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events based on seismic noise data
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Abstract 

Several mountainous river basins in Japan do not have a consistent hydrological record due to their complex environ-
ment and remoteness, as discharge measurements are not economically feasible. However, understanding the flow 
rate of rivers during extreme events is essential for preventing flood disasters around river basins. In this study, we 
used the high-sensitivity seismograph network (Hi-net) of Japan to identify the time and peak discharge of heavy rain 
events. Hi-net seismograph stations are distributed almost uniformly at distance intervals of approximately 20 km, 
while being available even in mountainous regions. The Mogami River Basin in Northeastern Japan was selected as a 
target area to compare the seismic noise data of two Hi-net stations with the hydrological response of a nearby river. 
These stations are not located near hydrological stations; therefore, direct comparison of seismic noise and observed 
discharge was not possible. Therefore, discharge data simulated using a hydrological model were first validated with 
gauging station data for two previous rain events (10–23 July 2004 and 7–16 September 2015). Then, the simulated 
river discharge was compared with Hi-net seismic noise data for three recent events (10–23 July 2004, 7–16 Sep-
tember 2015, and 10–15 October 2019). The seismic noise data exhibited a similar trend to the time series of simu-
lated discharge in a frequency range of 1–2 Hz for the selected events. Discharge values predicted from the noise 
data effectively replicate the simulated discharge values in many cases, especially the timing and amount of peak 
discharge.
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1  Introduction
River discharge is defined as the total volume of water 
flowing through a river at any given point; it is an impor-
tant hydrological parameter for planning and decision 
making of many water-based development activities. 
River discharge cannot be measured directly but must be 
computed by multiplying the area of water in a river cross 
section with the average velocity of water in that cross 
section (Herschy 1993). Different measurement methods 
have been proposed to estimate river discharge, which is 

generally referred to as the observed discharge. For exam-
ple, a current meter is typically used to measure the flow 
velocity at various vertical locations at any point within 
a cross section. The flow velocity is then multiplied by 
the corresponding area of each measurement, and the 
sum of these products gives the river discharge at that 
selected point. Classical velocity-area methods are based 
on the principle of the continuity of fluid flow (Buchanan 
and Somers 1969) and provide instantaneous discharge 
measurements to establish the stage-discharge relation-
ship (Herschy 1998). This type of discharge measurement 
is feasible for river basins with accessible topography 
(Dobriyal et al. 2017), as the discharge at any point along 
a river should consider the size of the basin, amount of 
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rainfall, topographic features, etc. However, for numer-
ous river basins located in mountainous regions, obtain-
ing discharge measurements is highly challenging and 
not economically feasible due to their remoteness and 
complex environments. Therefore, regular monitoring of 
river discharge is lacking for mountainous river basins, 
which are also known as ungauged river basins.

Several studies have suggested that the frequency 
of extreme weather events is increasing as the climate 
continues to change (Kusunoki et al. 2008; Westra et al. 
2014). Specifically, extreme rainfall can cause a sudden 
increase in river discharge, which is extremely dangerous 
for those living close to rivers (Georgakakos 2006; Oshi-
kawa et al. 2008) and may result in the large-scale loss of 
human life and infrastructural damage (Hirabayashi and 
Kanae 2009; Dottori et al. 2018). To predict and prevent 
water-related disasters in a river basin, regular measure-
ment of river discharge is crucial, particularly during 
extreme rain events; this is because it can determine the 
flow capacity of the river section in response to heavy 
rainfall (Marchi et al. 2010). There are several river sys-
tems within ungauged river basins. A sudden increase in 
the flow of any tributary of a basin may lead to a severe 
disaster downstream of the basin in the form of flash 
flooding, which may be more common in mountainous 
regions. In some cases, the time lag between rainfall and 
flooding is short, especially in small river basins. In such 
a situation, high temporal estimation of river discharge 
is necessary for estimating the flood disaster level in a 
downstream section, and appropriate measures should 
be taken in a timely fashion for disaster prevention and 
management. Furthermore, information on the amount 
and timing of peak discharge is also important for assem-
bling comprehensive flood data; however, this is hindered 
by a lack of actual observations for ungauged river basins 
(Saharia et al. 2017). Hence, various indirect methods are 
available for quantifying and monitoring river discharge 
at given points (Bjerklie et  al. 2005; Marchi et  al. 2010; 
Dobriyal et  al. 2017; Anthony et  al. 2018; Kebede et  al. 
2020; Shi et al. 2020).

The most common indirect approach is rainfall-runoff 
modeling, which has been employed to simulate river 
discharge in river basins around the world. Multiple types 
of hydrological models are available globally, and there is 
continuous debate regarding which is the most suitable 
model for hydrological analysis of a river basin; how-
ever, this depends on the specific aims of the study. Cur-
rently available hydrological models include VIC (Liang 
et  al. 1994),  TOPMODEL (Beven et  al. 1995),  SWAT 
(Arnold and Fohrer 2005), RRI (Sayama et al. 2012), and 
HEC-HMS (Scharffenberg 2016). However, such mod-
els are limited by their ability to validate simulated data, 
especially over ungauged river basins (P.C. et  al. 2018a, 

2018b). Another concern is the near real-time perfor-
mance of simulation results. That is, hydrological simu-
lations of river basins should be performed with high 
spatial and temporal resolution to achieve a high tempo-
ral discharge rate within river basins (Ochoa-Rodriguez 
et al. 2015; Huang et al. 2019; P.C. et al. 2019).

In addition to discharge modeling, various approaches 
have been developed to estimate river discharge in river 
basins, particularly during flood disasters. For example, 
non-contact measurements based on remote sensing 
data are commonly adopted to estimate river discharge 
(Dobriyal et al. 2017; Anh and Aires 2019; Kebede et al. 
2020; Shi et  al. 2020). In a recent study, Bjerklie et  al. 
(2005) extracted river geometries and water velocity from 
topographic maps and synthetic-aperture radar images, 
respectively, to estimate the discharge of large rivers. 
Although satellite observations can be useful for dis-
charge estimates in large rivers, it is generally agreed that 
additional analysis is required for small rivers in complex 
topographies (Schumann et al. 2011; Huang et al. 2018). 
Moreover, the presence of clouds and the temporal reso-
lution of satellite observations can hinder remote sensing 
observations, particularly during flood events (Clement 
et al. 2018; P.C. et al. 2020a).

In some cases, hydrological measurements such as 
those performed using gauging stations may either 
destroy the channel course or alter the physical channel 
during river flooding. Therefore, it may not be possible 
to produce a comprehensive record using in  situ meas-
urement of flow under such conditions. To overcome 
these issues, high-temporal-resolution seismic monitor-
ing instruments have been used to infer hydrological data 
and understand the timing of peak flow, thereby enabling 
early flood warnings to be issued (Burtin et  al. 2008; 
Sawazaki et al. 2016; Anthony et al. 2018; Eibl et al. 2020). 
For example, Burtin et  al. (2008) and Sawazaki et  al. 
(2016) reported good correlations between seismic noise 
data and the water level or discharge of mountainous riv-
ers in Nepal and Japan, respectively, despite a substantial 
distance between the seismic and hydrological stations. 
There may be several independent river systems within a 
relatively small area of a given mountainous river basin. 
Hence, uncertainties on the correlation may occur at 
locations where there is a substantial distance between 
the seismic and hydrological stations. Moreover, most of 
these studies focused on mountainous regions character-
ized by complex topography and river networks. Owing 
to the steep and rugged topography in mountainous 
regions, small streams with high flow velocity are com-
mon. In such situations, the relationship between seismic 
and hydrological data can only be determined accu-
rately when observations points are close to each other. 
Anthony et al. (2018) showed that seismic noise data can 
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even be used to determine the discharge data of small 
rivers when the seismological instrument is located very 
close to a hydrological station. However, such co-located 
measurements are usually extremely difficult to perform 
in mountainous regions. As hydrological (Mishra and 
Coulibaly 2009) and seismological (e.g., Aoi et  al. 2020) 
station networks are designed for very different purposes, 
they are not typically located in the same places. Indeed, 
seismic stations may often be located close to small and 
large rivers in mountainous regions where hydrologi-
cal observations are rarely available. This is the typical 
ground truth situation in mountainous regions.

The National Research Institute for Earth Science 
and Disaster Resilience (NIED) deployed a dense and 
high-sensitivity seismograph network (Hi-net) (Obara 
et al. 2005; Aoi et al. 2020) that covers several ungauged 
mountainous river basins. This study employs Hi-
net to address the relationship between seismic noise 
data and river discharge for hydrological and seismic 

stations located far from each other, where a direct 
comparison of the two types of data is not typically 
possible. Seismological stations have been operating in 
the mountainous regions of Japan for some time. It may 
not be possible to fix or relocate these stations due to 
economical or technical issues. At the same time, dis-
charge observations near existing Hi-net stations are 
rarely available. Hence, there is a need to establish the 
relationship between the seismic noise data of installed 
stations and the discharge of nearby rivers. To do so, we 
first perform hydrological simulations of a river basin 
and subsequently validate the simulation results using 
gauging station discharge data at the catchment scale. 
Then, the relationship between seismic noise data and 
simulated discharge data is analyzed on the ungauged 
sub-basin scale. This research selects Mogami River 
Basin (Fig. 1), which is located in Yamagata prefecture, 
Japan, as a case study. The aim of this study is to dem-
onstrate the application of seismic data for predicting 

Fig. 1  Topographic map showing the location and channel networks of the Mogami River Basin and its sub-basin. Blue triangles indicate 
hydrological stations. Purple stars and black dots indicate seismic stations and selected river points within the sub-basin, respectively
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the discharge in an ungauged river basin during a heavy 
rain event.

2 � Data and methods
Approximately, 80% of Japan is composed of hills and 
mountains. Most rivers in Japan originate in mountain-
ous terrain, and have been serving as a backbone of Japa-
nese life, culture, and agriculture for centuries. Many 
urban areas in Japan, as well as forested nature reserves, 
are located near rivers that flow from the mountains 
where performing hydrological observations may not be 
possible.

The Mogami River Basin is located in the northwest-
ern region of Japan (Fig. 1) and is predominantly moun-
tainous and forested, although there is also a small area 
of urban and built-up land. The elevation varies from 
approximately sea level to more than 1500  m above sea 
level. There are some hydrological stations in the main 
channel of the basin but not in the upper part of the 
basin. Hence, several sub-basins of the Mogami River 
Basin do not have any hydrological stations for monitor-
ing river discharge. Fortunately, there are some seismic 
stations located in the mountainous region of the basin. 
In this study, we selected a sub-basin of the Mogami 
River Basin (Fig. 1) where two seismic stations (N.FGTH 
and N. MGMH) are located. This sub-basin was selected 
based on its location (i.e., within a mountainous region), 
its natural flow (i.e., a lack of hydraulic structures such as 
dams or reservoirs), the presence of at least one Hi-net 
station, and because it is far from human settlements.

We selected three previous significant heavy rain 
events in the region: 10–23 July 2004, 7–16 September 
2015, and 10–15 October 2019; the third event corre-
sponds to Typhoon Hagibis, which caused heavy rainfall 
and resulted in severe flooding, landslides, and inunda-
tion in several parts of Northern Japan (P.C. et al. 2020a). 
The Ministry of Land, Infrastructure, Transport and 
Tourism (MLIT) updates the river stage-discharge rela-
tionships each year and publishes discharge data through 
the MLIT website, which can then be downloaded freely. 
However, the availability and continuity of discharge data 
vary among stations. In the case of Mogami River Basin, 
hourly discharge data for the first two events were col-
lected from three stations within the basin (Fig.  1) that 
stored long and continuous discharge data records: 
Usugasawa (G01), Shimizu (G02), and Koide (G03). G01 
represents the downstream boundary of the basin, G02 
represents the middle of the basin and is close to selected 
sub basin, and G03 represents the upstream boundary of 
the basin. The maximum hourly discharge of the first two 
events according to the G01 hydrological station, which 
is located close to the outlet of the basin (Fig.  1), was 
approximately 5234 m3/s and 2950 m3/s, respectively. 

However, for the third event, discharge data were not 
available as of June 2021. Hourly radar rainfall data were 
collected from the Japan Meteorological Agency (JMA) 
for all the three events. The spatial and temporal reso-
lutions of rainfall data were 1  km and 1  h, respectively. 
An explanation of the other data required for hydrologi-
cal modeling, such as topographic data, is provided in 
“Hydrological model” and “Seismogram data processing” 
sections.

2.1 � Hydrological model
Various types of hydrological models are available glob-
ally. Some models need to be purchased, while others 
are open access for research purposes. There has been 
continuous debate as to which model is most suitable for 
the hydrological analysis of a river basin. However, the 
selection of a hydrological model depends on the specific 
aims of the study. We considered some important points 
while choosing the model in this study. For example, the 
selected model should be conducive to the use of radar 
rainfall data with very high temporal and spatial resolu-
tions. The computation time should be as short as pos-
sible. The simulated discharge should possess a high 
temporal resolution in gridded format, and the model 
should be available freely for research purposes. To fulfill 
the objective of the study, we adopted RRI for performing 
the hydrological modeling of the Mogami River Basin in 
this study.

The RRI is a two-dimensional model that has the 
advantage of simultaneously modeling runoff and flood 
inundation (Sayama et  al. 2012, 2020; P.C. et  al. 2020a, 
2020b; Nguyen et  al. 2021). This model is applicable to 
rainfall-runoff analysis and inundation profiling in each 
grid of a river basin. The flow in each grid cell is calcu-
lated with a 2D diffusive wave model, whereas chan-
nel flow is calculated with a 1D diffusive wave model. 
Topography and meteorological data are the main data 
inputs to the RRI model, and the outputs include dis-
charge, river water level, and inundation level. Detailed 
mathematical explanations of the RRI model have been 
reported in several studies (Sayama et al. 2012; P.C. et al. 
2020a; Nguyen et al. 2021).

Topographical features such as flow accumulation 
(ACC), flow direction (DIR), and digital elevation model 
(DEM) data are essential for implementing the hydro-
logical model in a given river basin. Different types of 
global topographic data are available free of charge; e.g., 
the multi-error-removed improved-terrain (MERIT) 
DEM (Yamazaki et  al. 2019) and HydroSHEDS (Lehner 
et al. 2013). However, each dataset contains uncertainties 
regarding the topographic features. In this study, we used 
MERIT DEM data, which is a global hydrography data-
set developed based on the MERIT DEM and multiple 
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inland water maps. It contains DIR, ACC, and hydrologi-
cally adjusted DEM (Yamazaki et  al. 2019). These data 
cover a spatial resolution of three arcsecs (∼90  m) and 
exhibit fewer uncertainties than those offered by other 
global topographic datasets.

The RRI model was set up to simulate discharge in each 
grid of the Mogami River Basin. It should be noted that 
the total area of the river basin depends upon the selec-
tion of the outlet point. The total area of the Mogami 
River Basin according to the selected outlet is approxi-
mately 6930 km2. The RRI model is based on a grid sys-
tem, and implementing a grid application with many cells 
can result in a time-consuming simulation. Therefore, 
to ensure rapid hydrological simulations of the selected 
events in such a large river basin, the default grid size was 
upscaled two times from the default topographic data 
during model setup. Hence, the grid size after adjustment 
for ACC, DIR, and DEM was approximately 180 m.

2.2 � Seismogram data processing
NIED routinely examines the mechanical properties 
of the Hi-net instruments and performs quality checks 
on Hi-net data (Obara et  al. 2005; Aoi et  al. 2020). The 
objective of Hi-net is to detect the weak ground shaking 
caused by micro-earthquakes and survey seismic activ-
ity, elucidate the mechanisms of earthquake generation, 
and determine the subsurface structure of Japan. For this 
purpose, Hi-net seismic stations are distributed almost 
uniformly in both plain and mountainous regions, with 
station-to-station distance intervals of approximately 
20 km. Furthermore, to avoid ambient seismic noise due 
to social activity (e.g., traffic noise), Hi-net seismometers 
are installed at the bottom of boreholes at depths exceed-
ing 100 m. Hi-net ground motion data are continuously 
recorded in 100-Hz sampling intervals, transferred to the 
data center, and made openly available online in nearly 
real time. Hi-net has been operating since 2002; thus, 
seismic noise data during the three target events are 
freely available for research purposes.

We first collected the vertical component of seismo-
grams (oscillation along the up-down direction) at two 
Hi-net stations (N.FGTH and N.MGMH, Fig.  1) during 
the target events. The power spectrum of the seismo-
gram was computed using the Fast Fourier Transform 
algorithm every 1 min, and the average power in the fre-
quency range of 1–2  Hz was computed. The selection 
of this frequency range is discussed in detail in “Com-
parison of simulated discharge with seismic noise data” 
section. Then, we selected the minimum 1-min power 
among continuous 10-min records from 5  min before 
every hour to 5  min after every hour. Since the typical 
duration of the signal from an earthquake or a landslide 
is shorter than 10  min (e.g., Okuwaki et  al. 2021), this 

“clipping” procedure effectively removed the transient 
signals that would otherwise interfere with the purpose of 
this research. In this way, the hourly noise power record 
was obtained for the target time period. This record was 
then compared with nearby discharge records simulated 
in an ungauged sub-basin.

2.3 � Assessment tool
Assessment tools are very important for understanding 
the difference between simulated and observed data and 
are often selected based on specific objective and goals. 
The Nash–Sutcliffe efficiency (NSE, defined by Nash and 
Sutcliffe 1970) is the most widely used tool for evaluat-
ing hydrological models using observed data. Mathemati-
cally, the NSE is given as

where Qi
sim , Qi

obs , and Qobs are the simulated discharge at 
time i, observed discharge at time i, and average of the 
observed discharge over time, respectively. NSE varies 
from − ∞ to 1, with NSE = 1 being the optimal value for 
the evaluation test.

We also used the Kling-Gupta efficiency (KGE, Gupta 
et al. 2009), which is based on the mean, standard devia-
tion, and correlations of observed and simulated data; 
KGE is being increasingly used for evaluations.

Here, r and σ are the correlation and standard devia-
tion between the observation (obs) and simulation (sim), 
respectively, and Qsim is the mean simulated discharge for 
the given period. Like NSE, KGE = 1 indicates a perfect 
agreement between the simulations and observations. 
The minimum thresholds of NSE and KGE for good per-
formance depend upon the cases and research fields in 
question. From a hydrological perspective, if NSE and 
KGE values exceed 0.6, the modeling result is considered 
to be ‘good’ (Moriasi et al. 2007; Towner et al. 2019).

3 � Results
The first step of this study involved implementing the 
hydrological model for the entire Mogami River Basin. 
Then, the simulated discharge was compared with the 
observed discharge at several stations in the basin for 
previous heavy rain events. After comparing the simu-
lation results, our objectives were concentrated in an 
ungauged sub-basin of the study area, where simu-
lated discharge data and seismic data were compared 
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and analyzed. The results of each step are summarized 
in “Hydrological simulation of Mogami River Basin”–
“Discharge prediction from noise data.”

3.1 � Hydrological simulation of Mogami River Basin
First, hydrological simulations of Mogami River Basin 
were performed for the selected events. Then, the simu-
lated discharge values were extracted from nearby grid 
points of the selected hydrological stations (Fig.  1) of 
the Mogami River. Figure  2 shows the simulated and 
observed discharge at gauging station points G01, G02, 
and G03 along the Mogami River for the period of 10–23 
July 2004 (first heavy rain event). The NSE values for the 
observed and simulated data of all three stations were 
0.71, 0.65, and 0.69, respectively. Similarly, the KGE 
values for the same stations were 0.82, 0.82, and 0.66, 
respectively. Overall, a good correlation was observed 
between simulated and observed discharge. However, 
certain biases were observed at some points throughout 
the time period of each event, especially for the lower 
discharge rate, which could have been caused by physical 

properties and model uncertainties (Moges et  al. 2021). 
These uncertainties are not discussed in detail in this 
study, as our target was to correlate the peak simulated 
discharge results with the observed discharge data. The 
NSE and KGE values were greater than 0.6 in all three 
stations for the first event, indicating that the model per-
formed well and that the simulated results can be consid-
ered acceptable for the Mogami River Basin.

To further confirm the model performance, we per-
formed hydrological modeling for the event of 07–16 
September 2015 (second heavy rain event). The time 
series of simulated and observed discharge at the hydro-
logical stations is shown in Fig. 3. The average values of 
NSE and KGE for the three stations were 0.76 and 0.64, 
respectively, which implies that the performance of the 
simulation is as good as that observed for the first heavy 
rain event. In terms of the timing and value of peak dis-
charge, the simulated discharge data were comparable to 
the observed discharge data. Therefore, it is confirmed 
that the model performance of the simulated discharge 
values for the Mogami River Basin was reliable. One of 
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the benefits of the RRI model is that simulated discharge 
can be extracted for any grid within the ungauged sub-
basin and used for further analysis.

3.2 � Comparison of simulated discharge with seismic noise 
data

First, we selected points on the main river channel of the 
sub-basin that are close to each seismic station (Fig.  1). 
The distance from the selected center points of the 
river grid to N.FGTH and N.MGMH is approximately 
240 m and 280 m, respectively. The extracted simulated 
discharge for the selected two points was then com-
pared with noise data from the seismic stations. For the 
N.MGMH station, another small tributary is located 
closer to the seismic station (Fig.  1), which may also 
excite seismic noise. However, in this study, we con-
sidered that the contribution from the main channel 
was more significant than that from the small tributary 
because of the offset effect between the amount of dis-
charge and distance to the seismic station.

Figures  4 and 5 depict the raw and clipped power 
spectra of the seismogram recorded at N.FGTH and 
N.MGMH for the event of September 2015, respectively, 
where the clipped spectra were calculated using the pro-
cedure explained in “Seismogram data processing” sec-
tion. Transit signals, which can be identified as vertical 
lines in Figs. 4a and 5a, were effectively removed in the 
clipped running spectra (Figs. 4c, 5c). The spectral shape 
shows clear differences among the time periods of day-
time, midnight, and peak streamflow at both stations 
(Fig. 4b, d, 5b, d). For all the selected periods, the noise 
power has the strongest peak around 0.2 to 0.3 Hz as sec-
ondary microseism excited the ocean waves (e.g., Ard-
huin et  al. 2019) at both stations. Although the energy 
offered by the secondary microseism tends to decrease 
as the frequency increases, this power is still high at fre-
quencies lower than approximately 1 Hz. In the 1–2 Hz 
range, an increase in noise power is identified only for 
the period of peak streamflow (spectra shown by red), 
especially at N.MGMH. At frequencies higher than 2 Hz, 
although the noise power during peak streamflow is 
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higher than that in other periods, the difference between 
daytime (spectra drawn in black) and midnight (spectra 
drawn in blue) becomes significant. This difference arises 
due to the cultural noise that reflects social activities 
such as traffic and machinery, which is typically high in 
the daytime and low at night (e.g., Mcnamara and Boaz 
2019). Considering these characteristics of the observed 
spectra, we consider that the 1–2 Hz range is dominated 
by streamflow. Therefore, using this frequency range is 
optimal for our purpose, and is the main reason why the 
average power of this frequency range was selected for 
further analysis.

To elucidate the application of noise data to flood 
events, the results for the events of July 2004, Septem-
ber 2015, and October 2019 are shown in Fig.  6, where 
the last event was caused by Typhoon Hagibis. In these 
events, the high-discharge peaks were highly synchro-
nized with the 1–2  Hz noise peaks at both stations. 

However, the noise power was not highly synchronized 
with the discharge peaks when the peak was relatively 
low, especially for the 2004 event. One reason for this 
could be that the simulated discharge did not always 
closely fit the observed discharge. As shown in Fig. 2, the 
simulated lower peaks tended to exceed the observed 
lower peaks from 13–15 July 2004. It should be noted 
that the noise power was compared to the simulated 
discharge in this study, and not the observed discharge. 
Contamination of the secondary microseism and cultural 
noise in 1–2  Hz range may be another reason for this 
poor synchronization.

3.3 � Discharge prediction from noise data
A correlation was confirmed between the simulated dis-
charge and noise power, especially for the maximum 
peak discharge during the event period. As mentioned 
in the previous section, this trend was not necessarily 
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observed for cases of lower discharge. However, as this 
study aims to understand the timing and peak discharge 
in an ungauged river basin during heavy rain events, this 
reduced correlation at lower discharge values is not a 
serious problem. Considering the observed correlation, 
we modeled the predicted discharge, Qprd , and the noise 
power, E, as follows:

where A, b, and E0 are the control parameters. By fitting 
Eq.  (3) to the simulated discharge, we estimated the 
parameter set for each event and seismic station. We note 
that Eq.  (3) is derived empirically, and is not based on 
solid physical background characteristics relevant to 
noise excitation. The physical background of the noise 
excitation process is discussed in “Seismic noise data for 

(3)Qprd =

{

A(E − E0)
b (E > E0)

0 (E ≤ E0)
,

hydrological applications” section. We also note that E0 
was fixed to the average noise power during the last two 
days before each flood event. According to Eq.  (3), E0 
indicates the background noise power derived from 
sources other than the streamflow. Since this value may 
vary with time, a best-fit E0-value obtained for one event 
is not necessarily applicable to another event. Therefore, 
we optimized only the A and b values for each event and 
station by maximizing the NSE value given by Eq.  (1). 
Moreover, it should be noted that the simulated dis-
charge was considered as the reference data for the com-
parison; this implies that Qi

sim and Qi
obs of Eq.  (1) were 

represented as the predicted discharge ( Qi
prd ) and simu-

lated discharge ( Qi
sim ), respectively, in the optimization 

procedure.
Time seris data  of observed noise density (1–2 Hz), 

simulated discharge, and predicted discharge at/near 

0

10

20

30

40

Fr
eq

ue
nc

y 
(H

z)

09/08 09/09 09/10 09/11 09/12 09/13 09/14

Date

(a)  2015  N.MGMH  running spectra

10−8

10−7

10−6

10−5

10−4

10−3

10−2

N
oi

se
 p

ow
er

 (n
J/

m
3 )

0.1 0.2 0.5 1 2 5 10 20

Frequency (Hz)

(b)  2015  N.MGMH  spectra

09/08 15:00
09/09 01:00
09/11 01:00

0

10

20

30

40

Fr
eq

ue
nc

y 
(H

z)

09/08 09/09 09/10 09/11 09/12 09/13 09/14

Date

(c)  2015  N.MGMH  running spectra (clipped)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

N
oi

se
 p

ow
er

 (n
J/

m
3 )

0.1 0.2 0.5 1 2 5 10 20

Frequency (Hz)

(d)  2015  N.MGMH  spectra (clipped)

09/08 15:00
09/09 01:00
09/11 01:00

Noise power (nJ/m3)
10−7 10−6 10−5 10−4 10−3 10−2 10−1

Fig. 5  Spectrograms of seismic noise recorded at the N.MGMH station for the event of September 2015. a Running spectra of the raw seismogram. 
b Spectra at the three time periods shown in (a), where black, blue, and red spectrum are obtained in the daytime, midnight, and peak streamflow 
periods, respectively. c Running spectra of the seismogram after “clipping” transient peaks (e.g., earthquakes). d Spectra at the three time periods 
shown in (c). The gray dashed lines in each panel represent the spectral window used for our analysis (1–2 Hz)



Page 10 of 17P.C. and Sawazaki ﻿Prog Earth Planet Sci            (2021) 8:58 

0

400

800

1200

D
is

ch
ar

ge
 (m

3 /
s)

0.000

0.002

0.004

0.006

0.008

N
oi

se
 p

ow
er

 (n
J/

m
3 )

07/1107/12 07/13 07/14 07/15 07/16 07/17 07/18 07/19 07/20 07/21 07/22

2004  N.FGTH  1−2 Hz

0

60

120

180

D
is

ch
ar

ge
 (m

3 /
s)

0.000

0.005

0.010

N
oi

se
 p

ow
er

 (n
J/

m
3 )

07/1107/12 07/13 07/14 07/15 07/16 07/17 07/18 07/19 07/20 07/21 07/22

2004  N.MGMH  1−2 Hz

0

400

800

1200

D
is

ch
ar

ge
 (m

3 /
s)

0.000

0.002

0.004

0.006

0.008

N
oi

se
 p

ow
er

 (n
J/

m
3 )

09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14

2015  N.FGTH  1−2 Hz

0

60

120

180

D
is

ch
ar

ge
 (m

3 /
s)

0.000

0.005

0.010

0.015

0.020

0.025

N
oi

se
 p

ow
er

 (n
J/

m
3 )

09/07 09/08 09/09 09/10 09/11 09/12 09/13 09/14

2015  N.MGMH  1−2 Hz

0

400

800

1200

D
is

ch
ar

ge
 (m

3 /
s)

0.000

0.002

0.004

0.006

0.008

N
oi

se
 p

ow
er

 (n
J/

m
3 )

10/10 10/11 10/12 10/13 10/14

2019  N.FGTH  1−2 Hz

0

60

120

180

D
is

ch
ar

ge
 (m

3 /
s)

0.000

0.005

0.010

N
oi

se
 p

ow
er

 (n
J/

m
3 )

10/10 10/11 10/12 10/13 10/14

2019  N.MGMH  1−2 Hz

Noise power
Discharge (simulation)

Noise power
Discharge (simulation)

Noise power
Discharge (simulation)

Noise power
Discharge (simulation)

Noise power
Discharge (simulation)

Noise power
Discharge (simulation)

Fig. 6  Time-series profile of simulated discharge at the main river channel close to the seismic stations N.FGTH and N.MGMH and the seismic noise 
power of 1–2 Hz at these stations for the events of July 2004 (upper panels), September 2015 (middle panels), and October 2019 (lower panels)



Page 11 of 17P.C. and Sawazaki ﻿Prog Earth Planet Sci            (2021) 8:58 	

F.FGTH and N.MGMH stations during the event of 
10–23 July 2004, 7–16 September 2015, and 10–15 
October 2019 are given in Additional file  1.  In Fig.  7, 
we show the results of fitting for each event and sta-
tion. To assess the variation in the control parameters 
for different events, distinct curves were fitted to each 
event using different colors. The estimated param-
eters are summarized in Table  1. Overall, although 
the fitting curves capture the general trend of the 

noise power–discharge relationship, significant event 
dependence was observed for the fitting curves and the 
estimated A and b values due to the large scatter of the 
simulated discharge.

To understand the uncertainty of the estimated param-
eters in this optimization, we visualized areas with rela-
tively high NSE values (Fig. 8). The areas with high NSE 
values exhibit very sharp and long peaks, and a strong 
correlation between A and b values is observed. Even 
though the best fit parameters differ by events, these 
values seem to be indistinguishable when considering 
their uncertainty ranges, especially for N.FGTH. Con-
versely, the difference between stations is distinguishable 
because the background seismic noise level, topography 
of river cross sections, and various other factors differ by 
location.

To further examine the validity and predictability of 
discharge values, we computed Qprd using various com-
binations of estimated parameter sets and observed noise 
energies. As there were three parameter sets and three 
noise energies from the 2004, 2015, and 2019 events, 
there were a total of nine combinations of Qprd for each 
seismic station. Table 2 presents the NSE values for each 
case. Figure  9 provides a comparison of simulated and 
predicted discharge using the parameter sets from all 
three events.

The NSE values were generally high (> 0.70) for the 
2015 and 2019 events at the N.FGTH station. Notably, 
some predicted discharges exhibited high NSE values, 
even when calculated using a parameter set estimated 
for a different event. For example, the 2019 discharge 
data were predicted quite well using the 2004 and 2015 
parameter sets (NSE is 0.86 and 0.84, respectively). 
Regardless of the parameter sets used, discharge val-
ues predicted for the 2015 and 2019 events at N.FGTH 
matched the simulated discharge closely, particularly the 
timing and amount of peak discharge. This is because the 
three parameter sets obtained for different events are 
indistinguishable when considering the uncertainty range 
(Fig. 8) for N.FGTH. These results confirm the good pre-
diction performance of the model by using parameter 
sets estimated for other events. An acceptable prediction 
performance was also observed for N.MGMH when the 
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July 2004, September 2015, and October 2019. Regression curves are 
estimated by fitting Eq. (3) to the data

Table 1  Best fit A- and b-values for each event and station

E0 values are calculated from the average seismic noise level obtained two days prior to the flood for each event

Event N.FGTH N.MGMH

A (m3/s) (nJ/m3)−b b E0 (nJ/m3) A (m3/s) (nJ/m3)−b b E0 (nJ/m3)

2004 1.26 × 105 0.97 3.29 × 10–4 3.55 × 104 1.08 8.42 × 10–4

2015 1.12 × 105 0.90 6.82 × 10–4 2.24 × 103 0.65 1.44 × 10–3

2019 8.91 × 105 1.28 2.90 × 10–4 5.01 × 105 1.69 5.73 × 10–4
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parameter set estimated for the 2015 event was used to 
predict discharge during the 2019 event (NSE = 0.61).

However, the prediction performance was much poorer 
in some cases. For the 2004 event, even the predicted dis-
charge values modeled by the parameter set of the same 
event exhibited poor predictability (NSE of 0.52 and 0.51 
for N.FGTH and N.MGMH, respectively). Nevertheless, 
the timing and amount of peak discharge were predicted 
well by all parameter sets for the 2004 event at both sta-
tions (Fig. 9a) despite the low NSE values, which is use-
ful for disaster response. It should be considered that the 
simulated and observed discharge values do not match 
perfectly (Figs.  2, 3). Therefore, it is possible that the 
observed discharge near the stations differed significantly 
from the simulated discharge for the 2004 event.

For the 2015 event at N.MGMH station, the tim-
ing of the peak was predicted well; however, the height 
of the peak was considerably overestimated when using 
the 2004 and 2019 parameter sets, and this resulted in 
very low NSE values (− 1.1 and − 3.1, respectively). The 
cause of this overestimation was the spiky increase in 

noise power around 00:00 on 11 September (Fig. 6). We 
checked the raw seismogram around this time and con-
firmed that it shows a gradual increase and decrease 
within a few hours. Its appearance is very different to 
that of earthquakes or landslides. The timing of this sig-
nal is almost midnight, and this fact negates the possibil-
ity of contamination from cultural noise because it must 
be strong in daytime only. Therefore, only the possibil-
ity of human encroachment near the N.MGMH station 
(e.g., the release of a dam) remains. In fact, the peak of 
N.FGTH was delayed than that of N.MGMH, and its 
shape is smoother. Although we have no direct evidence 
of human encroachment, the apparent behavior of noise 
power gives us a hint of this possibility. Human encroach-
ment is always challenging to address when simulating 
entire periods using simplified hydrological models. This 
issue is discussed further in “Discussion.” Debris flow is 
also a potential cause, but we did not find any evidence 
that supports this possibility.
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Table 2  NSE values evaluated for each heavy rain event using parameters estimated for all heavy rain events

Event N.FGTH N.MGMH

2004 parameters 2015 parameters 2019 parameters 2004 parameters 2015 parameters 2019 
parameters

2004 0.52 0.40 0.48 0.51 0.42 0.18

2015 0.72 0.78 0.72 -1.1 0.75 -3.1

2019 0.86 0.84 0.91 0.37 0.61 0.93
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Fig. 9  Simulated and predicted discharges for a July 2004 event, b September 2015 event, and c October 2019 event
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4 � Discussion
Several previous studies have reported a good correla-
tion between observed discharge and seismic noise data 
(Burtin et al. 2008; Sawazaki et al. 2016; Eibl et al. 2020). 
However, hydrological and seismic stations are nor-
mally located far from each other. Therefore, this study 
compared simulated river discharge data with the noise 
data of nearby seismic stations in the frequency range of 
1–2  Hz in the Mogami sub-basin. Here, we discuss the 
reliability of simulated discharge data and seismic noise 
data, while elucidating the relationship between the two.

4.1 � Reliability of simulated discharge data
Although global renowned hydrological models such as 
HEC-HMS and SWAT have been applied to various types 
of river basin, discharge is predominantly simulated at 
the basin or sub-basin scale (Arnold and Fohrer 2005; 
Beven et  al. 1995; Liang et  al. 1994; P.C. et  al. 2018a). 
The most important feature of the RRI model is that it is 
based on a grid system so that simulated discharge can 
be extracted at any grid point in the Mogami River Basin. 
Hence, simulated discharge could be extracted for rivers 
close to seismic stations in this study. Fully distributed 
hydrological models may also be applied to river basins 
where various types of hydrometeorological data are 
available; however, the performance of these models can 
be poor in ungauged river basins due to a lack of input 
variables and physical parameters (Tegegne et  al. 2017; 
P.C. et  al. 2018a; Moges et  al. 2021). Therefore, simpli-
fied hydrological models are more attractive as they are 
easy to implement in a short time and require fewer 
input data. However, each type of hydrological model 
has its advantages and disadvantages. Therefore, a good 
relationship may not always occur between observed 
and simulated data. For example, the spiky noise peak 
observed at N.MGMH for the 2015 event may reflect 
such a discrepancy. Human encroachment on river 
courses, and undefined hydraulic properties of the river 
may also cause discrepancies between observed and sim-
ulated discharge values. There are some river dams, espe-
cially in the middle and upstream parts of the basin, that 
were not included during the model setup and may pro-
duce some uncertainties in the simulated discharge data. 
Observed discharge data are extremely limited for remote 
and complex river basins; therefore, it may not be possi-
ble to compare model results for several sub-tributaries 
within a basin. In this study, it is believed that reliable 
discharge values were simulated from the RRI model for 
sub-tributaries within the Mogami River Basin. Uncer-
tainties in discharge values could have been derived from 
uncertainties in the physiographic data (Yamazaki et  al. 
2019) or model properties (Gupta et al. 2012).

In this study, JMA radar rainfall was used as the main 
input in the simulation. To minimize the error associated 
with estimating rainfall, the JMA constantly updates the 
radar data with data available from Automated Mete-
orological Data Acquisition System (AMeDAS) rain 
gauge stations. Therefore, we did not check the quality of 
radar rainfall data in this study. The greatest advantage of 
radar rainfall data is the high spatial resolution (P.C. et al. 
2019). However, the quality of radar rainfall data may 
be reduced over mountainous regions (P.C. et  al. 2016), 
which may increase the bias on simulated hydrological 
data. Therefore, for proper flood disaster prevention and 
management, the use of hydrological data with a high 
temporal resolution may be the best option, particularly 
during extreme events. However, hydrological simulation 
of ungauged river basins has been neglected for various 
reasons, such as the unavailability of observed hydro-
logical data and the time lag between rainfall and flood-
ing, which is very short in small river basins. Meanwhile, 
simulated output data basically depend upon the input 
data and model type. Physical distributed models require 
various types of input data, which require a long com-
putation time to produce output data. Even if one wants 
to use high-resolution temporal and spatial inputs or 
obtain output data in the same format from a simplified 
hydrological model, the computation time may increase. 
Therefore, most hydrological models may not be suitable 
for the consideration of input and output data with a high 
temporal resolution for long timespans or near real-time 
simulation.

The remote sensing approach may also be used to esti-
mate river discharge. This is one of the more challenging 
tasks, especially in mountainous regions during heavy 
rain events. The effect of dense vegetation on the river 
course, shadow and layover effect on an area of interest, 
location presence of cloud coverage, and size of the river 
course itself are extremely common phenomenon that 
can easily cause gaps in hydrological data collection dur-
ing regular monitoring, particularly in heavy rain events 
(Schumann et al. 2011; Huang et al. 2018; Clement et al. 
2018). To overcome such gaps, seismic noise data can 
be a bridge not only for the regular monitoring of river 
discharge, but also for validating discharge data obtained 
from remote sensing data.

4.2 � Seismic noise data for hydrological applications
According to our analysis of seismic noise and river dis-
charge data for a mountainous region of Japan, river dis-
charge prediction using seismic noise data is a promising 
technique. By estimating the parameter set used for pre-
dicting peak discharge from noise power, we may be able 
to monitor real-time river discharge using seismic noise 
recorded at nearby stations, even in locations where 
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performing direct discharge observations is practically 
impossible.

Recorded seismic noise data filtered into the 1–2  Hz 
frequency band were confirmed as the optimal band to 
conduct a comparison with the flow of a nearby river in 
this study. This frequency band contains relatively lower 
power due to secondary microseisms and cultural noise. 
These background noise properties are important to 
improve the prediction performance of river discharge 
in mountainous regions, where direct discharge data are 
extremely limited.

However, we should note that the appropriate fre-
quency range may depend on time and location. For 
example, noise from secondary microseisms is particu-
larly high during typhoons. Additionally, cultural noise 
is very strong over a wider frequency range if the seis-
mometer is installed closer to traffic. As such, the usa-
ble frequency range may depend on location and time. 
In fact, Anthony et  al. (2018) deployed a small array of 
seismometers close to a river, with sensors emplaced at 
depths of less than 1  m from the surface; consequently, 
it was observed that seismograms at frequencies of less 
than 1  Hz closely matched the discharge trends for a 
small river. Thus, the type of seismometer and installa-
tion conditions (Hi-net sensors are installed at depths of 
more than 100 m) also influence the dominant frequency 
of seismic noise.

It is also important to consider the physical back-
ground on the streamflow noise excitation process. Thus 
far, bedload transport and turbulent flow are considered 
influential causes and have been modeled by Tsai et  al. 
(2012) and Gimbert et al. (2014), respectively; these mod-
els indicate different frequency dependencies in noise 
excitation. Burtin et  al. (2008) noted that the frequency 
dependence of the noise excitation process may depend 
on the season or month of the year. However, in our 
view, there is no decisive consensus regarding the domi-
nant mechanism of the noise excitation process, and it 
seems to be premature to apply the existing models to 
our observation without any consideration of diversity of 
river flow conditions. This is why we adopted the simple 
empirical relationship given by Eq. (3) in this study. The 
different conditions that we can apply using this empiri-
cal relationship will be researched in a future work.

To improve the proposed noise-based discharge pre-
diction technique, two major factors should be consid-
ered. One is the discrepancy between the simulated and 
observed discharge values, as discussed in “Reliability of 
simulated discharge data” section. Unless the discharge 
record is obtained close to the seismic station, hydrologi-
cal simulations are required to obtain discharge values 
at a nearby point. As the simulated and real discharge 
values do not always match sufficiently, it is necessary 

to develop more accurate and precise simulation meth-
ods. Another factor is the validity of the discharge-noise 
relationship given by Eq. (3). This simple empirical model 
assumes that the A and b values are constant and specific 
to the location. This assumption fails if there are changes 
in factors such as the riverbed topography, sediment 
conditions, and the installation environment of the seis-
mometer. Variable model parameters indicate that the 
parameters estimated from past events cannot be applied 
for prediction purposes.

Currently, our tentative conclusion is that a good pre-
diction performance can be achieved on a case-by-case 
basis, as shown in Fig.  9. Nevertheless, it is promising 
that the timing and size of high-discharge peaks could be 
adequately predicted from seismic noise in many cases, 
even though the parameters have not been robustly 
estimated at this stage. Thus, further research should 
continue to improve the prediction performance of this 
technique by examining multiple events in mountainous 
ungauged river basins worldwide.

5 � Conclusion
Discharge data for mountainous rivers are particularly 
important for water resource management and related 
scientific research. Moreover, recent flood events in 
mountainous river basins in Japan have resulted in signif-
icant loss of life and damage to infrastructure. Therefore, 
estimating the peak streamflow of rivers during flood 
events is crucial for flood disaster prevention and man-
agement. Although performing direct observations is 
the preferred method for estimating discharge data, it is 
not practical due to the complex topography and remote 
environment of mountainous regions. Therefore, the use 
of indirect approaches such as hydrological simulations 
and remote sensing technology has been considered to 
estimate river discharge, especially during extreme rain 
events. However, each approach has advantages and 
disadvantages.

In this study, we proposed the use of Hi-net seismic 
observations to predict the timing and amount of peak 
discharge in a mountainous sub-basin of the Mogami 
River Basin during heavy rain events. Hi-net has a good 
network coverage throughout the mountainous regions 
in Japan. Discharge data simulated by the RRI model was 
validated using gauging station data for two independent 
rain events, and then compared with seismic noise data 
from nearby stations for three heavy rain events. The 
results indicated that seismic noise data in the frequency 
range of 1–2  Hz exhibited a similar trend to the simu-
lated discharge values.

We conclude that our study makes a significant contri-
bution to the literature because performing direct obser-
vations of river discharge is often impossible in ungauged, 
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small, and mountainous river basins; however, Hi-net 
exhibits a much better network coverage, even in the 
mountainous regions of Japan. Therefore, the proposed 
technique is promising for river discharge prediction in 
basins far from hydrological stations. According to this 
case study, seismic data can be used to estimate river dis-
charge time-series data, particularly the size and timing of 
peak discharge, within ungauged river basins in Japan. Such 
monitoring is crucial for flood disaster prevention and 
management during heavy rain events in the mountain-
ous regions of Japan. At this stage, the performance of the 
discharge prediction differs on a case-by-case basis. Future 
research should analyze more past rainfall events and 
expand this approach to other seismic stations in moun-
tainous river basins.
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