypocentral models (Additional file  1: Fig. S11). 
The spatiotemporal distribution of the potency-rate den-
sity distributions also shows the time shift of the largest 
potency-rate release at middle of the EWTA from 3.0 to 
2.5 s from shallower to deeper models. These time differ-
ences can be explained by the change in the Green’s func-
tion, which is mainly caused by the difference of model 
domain depths (e.g., Shimizu et  al. 2020). However, the 
potency density tensor distributions remain the same 
among the alternative solutions. They show the strike ori-
entations at NNE-SSW and ENE-WSW in the middle of 
the NSTA and EWTA, respectively (Additional file 1: Fig. 
S11), which are the same features as seen in our potency 
density tensor solution. The alternative solutions also 

show that the rupturing paths remain the same as our 
preferred solution; the first rupture propagates toward 
south along the NSTA, and then the secondary rupture 
initiates at the eastern edge of the EWTA and propa-
gates toward southwest along the EWTA. The sensitiv-
ity tests suggest that, although the rupture timing can be 
uncertain within ~ 1  s due to the model domain depth, 
the overall pattern of the rupture episodes is robustly 
resolved by our modeling approach. We note that esti-
mates of rupture velocity from the potency-rate density 
tensor solution can inherently be difficult primarily due 
to smoothing effects applied in both space and time, 
especially for the smaller-scale earthquake like the 2014 
Thailand earthquake, which might be challenging to rig-
orously resolve the exact timing and location of rupture 
front.

To further evaluate a reproducibility of the results, we 
performed the reproduction test by using the solution 
from our potency density tensor inversion. We gener-
ated the synthetic waveforms from our solution and 
newly performed the inversion (Additional file  1: Fig. 
S12). The input synthetic waveforms for the reproduction 
test are generated using the Green’s function incorporat-
ing Gaussian noise and the background Gaussian noise. 
Then, we inverted the synthetic waveforms with the same 
model setting as for our preferred potency density tensor 

Fig. 6  The summary of the result. a The total moment tensor 
solution. b The moment rate function. c The focal mechanism 
distribution of the potency density tensor of each sub-fault along 
the assumed horizontal model plane. The color shows the amount of 
potency density. The yellow star denotes the epicenter. The dots are 
the relocated aftershocks (Pananont et al. 2017). The black solid lines 
are the active faults (DMR 2016; Kanthiya et al. 2019): MLF: Mae Lao 
fault, PF; Phan fault, MSF; Mae Suai fault, MSBF; Mae Suai Boundary 
fault

Fig. 7  The P-axis azimuth distribution. a The P-axis azimuth 
distribution extracted from the resultant potency density tensors of 
each sub-fault from Fig. 6. The length of the P-axis is proportional 
to the potency density relating to the color scale of Fig. 6. The 
azimuth is measured clockwise from north. The yellow star shows the 
epicenter. The dots show the relocated aftershock (Pananont et al. 
2017). The black thin line shows the active faults (DMR 2016; Kanthiya 
et al. 2019). b The histogram of the P-axis azimuth, counting the 
ones corresponding to the larger potency density than 25% of the 
maximum potency density every 10° azimuthal bin
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Fig. 8  The spatiotemporal distribution of the a potency-rate density and the b focal mechanism distribution of the potency-rate density tensor 
in each time window. The red beach ball shows the total moment tensor solution within the time window. The star shows the epicenter. The dots 
show the relocated aftershock (Pananont et al. 2017). The line shows the active faults (DMR 2016; Kanthiya et al. 2019)
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inversion for the 2014 Thailand earthquake. The result 
shows that the moment rate function has the major peak 
at about 3–4 s (Additional file 1: Fig. S12b), which is the 
same feature as we resolved for our solution (Additional 
file 1: Fig. S12a). The distribution of the potency density 
tensor shows that the strike orientations at NNE-SSW 
and ENE-WSW in the middle of the NSTA and EWTA, 
respectively, which are the same features as seen in our 
solution. In addition, the spatiotemporal distribution of 
the potency-rate density tensor (Additional file  1: Fig. 
S12d) exhibits two distinct rupture propagation: (1) 
southward rupture propagation during 0–1.5 s along the 
NSTA and (2) southwestern rupture propagation dur-
ing 1.5–4.5 s along the EWTA, which are the main rup-
ture features resolved in our solution (Additional file  1: 
Fig. S12c), and thus we will focus on these rupture pro-
cesses in the Discussion section and will avoid discussing 
detailed features of rupture processes that are not repro-
duced in the reproduction test.

6.2 � Two rupture episodes
Our source model of the 2014 Thailand earthquake dis-
tinguished two rupture episodes that show a dominant 
strike-slip faulting consisting of different rupture linea-
tion along the NSTA and EWTA (Fig. 8), which are con-
sistent with the nodal plane distribution (Fig.  6c) and 
thus facilitate identification of the possible fault geom-
etry for the 2014 Thailand earthquake. The nodal plane 
distribution along the NSTA shows nodal strikes in the 
NNE-SSW direction and the auxiliary plane in the ESE-
WNW direction (Fig.  6). The nodal plane distribution 
along the EWTA shows nodal strikes in the ENE-WSW 
direction and the auxiliary plane in the NNW-SSE direc-
tion (Fig.  6). The consistency between the nodal plane 
distribution (Fig.  6c) and the rupture directions of the 
spatiotemporal potency-rate density distribution (Fig. 8) 
helps facilitate identification of the possible fault geom-
etry. The striking plane along the NSTA is determined to 
be in the NNE-SSW direction and is associated with the 
rupture propagating toward the south. The striking plane 
along the EWTA is determined to be in the ENE-WSW 
direction and is associated with the rupture propagating 
toward the southwest. The obtained two dominant fault 
planes along the NSTA and EWTA are consistent with 
the two distinct trends of the relocated aftershock distri-
bution (Pananont et al. 2017). The first is the N-S trend 
(~ 180° from north) along the NSTA located near the 
epicenter, and the second is the ENE-WSW trend (~ 60° 
from north) along the EWTA located northwest from the 
epicenter. Although the geometry of our model, designed 
to cover the aftershock distribution area, is non-rectan-
gular, the potency density and the potency-rate density 

of each sub-fault are estimated independently from the 
assumed model geometry.

During the first 1.5 s, the rupture propagates from the 
hypocenter to the southern edges of the NSTA (Fig. 8b). 
Then, at around 1.5  s as the rupture migrates from the 
NSTA to the EWTA, the fault strike direction changes 
from NNE-SSW at the northern edge of the NSTA to 
ENE-WSW at the eastern edge of the EWTA, which 
implies that the fault planes in the NSTA and EWTA 
can be considered as a conjugate fault, where the planes 
inclined at angles on either side of the maximum princi-
pal stress (Scholz 2002). Next, between 2.0 and 3.5 s the 
second rupture propagates along EWTA from its east-
ern edge toward the southwest and terminates at around 
5.0 s at its western edge. It is associated with the second 
rupture arising at the eastern edge of the EWTA, propa-
gating west during the period between the 2.0 and 3.5 s 
and having the highest potency-rate of around 0.9  m/s 
(Fig.  8b). Our result of the major slip along the EWTA 
is robustly resolved even if we change the near-source 
structure model, the assumptions of the total duration, 
and the maximum rupture velocity (Additional file  1: 
Figs. S4, S6, and S7). According to the surface fault lines 
(DMR 2016; Noisagool et al. 2016), the orientation of the 
known active conjugated strike-slip faults of the PF and 
MLF shows striking at N5°E–N13°E and N30°E–N50°E; 
this is consistent with our findings that at the north-
ern edge of the NSTA, the striking is in the NNE-SSW 
direction and at the eastern edge of the EWTA, in the 
ENE–WSW direction. The multiple subevents at the 
conjugated strike-slip fault system are possibly due to 
the complex rupture evolution among the geometrically 
complex fault system (e.g., Meng et  al. 2012; Yamashita 
et  al. 2021). Therefore, our solution suggests that the 
rupture evolution of the 2014 Thailand earthquake is 
characterized by multiple subevents in the conjugated 
strike-slip fault system of the PF and MLF.

Our results indicate that the conjugate fault ruptured 
during the mainshock, but Pananont et al. (2017) suggests 
that primary rupture on the N-S trending fault plane 
during the mainshock may host the aftershock activity 
triggered on the conjugate structure of the ENE-WSW 
trending fault plane. Therefore, we examined whether 
the observed waveforms could be explained if the rupture 
occurred only on the N-S trending fault. We first set up 
a single fault plane with reference to the north–south-
striking nodal plane of the focal mechanism obtained 
in Pananont et  al. (2017) and inverted the observed 
waveforms on that plane using the finite-fault inver-
sion method (Yagi and Fukahata 2011), assuming a two-
component basis slip vector (Additional file 1: Fig. S13). 
As a result, the variance reduction (Shimizu et al. 2021) 
decreases significantly from 73% to 54% (Additional file 1: 
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Fig. S14), indicating that the model with no variation in 
fault geometry cannot explain the complex teleseismic 
waves of the present earthquake. We next performed the 
potency density tensor inversion (the adopted method in 
this study), placing the horizontal model plane only on 
the NSTA (Additional file 1: Fig. S15). The potency den-
sity tensor inversion projects the slips on multiple faults 
onto the assumed model plane. Therefore, if a large seis-
mic potency is released on the ENE-WSW trending fault, 
it is expected that subevents corresponding to the ENE-
WSW trending fault slip will be detected near the model 
plane boundaries and that the waveforms will be poorly 
fitted due to the improper model plane. As expected, the 
obtained results of the spatial distribution and the spati-
otemporal distribution (Additional file 1: Fig. S15) show 
that subevents with focal mechanisms corresponding to 
slip on the ENE-WSW trending fault are projected on 
the northwest boundary of the assumed model plane and 
with a variance reduction of 66% (Additional file  1: Fig. 
S14). These two results indicate that a model in which 
two faults rupture during the mainshock is necessary to 
explain the complex teleseismic body waves.

6.3 � P‑axis distribution
The spatial distribution of the P-axis azimuth, extracted 
from the potency density tensor for each sub-fault, exhib-
its two major orientations at ENE-WSW in the NSTA 
and NNE-SSW in the EWTA (Fig.  7). The histogram of 
the P-axis azimuth distribution displays two peaks, one at 
20°–30° and the other at 50°–60° (Fig. 7b), which should 
reflect the dominant orientations within the EWTA and 
NSTA, respectively. Our P-axis orientations at 20°–30° 
within the EWTA are consistent with the one obtained 
by Noisagool et  al. (2016), which is estimated based on 
the mainshock and aftershocks focal mechanisms, mostly 
located within the EWTA (Pananont et  al. 2017), while 
the direction of our P-axis azimuth along the NSTA 
obtained in this study (~ 50°, Fig.  7) is not consistent 
with the one (~ 18°) obtained by Noisagool et al. (2016). 
However, if Coulomb’s friction factor is a typical value 
of 0.6, the two peaks of our P-axis histogram (Fig.  7) 
can be naturally explained as a shift of the P-axis of the 
conjugate fault plane (Iio 1997), which leads to ~ 35°. We 
should mention, however, the focal mechanism solutions 
obtained in this study are affected by dynamic changes 
in the stress field due to seismic waves or localized fault 
structures, and estimation of the principal stress axis is 
beyond the scope of this study. Our results suggest that 
further investigation of the stress field in this region is 
needed, taking into account the spatial bias of aftershock 
distribution, which affects the estimates of the principal 
stresses for the conjugate fault earthquake.

7 � Conclusion
We construct a source model for the 2014 Thailand MW 
6.2 earthquake that occurred within the Phayao Fault 
Zone in northern Thailand, by applying a new framework 
of the potency density tensor inversion and resolved both 
the fault geometry and the slip. Our source model exhib-
its complex rupture evolution consisting of two rupture 
episodes along a conjugated strike-slip fault system that 
comprises two distinct fault planes. These planes coin-
cide with the relocated aftershock distribution. The ini-
tial rupture originates at the hypocenter and propagates 
southward along the north–south oriented fault plane 
near the epicenter. Then, the second rupture episode is 
triggered north of the epicenter at the eastern edge of 
the conjugated east–west oriented fault plane and propa-
gates southwestward until the rupture terminates. The 
teleseismic waveform shape can be modulated by the 
focal mechanism changes during the rupture propagation 
along the geometrically complex fault system. Especially 
for the case of the 2014 Thailand earthquake, the rupture 
along the different mechanisms of the two distinct con-
jugate faults generates different shape of the teleseismic 
waves accordingly. Such information of the fault geom-
etry change included in the teleseismic data is properly 
retrieved by our approach of the potency density tensor 
inversion (Shimizu et  al. 2020), leading to resolving the 
complex rupture evolution associated with the com-
plex fault geometry, even for the smaller-scale M6-class 
earthquakes.
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