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METHODOLOGY

Detection of Martian dust storms using mask 
regional convolutional neural networks
Rasha Alshehhi1* and Claus Gebhardt2 

Abstract 

Martian dust plays a crucial role in the meteorology and climate of the Martian atmosphere. It heats the atmosphere, 
enhances the atmospheric general circulation, and affects spacecraft instruments and operations. Compliant with 
that, studying dust is also essential for future human exploration. In this work, we present a method for the deep-
learning-based detection of the areal extent of dust storms in Mars satellite imagery. We use a mask regional convolu-
tional neural network, consisting of a regional-proposal network and a mask network. We apply the detection method 
to Mars daily global maps of the Mars global surveyor, Mars orbiter camera. We use center coordinates of dust storms 
from the eight-year Mars dust activity database as ground-truth to train and validate the method. The performance of 
the regional network is evaluated by the average precision score with 50% overlap ( mAP50 ), which is around 62.1%.
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1  Introduction
The Martian dust cycle is of fundamental importance 
to the meteorology and climate of the Martian atmos-
phere  (e.g., Haberle et  al. 2017; Kass et  al. 2016; Mont-
abone et  al. 2015a). Atmospheric dust absorbs and 
scatters solar and infrared radiation. It thus increases the 
atmospheric temperature and enhances the atmospheric 
general circulation (e.g., Gebhardt et al. 2020, 2021; New-
man and Richardson 2015). Moreover, dust storms are 
a very common phenomenon on Mars. Every few Mar-
tian years, on average, global dust storm events occur. 
Hence, the Mars dust cycle has implications for space-
craft engineering parameters, the entry-descent-landing 
(EDL) operation of spacecraft, the energy production by 
the solar panels of Mars rovers/landers, etc. Also, it is an 
essential concern for future human exploration of Mars.

Martian dust storms are evident as frontal fea-
tures  (Wang and Richardson 2015), dust storm texture/
convective features  (Guzewich et  al. 2015), and dust 
clouds  (Cantor et  al. 2019). Based on the definition 

of Cantor et  al. (2001), regional dust storms differ from 
local dust storms by having an area of ≥ 1.6× 106 km2 
and a duration of more than two days. Global dust 
storm events (GDEs) or planet-encircling dust storms 
start as local/regional dust storms and engulf the entire 
planet  (Forget and Montabone 2017). Still, dust lifting 
takes place at the regional scale and GDEs have several 
active dust lifting centers. GDEs have a duration of up 
to a few months and occur, by average, each few Mar-
tian Years (Zurek and Martin 1993). While there may be 
local and regional dust storms at any time of the Martian 
year, GDEs occur only during the second half of the Mar-
tian year ( LS = 180

◦ − 360
◦ ). The latter is known as the 

dust storm season and coincides with the Mars southern 
hemisphere spring and summer. A yearly repeatable phe-
nomenon is multiple local dust storms at the northern/
southern Mars polar cap edge in the respective hemi-
spheric fall to the spring season, known as polar cap edge 
storms. By contrast, dust devils are another phenomenon. 
They may have diameters of several hundred meters and 
durations of several tens of minutes (Reiss et al. 2011).

A comprehensive dust climatology was detailed 
in Montabone et al. (2015a). The basis for that are data on 
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the column dust optical depth from the satellite instru-
ments MCS/MRO (Mars climate sounder/MARS recon-
naissance orbiter), THEMIS/MO (thermal emission 
imaging system/Mars Odyssey), and TES/MGS (thermal 
emission spectrometer/Mars global surveyor). The lat-
ter operate at different wavelength ranges, measurement 
geometries, and spatial and temporal coverage. This 
dust climatology is made publicly available via the Mars 
climate database (MCD),1 together with many other 
parameters of the Mars atmosphere and surface. It has a 
moderate spatial resolution of a few degrees latitude and 
longitude2 and was demonstrated to be suitable to follow 
the evolution of certain regional dust storms by Montab-
one et al. (2015a). Various studies identified and explored 
dust storms based on the visual inspection of Mars daily 
global maps (MDGMs) from the camera system MOC/
MGS  (Cantor 2007; Hinson et  al. 2012). Other studies 
focused on MDGMs from both MOC/MGS and MARCI/
MRO  (Battalio and Wang 2021; Wang and Richardson 
2015). In this work, we perform a feasibility study on a 
deep-learning-based approach for dust storm detection 
from the record of MDGMs by the Mars orbiter camera 
(MOC)  (Malin et  al. 2010) aboard the Mars global sur-
veyor (MGS), by applying regional convolutional neural 
networks (R-CNNs) (Simonyan and Zisserman 2014).

Recently, deep convolutional networks have made sig-
nificant improvements in the accuracy of object detec-
tion, in particular R-CNNs which focus on an object of 
interest (e.g, face, car, etc.), called reference or ground-
truth objects, from images. Object detection is a chal-
lenging task because it requires the accurate localization 
of candidate objects. In this paper, we use mask regional 
convolutional neural networks (Mask R-CNNs) that 
jointly learn to classify dust storm candidates and refine 
their spatial locations. The spatial extent of potential dust 
storm candidates may be to a certain degree arbitrary 
because dust storm boundaries are identified based on 
the subjective perception of individual observers and are 
interpolated if they intersect gaps in satellite images and/
or the edge of the polar night. Here we draw a rectangu-
lar box or bounding box around the center coordinates 
of each dust storm instance and consider it as a reference 
box or ground-truth box.

In this paper, we detect the presence of dust storms in 
an image, estimate their edge coordinates and evaluate it 
based on hand-drawn reference boxes. The main contri-
bution of this work can be summarized as follows:

•	 It is the first work on the deep-learning-based 
detection of Mars dust storms which is applied to 
several Martian-year records of MDGMs. Also, it 
uses the Mars dust storm database of Battalio and 
Wang  (2021), which is one of the most recent and 
comprehensive of its kind, as a ground-truth.

•	 It uses a new architecture that consists of two net-
works for improving the accuracy of the bounda-
ries of dust storm areas, although the ground-truth 
includes a certain degree of subjectivity and arbitrari-
ness.

•	 It uses a dice score as a mask loss function to over-
come ambiguous cases at the boundary between a 
dust storm and non-dust-storm categories with a 
lower level of uncertainty between the two catego-
ries.

The outline of this paper is the following. Section  2 
describes the previous work related to automated dust 
storm detection and the latest R-CNN techniques. In 
Sect.  3, we explain the observation-based dataset and 
ground-truth we used. In Sect. 4, we illustrate the meth-
odology used to detect dust storms. We discuss the 
performance of our method in Sect.  5. In Sect.  6, we 
summarize the main findings and provide an outlook for 
the future.

2 � Related work
2.1 � Automated detection of Martian dust storms
Maeda et  al. (2015) proposed an automatic method to 
detect dust storms. Their method is based on selecting 
features from Martian images using a minimal redun-
dancy maximal relevance algorithm and classification 
using the support vector machine (SVM) technique into 
a dust storm and non-dust storm. It successfully detects 
around 80% of dust storms, but it did not define the loca-
tions of dust storms. Gichu and Ogohara (2019) sug-
gested a segmentation method to classify Martian images 
into either dust areas or cloud areas. They used principal 
component analysis (PCA) to reduce the number of Mar-
tian image bands and supervised multi-layer perceptron 
(MLP) neural networks based on subjective ground-truth 
images. They only focused on the regions (patches) with 
a high frequency of dust storms revealed by Guzewich 
et al. (2015) and Kulowski et al. (2017). In this work, we 
concentrate on non-polar Martian images.

2.2 � Regional convolutional neural networks (R‑CNNs)
The R-CNN is an extended version of the standard CNN, 
which is used to identify an object of interest; the pres-
ence of an object (e.g., face, dog, car, etc.) in an image, 
the exact location of an object, and the number of occur-
rences of an object in an image. This cannot proceed with 

1  http://​www-​mars.​lmd.​jussi​eu.​fr/
2  http://​www-​mars.​lmd.​jussi​eu.​fr/​mars/​dust_​clima​tology/​index.​html
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a standard CNN because the number of occurrences of 
an object of interest varies from image to image. While 
an object may be present several times in some image, 
it may not be included in another image. The R-CNN is 
usually trained based on subjective reference bounding 
boxes (ground-truth) around an object in images, which 
are drawn manually by field experts. Girshick et al. (2013) 
introduced the first R-CNN. They used the CNN, which 
consists of convolutional and fully-connected layers to 
extract regions of interest (RoI), called candidate region 
proposal, from convolutional layers. These RoIs are fed 
into a classical support vector machine (SVM) to clas-
sify the presence of an object within candidate region 
proposals (i.e., whether there is an object or not). In addi-
tion to predicting the presence of an object, the SVM 
also predicts four coordinates of vertices of an object to 
increase the precision of the bounding boxes. Ren et al. 
(2016) introduced a regional proposal network (RPN) for 
a better generation of RoI or candidate region proposals 
within a shorter time. This network is called Fast R-CNN. 
He et al. (2017) added a new architecture, called segmen-
tation mask network, which works in parallel with the 
RPN. This network generates a segmentation map i.e., 
the identification of a bounding box with the input image 
that indicates the location and extends (boundaries) of 
the object. This network is called a Mask R-CNN. Cheng 
et  al. (2020) proposed a modified version of the Mask 
R-CNN architecture to enhance the precision of bounda-
ries of an object of interest. In this work, we use a modi-
fied version of the Mask R-CNN to identify dust storms 
in Martian maps and subjectively estimate its coordinates 
from RoI.

3 � Data
As ground-truth images, we use the Mars dust activ-
ity database (MDAD)  (Battalio and Wang 2021). This 
is a dust storm database compiled from eight Mar-
tian years (MY) of Mars Daily Global Maps (MDGMs), 
which means from MY 24, LS 150◦ (1999) to MY 32, LS 
171◦ (2014). The MDAD comprises 14,974 dust storm 
instances, which are, by definition, enclosed dust storm 
regions on a single sol (Martian day). The dust storm 
instances are combined into 7927 dust storm members. 
These are subdivided further into a total of 228 dust 
storm sequences (125 originated in the northern hemi-
sphere and 103 in the southern hemisphere).

The Mars dust activity database can be found at https://​
doi.​org/​10.​7910/​DVN/​F8R2JX. It includes the center 
coordinates (longitude and latitude) and area (in km2 ) of 
individual dust storm instances. We use the center coor-
dinates of each such dust storm instance but, as a sim-
plifying assumption, consider rectangle areas around the 
center coordinates. The MDAD also includes confidence 

levels (CL) of 100, 75, and 50, which are assigned to each 
dust storm instance based on visual inspection. They rate 
the accuracy of dust storm boundaries with the highest 
confidence level of 100 and the lowest confidence level 
of 25. CL = 100 means the entire perimeter of the dust 
storm instance is distinct against the background so that 
the dust storm edge has an error on the order of a few 
pixels only (which is equivalent with approximately 0.5◦ ). 
CL = 25 shows rather nebulous boundaries that can-
not be exactly discerned from the background within 
a few degrees of latitude/longitude. The CL is also used 
to determine how distinct a dust storm instance is from 
the background atmospheric opacity. Only dust storm 
instances with CL = 100, 75, 50 are listed in the MDAD.

In the following, we include all Mars Daily Global Maps 
(MDGMs) based on MOC/MGS, from MY 24, LS 150◦ 
(1999) to MY 28, LS 121◦ (2006), as obtained from https://​
doi.​org/​10.​7910/​DVN/​WWRT1V. We consider the non-
polar versions of these MDGMs, which cover latitudes 
from 60◦N–60◦ S and longitudes from 180◦E–180◦ W and 
have simple cylindrical map projection. The MDGMs 
have a resolution of 7.5 km per pixel with 0.1◦ longi-
tude by 0.1◦ latitude. They are available as RGB images. 
Details on the MDGM production process can be found 
in  Wang and Ingersoll (2002). Each MDGM is based 
on 13 wide-angle global map swath images of the Mars 
global surveyor (MGS) Mars orbiter camera (MOC). 
The latter covers the whole sun-lit planet around 2 PM 
local time each sol. The MDGMs consist of imagery from 
the two visible bands, red (575–625 nm) which is more 
sensitive to dust storms, and blue (400–450 nm) which 
is more sensitive to water ice clouds (Cantor et al. 2001). 
The green component of the MDGMs is synthesized 
by combining 1/3 red and 2/3 blue and applying linear 
stretching.

4 � Method
A basic introduction to image classification and object 
detection by classical convolutional neural networks 
can be found in Higham and Higham (2019), Zhao et al. 
(2019). The fast regional convolutional neural network 
(fast R-CNN)  (Girshick 2015) usually includes two clas-
sical convolutional neural networks: the base network/
backbone network and the detection network. The 
detection network, in turn, is a regional proposal net-
work (RPN). A modified version of the fast R-CNN is 
the mask regional convolutional neural network (Mask 
R-CNN) (He et al. 2017). The detection network in Mask 
R-CNNs is a combination of a regional proposal net-
work (RPN) and a mask network (called segmentation 
network). We use a Mask R-CNN to estimate the prob-
abilities of regions to show a dust storm in the Martian 
map. This Mask R-CNN includes a RPN following  Ren 

https://doi.org/10.7910/DVN/F8R2JX
https://doi.org/10.7910/DVN/F8R2JX
https://doi.org/10.7910/DVN/WWRT1V
https://doi.org/10.7910/DVN/WWRT1V
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et al. (2016). In addition to that, it consists of a mask net-
work that predicts a dust storm segmentation map on a 
pixel-to-pixel basis (He et al. 2017). A segmentation map 
is a bounded region of pixels within the image that have a 
higher probability of being a dust storm (being classified 
in the “dust storm category”) than not.

As a backbone network, we use a residual network 
(ResNet)  (He et al. 2016) (see “Appendix” for a descrip-
tion of the ResNet architecture). In principle, the ResNet 
works better with additional layers. It finds an optimized 
number of layers to negate the vanishing gradient prob-
lem in classic networks. The backbone network takes the 
initial Martian map (MDGMs ) as an input image and 
outputs convolutional feature maps. The latter are, in 
turn, the input of the detection network. To extract the 
region of interest (RoI) from convolutional feature vec-
tor maps, we use the feature pyramid network (FPN) (Lin 
et  al. 2017) as a detection network. We use the FPN 
architecture because it combines the low-resolution, 
semantically strong features with the high-resolution, 
semantically weak features, which is sufficient for cap-
turing the difference between dust storm and non-dust-
storm regions (see “Appendix” for a description of the 
FPN architecture).

The RPN includes a classifier and a bounding box 
regressor, for the purpose of object classification and 
bounding box optimization. The classifier predicts the 
dust storm probability, called score, of each region; The 
score is obtained for all regions (collection of pixels), 
where a high score region refers to a region that has a 
high probability of being a dust storm, and a low score 
region is likely not a dust storm. The bounding box 
regressor predicts four boundary coordinates of the dust 

storm regions  (Girshick 2015; He et  al. 2017). Usually, 
the RPN use multiple reference boxes, called anchors, 
to obtain more accurate boundary coordinates of dust 
storm regions. The reference boxes are used to evaluate 
the performance of the RPN.

Refining the Mask R-CNN is beyond the scope of this 
paper and we provide the reader with an overview of this 
method in this article. Figure 1 shows a flowchart of the 
current method, and we will discuss different parts in 
detail in the following sections.

4.1 � Region proposal network (RPN)
The RPN takes as input a certain region (called the region 
of interest, RoI) from the convolutional feature map of 
the backbone network and outputs a set of rectangu-
lar candidate regions, called proposals, over the input 
region. Each proposal has a dust-storm-probability and 
non-dust-storm-probability, called score, and four coor-
dinates of the most likely area of a dust storm. In detail, 
the input region of the RPN is a spatial window with the 
dimensions w × h× l , where w, h, l are the width, height 
and number of feature maps of the convolutional layers. 
The width, height, and the number of bands of the input 
region are 7× 7× 256 (w and h are determined experi-
mentally). The input region of the RPN is fed into two 
sibling fully-connected network layers and finally into 
the box-classification layer ( lc ) and the box-regression 
layer ( lr ). These are briefly denoted sibling, classification 
and regression network in the following, respectively. 
The outputs of the sibling network layers are classifica-
tion scores and coordinates of four vertices of k propos-
als of the input window w × h . k is a pre-defined number 
of reference boxes with different scales and aspect ratios, 

Fig. 1  A flowchart of the used mask R-CNN
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called anchors. The anchors are derived as rectangular 
regions from the convolutional feature maps of the ini-
tial MDGMs, based on the longitude and latitude of the 
center coordinate of respective dust storms of the MDAD 
dataset. The region is associated with a scale s and aspect 
ratio r ( s = 4 and r = 3 ; these are determined based on 
computational capacities). The anchors are applied after 
the re-sampling of any input feature vectors. The out-
put of lc of window w × h is 2× k elements, which are 
the probabilities of any anchor to contain or not a dust 
storm. These probabilities are called classification scores. 
The output of lr of window w × h is 4 × k elements, 
which are the four corner coordinates of each dust storm 
proposal. These include offsets added by lr for optimizing 
the object detection quality. Figure 2 shows an overview 
of the RPN.

4.2 � Mask R‑CNN
The mask regional convolutional neural network (Mask 
R-CNN) runs over the convolutional feature vector 
maps of the ResNet backbone network and produces a 
segmentation map. The Mask R-CNN works in parallel 
with the classification and regression network, described 
in Sect.  4.1. This is also illustrated in Fig.  1. The Mask 
R-CNN takes a region from convolution feature vector 
maps with the spatial dimension x × y× z , where x, y and 
z are in units of width, height and the number of feature 
maps ( x × y× z is 14 × 14 × 256 and 28× 28× 256 ; the 
window size is determined experimentally). The Mask 
R-CNN produces a binary map with x × y× 1 . The latter 
dimension is equal to one because there is only one class 
(dust storm region or the planetary surface background). 
The binary map is a classified 2D image, where 1 refers to 
foreground pixels, i.e., dust storm pixels, and 0 refers to 
background pixels, i.e., non-dust-storm pixels.

4.3 � RoIAlign
RoIAlign (He et al. 2017) (see “Appendix” for details about 
RoIAlign) is a standard operation for extracting regions 
of interest (RoI) from convolutional feature maps. We use 
RoIAlign both within the classification and regression net-
work and segmentation network. The regions extracted 
by the segmentation network are denoted RoIMaskerA and 
RoIMaskerB in the following. The RoIMaskerA is based on the 
output of the second to fifth residual convolutional layer 
in the first part of the mask segmentation network (the 
corresponding process is denoted MaskerA in Fig. 1). The 
RoIMaskerB is based on the output of the second part of the 
segmentation network ( MaskerB in Fig. 1). In MaskerA , the 
RoIMaskerA is the result of four consecutive 3× 3 convolu-
tions, while in MaskerB , the RoIMaskerB is the result of two 
consecutive 3× 3 convolutions and MaskerA . The combi-
nation of MaskerA and MaskerB helps obtain a binary map 
with rough coordinates of dust storm pixels.

4.4 � Training the network by learning and optimization
The loss function L is a combination of classification Lc , 
regression Lr and segmentation mask Lm losses. We use a 
binary cross-entropy to classify each box and a mean abso-
lute error (MAE) to estimate four coordinates of each box, 
which are coordinates of the four vertices. To alleviate the 
class-imbalance problem between positive pixels (dust) 
and negative pixels (non-dust), we use Dice loss (Milletari 
et al. 2016) to measure overlapping between prediction and 
ground-truth.

where N, J and I are the number of reference boxes, the 
number of four coordinates of each box, the number of 
pixels of each box, respectively. In Eq. 2, y is the ground-
truth value of each reference box n (0 for non-dust storm 
box and 1 for dust storm box). In Eq. 3, y is (x,y) coordi-
nates of all vertices of each reference box n. In Eq. 4, y is 
the ground-truth value of each pixel i in each reference 
box n (0 for non-dust pixel and 1 for dust pixel). In all 
equations, ỹ is the predicted probability of the box.

(1)

L(y, ỹ) =
1

N

N∑

n=0

Lc(yn, ỹn)+ Lr(yn, ỹn)+ Lm(yn, ỹn),

(2)
Lc(yn, ỹn) = −yn ∗ log(ỹn)+ (1− yn) ∗ log(1− ỹn),

(3)Lr(yn, ỹn) =

J=4∑

j=1

||ỹn(j)− yn(j)||,

(4)Lm(yn, ỹn) =
2
∑I

i yn(i) ∗ ỹn(i)∑I
i yn(i)+

∑I
i ỹn(i)

,

Fig. 2  An overview of the region proposal network (from Ren et al. 
2016)
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5 � Performance
In this section, we use various training strategies and 
present the performance of Mask R-CNNs on MDGMs 
derived from MGS/MOC observations. This includes 
comparisons with state-of-the-art methods.

5.1 � Evaluation metrics
We use the intersection-over-union (IoU) to evalu-
ate the performance of the convolutional networks. The 
IOU is a metric that measures the accuracy of the detec-
tion method based on comparing the areas of reference 
and predicted bounding boxes. It is defined as the area 
of intersection of the predicted bounding box Ỹm with 
the reference box Ym divided by the area of the union 
between Ỹm and Ym:

We assign an object, i.e., bounding box, to a value of 1 
(dust storm) if the IOU is greater than a certain thresh-
old, while it is assigned to a value of 0 (non-dust storm) 
if the IOU is smaller than the same threshold  (He et al. 
2017). We calculate the precision ( P = TP/TP+ FP ) 
and recall ( R = TP/TP+ FN ) of each object in the test-
ing dataset, where TP, FN and FP are the number of dust 
storm pixels correctly classified as dust storm pixels, the 
number of dust storm pixels classified as non-dust storm 
pixels and the number of non-dust storm pixels classi-
fied as dust storm pixels, respectively. We evaluate the 
performance of the network based on the mean aver-
age precision (mAP) score, where AP is the area under 
the precision-recall curve. We calculate mAP at various 
intersection-over-union thresholds thIoU ( 25% , 50% and 
75%).

5.2 � Implementation details

•	 Data: we use RGB (red, green, blue) Mars Daily 
Global Maps (MDGMs) as input of the Mask 
R-CNN. We define ground-truth for the Mask 
R-CNN by using boxes of size 120× 120 pixels 
around the center coordinates of dust storms iden-
tified in the MDAD database  (Battalio and Wang 
2021), where the choice of 120 pixels is determined 
from multiple experiments with different sizes and 
selecting the value that provided the best agreement 
and was within available computational GPU capaci-
ties.

•	 Mask R-CNNs: We use four scales for each RPN 
anchor s ∈ {32× 32, 64 × 64, 128× 128, 256× 256} 
on {Conv2,Conv3,Conv4,Conv5} layers. We use 

(5)IoU =
area(Ym ∩ Ỹm)

area(Ym ∪ Ỹm)
,

three aspect ratios r ∈ {1 : 2, 1 : 1, 2 : 1} at each scale. 
Using four scales and three ratios follows  (Lin et al. 
2017) Also, this is in line with computational capaci-
ties (e.g., memory and speed).

•	 Training and inference: we use the adam optimiza-
tion function. The learning rate is assigned the value 
of 0.0001 and it decreases by a factor of 10 every 
1000 iterations. The weight decay is set to 0.001 and 
the momentum to 0.9, the step per epoch to 1000, 
and the validation step to 50. We use one GPU with 
a mini-batch size equal to 32. We train with 1 image 
per GPU. The highest IoU threshold used is 0.7 and 
the lowest IoU threshold used is 0.3, in line with pre-
vious reported Mask R-CNNs  (Ren et  al. 2015; He 
et al. 2017; Lin et al. 2017; Cheng et al. 2020).

5.3 � Experimental results in different seasons
Only 607 out of the 2484 MDGM maps ( 24% ) have 
occurrences of dust storms in them. The MDGM dataset 
includes maps from spring season only in MY 25, from 
summer, fall (146 maps) and winter (150 maps) seasons 
in MY 26, from spring, summer, fall (126 maps) and win-
ter (185 maps) seasons in MY 27, and from spring and 
summer seasons in MY 28. We use two training strate-
gies. In the first training strategy, the training dataset 
mainly includes around 296 maps during dustiness sea-
sons from MY 26 and testing includes around 311 maps 
from MY 27. However, in the second training strategy, 
the training set includes around 350 maps during dusti-
ness seasons which were randomly selected from MY 25 
and MY 28 and the testing set includes 256 maps. Here, 
we discuss each strategy in detail.

In the first strategy, we use maps from MY 25, LS 0◦ 
to MY 27, LS 180◦ as the training dataset (1216 maps; 
around 49% of the total MDGM maps). We randomly 
select validation images from MY 25 to MY 27 (614 
maps; around 25% of total MDGM maps) which are not 
used in the training dataset to validate the performance 
of the convolutional networks during the training process 
to obtain a lower error. We use maps from the almost 
full-year period from MY 27, LS 180◦ to MY 28, LS 121◦ 
as the testing dataset (659 maps; around 27% of the total 
MDGM maps). Each dataset includes images from the 
entire year.

Figures 3 and 4 show reference dust storm regions (a) 
and (c) and predicted dust storm regions by the R-CNN 
(b) and (d) for selected MDGMs of the testing dataset. 
In Fig.  3a, the reference bounding boxes for MY 28, LS 
83.04◦ is given by dust storm instances at the coordi-
nates (89.25◦ W, 26.7◦ S) and (132.05◦ E, 30.2◦N). The dust 
storm instances are classified with CL = 75 and CL = 50, 
respectively, which implies that their subjective edges/
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boundaries are less clearly identifiable. As follows from 
Fig. 3b, the R-CNN identifies a dust storm instance close 
to the reference dust storm instance (89.25◦ W, 26.7◦S). 
However, the R-CNN predicts two bounding boxes in 
the same region that overlaps with the ground-truth ref-
erence box. This may be because there are 12 arbitrary 
reference boxes/anchors ( s = 4 and r = 3 ), and thus be 
considered in the same region of interest. Figure  3c, d 
presents accurate results for MY 28, LS 110.25◦ (sum-
mer). The ground-truth is given by dust storm instances 
at the coordinates (96.75◦ W, 26◦ S) and (73.05◦ W, 34.3◦ S) 
with CL = 100 and CL = 75 near to southern polar ice 
cap. The detection accuracy is approximately 0.99 for 
both, i.e., high overlapping areas with the ground-truth. 
Figure  4a, b at MY 27, LS 222.83◦ , i.e., during the dust 
storm season, show that the R-CNN identifies dust storm 
instances in different regions. However, it mismatches 
some of the center coordinates and has a certain overlap 
with surrounding areas. That is the case around the ref-
erence bounding boxes at (148.85◦ W, 39.5◦N), (54.35◦ W, 
4.7◦N), (14.65◦ W, 46.2◦ N) with CL = 50, CL = 75 and 
CL = 75, respectively. This may be at least partly due to 
the fact that CL = 100 means the dust storm instances 
still have an error of a few pixels, or approximately 
around 0.5◦ , and CL = 75 and CL = 50 have an error 
greater than 0.5◦ , accordingly. Also, it fails to distinguish 
the dust storm instances with CL = 100 and CL = 50 at 
the coordinates (147.75◦ E, 33.7◦ N) and (46.55◦ W, 17.9◦ S) 
from the background. A potential explanation for that is 
increased atmospheric background dustiness during the 
dust storm season. Figure 4c, d shows accurate results at 
LS 305.93◦ with references bounding boxes at (32.55◦ W, 
0.90◦ N) and (158.55◦ W, 36.1◦ N) and CL = 75.

In the second strategy, we apply the network to images 
from MY 25, LS 0◦ to MY 28, LS 121◦ , which are randomly 
divided into a training dataset (1300 maps; around 52% 
of total MDGM maps), a validation dataset (586 maps; 
around 24% of total MDGM maps) and a testing dataset 
(600 maps; around 24% of total MDGM maps) and ana-
lyze the performance in all seasons. Figures 5 and 6 show 
examples from all four seasons at LS 53.47◦ , LS 105.36◦ , LS 
238.51◦ and LS 313.57◦ in MY 26 and MY 27, respectively. 

Figure  5a–d shows detected dust storms at LS 53.47◦ 
(spring) and LS 105.36◦ (summer). Figure  6a–d presents 
results at LS 238.51◦ (fall) and LS 313.57◦ (winter). Here, 
our method successfully identifies most of the dust storm 
instances; however, it misses some center coordinates of 
dust storms (error of a few pixels). Thus, they are to a cer-
tain extent subjective and the dust storm instances may 
even extend over a larger area. If so, our method may 
have identified nearby regions because they have similar 
spatial and spectral characteristics. Among others, our 
method may also have produced some false-negative and 
false-positive cases due to water ice clouds, large back-
ground dustiness, or image gaps in the MDGMs, as in 
Figs.  5d and 6b, respectively. In line with that, we may 
integrate some additional processes in the future (e.g., 
filling missing data, cloud detection, etc.).

5.4 � Distribution of longitude‑latitude coordinates
Figure 7a–d shows the distribution of longitude-latitude 
coordinates of the predicted bounding boxes compared 
to the subjective coordinates of the reference bounding 
boxes (delta-longitude dx and delta-latitude dy in pixel) 
using the first and the second training strategies. We note 
dx and dy are approximately between −4 and 4 in both 
strategies, but variations in longitude value are larger 
compared to variations in latitude value.

5.5 � Comparison with state‑of‑the‑art methods
We compare the performance of the regional networks 
based on the first and second training strategies. The 
first strategy identifies locations of dust storms for com-
ing years (from middle MY 27 to MY 28) based on old 
years (from MY 25 to the middle MY 27) and the sec-
ond strategy identifies locations based on random dust 
storms (from MY 25 to MY 28). In Table 1, we compare 
results among the fast R-CNN, Mask R-CNN, SPPnet 
and the current R-CNN. We compare mAP with thIoU 
equal to 25% , 50% and 75% . As expected, selecting higher 
thresholds reduces the effectiveness of all R-CNNs. In 
addition, the inference times required for each image 
lie between 300 and 370 milliseconds (ms) for all net-
works. Mask R-CNNs have higher mAP and are faster 

Table 1  Comparison between R-CNNs based on various mAP 

The highest mAP and the shortest time are presented in bold font. The mAP25 mAP50 , mAP75 are mAPs with thIoU of 25% , 50% and 75%

Networks mAP25 mAP50 mAP75 Time (ms)

strategy 1 strategy 2 strategy 1 strategy 2 strategy 1 strategy 2 strategy 1 strategy 2

Fast R-CNN 64.1 64.8 59.1 58.1 32.2 32.1 350 320

Mask R-CNN 67.8 68.1 61.2 60.5 38.1 33.1 290 300
SPPnet 62.5 63.2 50.1 53.1 22.5 20.1 370 360

Current R-CNN 68.2 67.5 62.1 61.2 39.0 37.7 320 310
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Fig. 3  1st strategy: the training and validation images are selected randomly from MY 25 to middle of MY 27. The testing images are selected 
randomly from middle of MY 27 to MY 28. a and c are ground-truth images from spring ( s20_23 ) and summer ( s22_22 ) seasons at LS = 83.04

◦ and 
LS = 110.25

◦ , respectively. b and d are their predicted dust maps
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Fig. 4  1st strategy: the training and validation images are selected randomly from MY 25 to middle of MY 27. The testing images are selected 
randomly from middle of MY 27 to MY 28. a and c are ground-truth images from fall season ( s20_011 ) at LS = 222.83

◦ and winter season ( s11_018 ) 
at LS = 305.93

◦ , respectively. b and d are their predicted dust maps
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Fig. 5  2nd strategy: the training, validation and testing images are selected randomly from MY 25 to MY 28. a and c are ground-truth images from 
spring season ( r18_040 ) at LS = 53.47

◦ and summer seasons ( r22_008 ) at LS = 105.36
◦ , respectively. b and d are their predicted dust maps
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Fig. 6  2nd strategy: the training, validation and testing images are selected randomly from MY 25 to MY 28. Left panel shows ground-truth maps, 
and right panel shows predicted maps. a and c are ground-truth images from fall season ( r08_005 ) at LS = 238.51

◦ and winter season ( r12_017 ) at 
LS = 313.57

◦ and b and d are their predicted dust maps
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compared to non-mask networks. However, the current 
method has a slightly higher score because the mask 
network has an additional component ( MaskerB ) that 
focuses on dust pixels and edges or boundaries to refine 
the mask with minor improvement. The current method 
achieves around 2/3 precision in less than half second 
in all MDGMs in the testing dataset, which makes it a 
more efficient solution with Martian larger datasets of 
higher dimensions. The Mask R-CNNs in both strategies 
succeed in non-dustiness seasons and they miss some 
cases when there are multiple dust events at the same 
time. Although, the number of maps during dustiness 
seasons in both strategies are small, the current Mask 

R-CNN achieves higher than 60% precision using both 
training strategies and can achieve better with further 
observations.

6 � Conclusion and outlook
We use a Mask R-CNN for the automated localization of 
dust storms in Mars daily global maps (MDGMs) derived 
from MGS/MOC observations. We evaluate the perfor-
mance of the network by calculating the area under the 
ROC curves from the dust storm probability images by 
using various thIoU and obtain the best performance 
at AP25 . One of the main strengths of this method is its 
speed and ease of use after training. The proposed Mask 

Fig. 7  Histograms of dust proposals: a, b dx and dy of the first training strategy and b dx and dy of the second training strategy; where dx refers to 
longitude and dy refers to latitude. The dx and dy are the deviation of the estimated position from the true position for each dust storm
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R-CNN has been applied to a several-Martian-Year 
record of satellite images and demonstrated to provide 
reasonable results at various seasons. Thus, our deep-
learning method is interesting for seeing the existing 
climatology of Martian dust storms from MOC/MGS 
observations, in particular during the non-dust storm 
season, from another perspective. This may become even 
more interesting given that observations of column-dust-
optical-depth (CDOD) from satellite observations, and 
their subsequent use as a means of dust storm detection, 
are not a straightforward alternative to the detection of 
dust storms by visual inspection. For instance, the CDOD 
climatology of Montabone et al. (2015b) is based on the 
instruments MGS/TES, MO/THEMIS and MRO/MCS, 
and identification of dust storms from MGS/MOC and 
MRO/MARCI observations can provide complimentary 
information on CDOD climatology.

Potential challenges are due to the MGS/MOC derived 
MDGMs occasionally having data gaps (missing obser-
vations), and the R-CNN fails to detect dust storms that 
intersect these regions of missing data. Moreover, it is 
possible that R-CNN confuses between dust storms and 
enhanced atmospheric background dustiness in the dust 
storm season and/or different dust storms that are near 
to each other. It is self-explaining that such limiting fac-
tors are less critical during the first half of the year. It is 
worthwhile noting that also during the Mars cloud sea-
son, dust storms need to be accounted for. That is in line 
with the fact that local/regional dust storms may occur 
during any time of the Martian year and there is the fre-
quent occurrence of polar cap edge dust storms in both 
hemispheres in the respective fall to the spring sea-
son. As demonstrated in our Figs.  3 and 5, the R-CNN 
method used here detects dust storms sufficiently well 
during the LS = 0

◦ − 180
◦ period or first half of the year. 

False-positive detection sporadically occurs as in Fig. 5d, 
but they are generally limited to a small area compared 
to the spatial extent of water clouds, which occur over 
large parts of the planet during the Mars cloud season. 
Based on that, the R-CNN method used here is scien-
tifically interesting because it can potentially distinguish 
dust storms and water clouds. Thus, it has the potential 
to prepare satellite images for further automated image 
analysis methods which may possibly emerge in the 
future and are beyond the scope of this paper. The latter 
might be given by deep learning-methods for retrieving 
data on water-ice-cloud and dust characteristics from 
Mars satellite images.

We may refine our current R-CNN method and 
results further and thus obtain more accurate dust 
storm characteristics (location, size, shape, texture, 
etc.) as follows. It is widely known that Mars dust 
storms are bright in the red band and dark in the blue 

band. By contrast, Martian water and CO2 clouds are 
bright in the red and blue bands and much brighter 
than the surface in the blue band  (Gichu and Ogo-
hara 2019). In future, we aim to include surface albedo 
and/or cloudiness when preparing the ground-truth 
to avoid confusion between dust storms, clouds, and 
albedo features. Also, we aim to predict the probabil-
ity of accurate contours of dust-storm regions based 
on reference polygon areas from the MDAD dataset by 
converting dimensions of dust-storm areas from km 
to pixels to avoid a small error in pixels in estimating 
dust-storm regions. In addition, we aim to classify each 
dust storm based on class (main, continuous, sequen-
tial, etc.), type (flushing, turning, GDE, etc.) and K16 
class (A, C, GDE, etc.).

We attempted to apply the proposed R-CNN on the 
Mars reconnaissance orbiter (MRO) Mars color imager 
(MARCI) MDGMs from MY 28, LS 133◦ (2006) to MY 
32, LS 171◦ (2014). However, we have not succeeded so 
far. A potential limiting factor is that adjacent global 
map swath images typically do not overlap and have 
gaps in between. Apart from that, the MDGMs derived 
from MRO/MARCI observations only utilize three 
spectral bands (red, green and blue) of the full seven 
bands that are available in the original data (five vis-
ible bands and two ultraviolet bands). In future, we are 
also considering using the proposed technique with 
all seven spectral band information, and using feature 
reduction techniques to define the most significant 
bands for dust storm detection and testing the effec-
tiveness of Mask R-CNNs with multiple (more than 
three) spectral bands. By implication, our method is 
particularly interesting for upcoming/future Mars sat-
ellite missions/instruments that provide imagery with-
out inherent gaps.

Appendix
ResNet
The description of residual blocks is behind the scope of 
this paper, but here we describe them briefly. The resid-
ual network (ResNet) is one of the most successful deep 
architectures. The shortest version of ResNet consists of 
16 local residual blocks (Fig. 8a); each consists of convo-
lution, batch normalization, ReLU activation followed by 
convolution and batch normalization. The local residual 
blocks are followed by a fully connected layer. The rea-
son behind the success of ResNet models is the skip con-
nection component. There is a direct connection in each 
block that skips layers. It solves the problem of vanishing 
gradient in deep architecture by allowing alternate short-
cut paths for the gradient to flow through (He et al. 2016).
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FPN
The feature pyramid network (FPN) (Lin et al. 2016) con-
sists of two main components: bottom-up and top-down 
(Fig. 8b). The bottom-up is the feed-forward computation 
of the backbone network, while the top-down is the back-
ward computation. Each hierarchical convolutional layer 
is a pyramid level; it starts from the largest to the small-
est convolutional layers in the bottom-up component and 
from the smallest to the largest in the top-down compo-
nent. The convolutional feature maps from the higher pyr-
amid level in top-down are spatial up-sampled by a certain 
factor using the nearest neighbor technique to the next 

coarse pyramid level. The output of each pyramid level in 
the bottom-up is merged with the pyramid level with the 
same spatial size in the top-down using lateral connection. 
The lateral connection is mainly based on applying a 1× 1 
convolution process to the output of each pyramid level in 
the bottom-up component and merging the pyramid levels 
both components by element-wise addition.

RoIAlign
Region of Interest Align, called RoIAlign, is an operation 
for extracting a small region from a convolutional feature 

Fig. 8  An overview of the following: a ResNet architecture (obtained from He et al. (2016)), b FPN architecture (obtained from Lin et al. (2016)) and 
c RoIAlign (obtained from He et al. (2017))
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map using the aligning operation. It divides the input fea-
ture map into spatial bins based on the ratio of the width 
of the input image to the width of the convolutional fea-
ture map ( r = W /w ). Then, it uses bilinear interpolation 
to compute the exact values of the feature map at four 
regularly sampled locations in each bin, and produces an 
average or maximum value (He et al. 2017). For instance, 
Fig. 8c shows an example of the input feature map and RoI, 
presented in dashed grid and solid line squares. The RoI is 
within 2× 2 bins with four sampling points in each. The 
RoIAlign computes the value of each point using bilinear 
interpolation of nearby grid points in the feature map.
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