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Terrestrial planet compositions
controlled by accretion disk magnetic field
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Abstract

Terrestrial planets (Mercury, Venus, Earth, and Mars) are differentiated into three layers: a metallic core, a silicate shell
(mantle and crust), and a volatile envelope of gases, ices, and, for the Earth, liquid water. Each layer has different
dominant elements (e.g., increasing iron content with depth and increasing oxygen content to the surface).
Chondrites, the building blocks of the terrestrial planets, have mass and atomic proportions of oxygen, iron,
magnesium, and silicon totaling > 90% and variable Mg/Si (~ 25%), Fe/Si (factor of >2), and Fe/O (factor of > 3). What
remains an unknown is to what degree did physical processes during nebular disk accretion versus those during post-
nebular disk accretion (e.g., impact erosion) influence these planets final bulk compositions. Here we predict terrestrial
planet compositions and show that their core mass fractions and uncompressed densities correlate with their
heliocentric distance, and follow a simple model of the magnetic field strength in the protoplanetary disk. Our model
assesses the distribution of iron in terms of increasing oxidation state, aerodynamics, and a decreasing magnetic field

strength outward from the Sun, leading to decreasing core size of the terrestrial planets with radial distance. This
distribution enhances habitability in our solar system and may be equally applicable to exoplanetary systems.
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1 Introduction

The formation of metallic cores in terrestrial planets
greatly influences the thermal and biological evolution of
a planet. Core formation typically concentrates the heat
producing elements (i.e., potassium, thorium, and ura-
nium) into the insulating, outer silicate shell and produces
a conductive fluid, which can create a planetary magnetic
field. The presence of a long-lived, internally convecting
metallic core results in dynamo action and the genera-
tion of a planet’s surrounding protective magnetosphere
that nurtures life. These differentiated planets represent
the most likely home for life and its evolution. Core
segregation also controls the distribution of some essen-
tial nutrients (e.g., phosphorus) (e.g., 90% of the Earth’s
P budget is in the core; McDonough, 2014). The mass
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fraction of metallic core in Mercury, Venus, Earth, and
Mars decreases with heliocentric distance from about 3/4,
to 1/3 (Venus and Earth), to 1/5, respectively (Sohl and
Schubert 2015). Chondrites, the building blocks of the
terrestrial planets, have > 93% of their mass and atomic
proportion being composed of O, Fe, Mg, and Si (Was-
son and Kallemeyn 1988). The abundances of O and Fe
in chondrites typically varies by a factor of three, but in
some uncommon Fe-rich examples, it approaches a factor
of eight. In addition, most chondritic meteorites (except
EH, G, CB, and CH chondrite groups) have sub-solar Fe/Si
values (Urey and Craig 1953; Wood 2005). What chemi-
cal and/or physical processes produced the large variation
observed in Fe/O values in chondrites and the terres-
trial planets, particularly for the dense, metal-rich planet
Mercury?

Given the compositions of the terrestrial planets and
chondritic asteroids, there was, on average, an outward

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


http://crossmark.crossref.org/dialog/?doi=10.1186/s40645-021-00429-4&domain=pdf
http://orcid.org/0000-0001-9154-3673
mailto: mcdonoug@umd.edu
http://creativecommons.org/licenses/by/4.0/

McDonough and Yoshizaki Progress in Earth and Planetary Science

increase in oxygen fugacity during their accretion. Like-
wise, in space and time, there was also a decrease in neb-
ular condensation temperatures and amounts of metallic
iron contributing to planetary building. We also note that
the protoplanetary disk had redox and temperature gra-
dients that lead to less metallic iron and more H- and
O-rich solids (i.e., phyllosilicates) outward in the solar
system. Importantly, equilibrium nebular condensates do
not reach the high Fe/Si values of Mercury even with
strongly reduced, high-temperature conditions (Weiden-
schilling 1978; Cameron et al. 1988; Ebel and Alexander
2011). Thus, further metal-oxide separation processes,
such as a mechanical enrichment of metal sunwards
in the protoplanetary disk (Larimer and Anders 1970;
Weidenschilling 1978; Wasson 1988; Wurm et al. 2013)
and post-accretionary mantle stripping by one or mul-
tiple impacts (Benz et al. 1988; Cameron et al. 1988;
Asphaug 2014), are needed to produce a dense planet like
Mercury.

2 The protoplanetary disk

The terrestrial planets are the residua of the Sun’s accre-
tion, given the former’s negligible mass contribution (a
few parts per million) to the solar system. Stars and plan-
ets form from the gravitational collapse of a molecular
cloud (McKee and Ostriker 2007). The shared rotational
moments and prograde orbits of the Sun and planets doc-
ument the solar system’s formation from a co-rotational,
accreting gas-dust cloud (i.e., a protoplanetary disk, or
solar nebula). Protoplanetary disks are rapidly evolving
systems with lifetimes of up to 10 million years (Myr)
(Williams and Cieza 2011). Many physical and chemical
attributes of the disk (i.e., temperature, redox state, com-
position, gas and solid density, magnetic field strength)
change in both time and space. The dynamics of these pro-
cesses help shape the composition of the planets and we
highlight here a few critical variables that have played a
role in building the terrestrial planets.

The dust comprising this molecular cloud is conven-
tionally considered to be equivalent in composition to CI
chondrite, the seemingly most primitive undifferentiated
meteorite, whose composition best matches that of the
solar photosphere (e.g., Asplund et al. (2009)). However,
one cannot simply take this composition to make a planet
without considering chemical fractionation accompany-
ing the condensation process, which is well documented
in the chondrites (Larimer and Anders 1970). The gravi-
tational collapse of the molecular cloud, the rapid inflow
of material onto the star accompanied by outflow of mate-
rial to conserve the angular momentum, and the frictional
heating of the disk during these processes, collectively
produced a high-temperature gradient outwards from
the Sun (Boss 1998). Thus, the high-temperature state
of the inner collapsing disk vaporized the pre-existing
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materials, which in turn led to their re-condensing in
a specific sequence recorded in minerals in chondrites
(Larimer and Anders 1970).

The mineralogical and chemical compositions of the
terrestrial planets and chondritic bodies reflect time-
integrated, local nebular conditions during their forma-
tion (Figs. 1 and 2). Chondrites and other meteorites
document the spatial compositional heterogeneity in the
solar system (Larimer 1979; Kerridge 1979; Warren 2011).
Compositionally-driven models for the Earth’s accretion
conclude that there was a temporal variation in the chem-
istry of materials added to the growing planet. Earth’s early
accretion (i.e., as much as 60 to 90% of its mass) was domi-
nated by reduced materials and the remainder by oxidized
materials (Wénke 1981; Rubie et al. 2011; Dauphas 2017).

A redox gradient in the protoplanetary disk is docu-
mented in the chondrites (Righter et al. 2016). The more
reduced, non-carbonaceous (NC) meteorites, including
the enstatite and ordinary chondrites (Fig. 2), come from
the inner solar system, closer to the Sun (i.e., inward
of the Jupiter’s orbit) (Kruijer et al. 2017). The more
oxidized carbonaceous chondrites (CC) and related mete-
orites (Figs. 1 and 2) are considered to be from more distal
sources, including the outer asteroid belt (e.g., > 3 AU),
Jupiter’s Trojans, and the Kuiper belt (Kruijer et al. 2017).
The redox state and a dozen or so isotopic systems now
link enstatite chondrites and the Earth and equally, ordi-
nary chondrites and Mars (Warren 2011; Dauphas 2017).
The Earth at 1 AU is more oxidized than the enstatite
chondrites, but less so than Mars at 1.5 AU and the
ordinary chondrites (Fig. 2b).

3 Composition of the terrestrial planets
Compositional models for the terrestrial planets are con-
structed from the following data sets: composition of
the Sun (i.e., > 99% mass of the solar system) (Lodders
2020), chemical trends for samples from a planet, satellite
observations, and compositions of chondritic meteorites
(i.e., the solar system’s building blocks of undifferentiated
rock and metal mixtures) (Wasson and Kallemeyn 1988;
Alexander 2019a; 2019b). Importantly, the chondrites
that we have, however, are leftovers from the planetary
formation. The bulk compositions of chondrites can be
broken down into main group (i.e., O, Mg, Si, and Fe;
~ 93%) and minor group elements (i.e., Al, Ca, S, and
Ni) and together they constitute 99% the mass and atomic
proportions of all terrestrial planetary models (Fig. 1 and
Table 1).

Here we use our earlier compositional models for
the Earth (McDonough 2014) and Mars (Yoshizaki and
McDonough 2020) and model the recent data from
the MESSENGER mission to Mercury (Margot et al.
2018; Nittler et al. 2018) to predict its bulk com-
position (Table 1), which is verified to be consistent
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Fig. 1 a Atomic abundances of major elements and b Fe/O values in the solar system bodies. Data sources: chondrites (Alexander 2019a; 2019b;
McCall 1968; Ivanova et al. 2008; Gosselin and Laul 1990; Wasson and Kallemeyn 1990; Bischoff et al. 1993); Mercury (this study); Earth (McDonough
2014); Mars (Yoshizaki and McDonough 2020)
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Fig. 2 Ratios of major cations in the terrestrial planets and chondrites. a Magnesium/Si versus Al/Si. b Abundances of reduced (metal and sulfide)
and oxidized Fe normalized to Si. Data sources are as in Fig. 1 and Urey and Craig (1953). Red symbols identify the inner solar system, NC chondrites;
see text for details. The Si-bearing core results in a Bulk Silicate Mercury that plots off scale at Al/Si (0.143) and Mg/Si (1.53)
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Table 1 Composition of the terrestrial planets

Atomic% Mercury? Venus? Earth® Mars¢ Cl chondrite?

(volatile-free)

@) 27.5 49.0 49.0 553 482
Mg 1.1 16.7 16.7 15.3 15.1
Si 1.1 15.1 15.1 151 14.7
Fe 412 15.1 15.1 10.3 128
Ni 225 0.82 0.82 0.57 0.70
Al 1.03 1.56 1.56 141 1.20
Ca 0.75 113 1.13 1.03 0.88
S 5.07 052 052 092 6.43
Fe/O 1.50 0.31 0.31 0.19 0.27
Fe/Si 371 1.00 1.00 0.69 0.87
Mg/Si 0.99 1.1 1.1 1.02 1.03
Al/Si 0.093 0.103 0.103 0.093 0.082
Fe/Al 40.0 9.7 9.7 7.3 10.7
Mag/Al 10.7 10.8 10.8 109 126
mean Z 17.5 12.7 12.7 1.8 126
wit% Mercury Venus Earth Mars Cl (volatile-free)
O 120 (£ 2.1) 29.7 29.7 36.3 29.1
Mg 731 (£13) 154 154 153 139
Si 8.50 (£ 1.0) 16.1 16.1 174 156
Fe 62.6 (£ 4.5) 320 320 237 269
Ni 3.60 (£ 0.25) 1.82 1.82 1.36 1.54
Al 0.76 (£ 0.14) 1.59 1.59 1.56 122
Ca 0.82 (£ 0.15) 1.71 1.71 1.69 133
S 442 (£ 1.50) 0.64 0.64 1.21 7.78
Uncompressed p® 5200 % 200 4100 4200 3800 2430f
Metal mass fraction 74/100 (£ 5) 1/3 1/3 1/5 0

H distance (AU) 0.39 0.72 1.00 1.52 > 159
h (W kg="hh 2.0 36 33 40 -

h Tw)h 07 18 20 25 -

@This study. The =+ values (1 standard deviation) are calculated as the differences between the high and low uncompressed density models

®McDonough (2014).

“Yoshizaki and McDonough (2020).

dAlexander (2019a).

eUncompressed p, density, in kg/m? (Lewis 1972; Lodders and Fegley Jr. 1998; Stacey 2005).

Macke etal. (2011).

9Desch et al. (2018).

"Heat production in the bulk silicate planets are calculated from chondritic (Al/Th)mass = 2.81x10° and (Th/U)mass = 3.7, planetary (K/Th)mass = 7000, 3700, and 5300 for
Mercury, Earth, and Mars, respectively (Peplowski et al. 2011; Arevalo Jr. et al. 2009; Taylor et al. 2006), and an equation from McDonough et al. (2020). pW = 1012 W; TW =
102 W.

with known physical and chemical constraints. Given lim- 3.1 Mercury model

ited data for Venus, which is consistent with an Earth-like ~ The bulk composition (i.e., abundant elements O, Fe, Mg,
analog (Surkov et al. 1987; Aitta 2012; Dumoulin et al.  Si, Ni, Al, Ca, and S) of Mercury was defined to be con-
2017), we assume it has a bulk Earth composition. sistent with its geodetic observables: mass, density, and
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MOI (moment of inertia) (Margot et al. 2018), compo-
sitional trends for Earth and Mars, and chondritic ratios
showing limited variation (< 4 10%). We used the den-
sity of Mercury and assumed a thermal gradient in the
protoplanetary disk outward from the accreting Sun to
constrain the model. Also, we assume chondritic propor-
tions of Ca/Al (0.73) and Fe/Ni (18.3), which is empirically
defined and reflects condensation conditions in the proto-
planetary disk. (Unless otherwise specified, atomic ratios
are reported throughout.)

Given a thermal gradient in the protoplanetary disk and
higher condensation temperature for forsterite (MgySiOa4)
versus enstatite (Mg SiaOg) (e.g., (Lodders 2003)), we pre-
dict a gradient in Mg/Si and Al/Si values from Mercury to
Mars for the silicate component of these planets (Fig. 2).
The major elements (Mg, Fe, and Si, plus Ni) have lower
condensation temperatures than the refractories (Ca, Al)
and higher than the moderately volatiles (K and S). Prior
studies (Larimer 1979; Kerridge 1979) have observed that
NC chondrites form a distinctive array on the Mg/Si-Al/Si
plot as compared to CC meteorites (Fig. 2). Despite the
marked variation in Mg/Si and Al/Si in chondrites, there
is only 15% variation in Mg/Al (11.2 & 1.7). Consequently,
we assume a Mg/Al (10.7) value for Mercury, which is
comparable to that for Earth and Mars (10.8 £ 0.1) (Fig. 2).

We calculated Mercury’s core and mantle fractions to be
consistent with its uncompressed density (Table 1). The
observed Mg# (atomic Mg/(Mg+Fe)) of ~ 0.99 for Mer-
cury’s surface (Nittler et al. 2018) points to the core’s dif-
ferentiation proceeding under reducing conditions. Thus,
some Si was likely added to the core (Nittler et al. 2018).
Using the Fe-Ni-Si composition of kamacite (Fe,Ni alloy)
and perryite ((Ni,Fe)g(Si,P);) in enstatite chondrites as
a guide, we assume the equivalent metal in Mercury to
have Fe/Ni of 18.3, ~ 4% atomic Si, and Ni/Si ~0.6
(Ringwood 1961; Leitch and Smith 1982; Weisberg and
Kimura 2012). The contribution of Si from a schreiber-
site ((Fe,Ni)3P) component is not significant, given its low
Si abundance (< 0.2 wt%) and minor mode proportion
(< 1%) observed in type-3 enstatite chondrites (Weis-
berg and Kimura 2012). The mantle is assumed to have
a composition that is approximately that of an orthosili-
cate (pseudo-olivine), with cations of Mg, Al, Ca, Fe, and
Si, where Ca/Al = 0.73, Mg/Al = 10.7 and Mg# = 0.99 and
fitting Si to the remainder.

To model Mercury’s interior we used the average den-
sities of silicates, metals, and sulfides as 3300, 7100, and
4600 kg m~3, respectively, and obtained a mode propor-
tion of 41:45:14, respectively. The resulting mass model
for Mercury has 26 £ 5% silicate shell and 74 + 5%
core. This estimate compares favorably with that pre-
sented by Margot et al. (2018) for his Preliminary Refer-
ence Mercury Model (PRMM; 74% core and 26% silicate
sphere).
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Mercury’s sulfur content was based on the plane-
tary volatility trend established from its surface mea-
sured K/Th value (6000 to 8000) (in wt ratio; Nit-
tler et al. (2018)), the Ni-normalized volatility trend
for the siderophile and chalcophile elements established
by Wasson and Kallemeyn (1988), and an extrapolation
to the condensation temperature, following the practice
used in McDonough and Sun (1995) and Yoshizaki and
McDonough (2020). We adopted the 50% condensation
temperature of S in a gas of solar composition (Lodders
2003). The major carrier of S in enstatite chondrites and
possibly Mercury is troilite (FeS), which condenses at sim-
ilar temperatures in both solar-like and highly reduced
redox conditions (Hutson and Ruzicka 2000; Pasek et al.
2005). We note, however, that S can become less volatile
under highly reducing conditions because of stabilization
of refractory sulfides such as oldhamite (CaS) and (MgS)
and incorporation of refractory elements (e.g., Ti, Nb)
into troilite (Hutson and Ruzicka 2000; Pasek et al. 2005;
Yoshizaki et al. 2021). We referenced Mercury’s volatile
depleted S content to the average depletion factor of K
(i.e., K/Th ~ 7000; (K)cI— and Al—normalized ~0.38). Ratios
of alkali metals to refractory elements provide an addi-
tional constraint on a planet’s volatile element depletion
trend, however, this simple model can be influenced by
redox conditions and core formational processes. We esti-
mate a sulfur content for Mercury of 4.4 + 1.5 wt%. By
comparison, Namur et al. (2016) has suggested the bulk
Mercury has 3 wt% to 5 wt% S, whereas Boujibar et al.
(2019) has modeled a range of bulk S contents based upon
a range of plausible redox states (~ 23 wt% S for logfo, =
IW — 7 to ~ 2 wt% S for IW — 2.6) for the planet.

Mercury has a markedly elevated Fe and Ni abundances
relative to its budget of lithophile elements (e.g., Fe/Al
= 40.0, Fe/Si = 3.7, Fe/O = 1.5; Table 1) leading to an
enrichment factor of (Fe)ci— and Al—normalized Of ~ 3.7 (cf.,
that for Si and Mg is 0.85). In addition, its Mg/Si (0.99)
is approximately CI-like, which is much higher than that
for the highly reduced enstatite chondrites. This result
is a product of our modeling approach that matches the
planet’s uncompressed density to the mode of silicate, Fe-
Ni-Si metal, and troilite. Predicting Mercury’s abundances
of S and other chalcophile elements is challenging; it is
the least volatile depleted body of the terrestrial planets
(i.e., highest K/Th value). Our prediction of Mercury’s S
content (Fig. 3) is consistent with either (1) an extension
of the volatile depletion trend for the siderophile ele-
ments, and/or (2) Mercury having CI relative abundances
for elements with half-mass condensation temperatures of
< 1000 K (Krahenbiihl et al. 1973; Takahashi et al. 1978;
Braukmiiller et al. 2019).

This temperature of 1000 K represents a limit. At lower
temperatures in a condensing nebula, depending upon its
C/O value, precipitation of MgS and CaS phases begin
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Fig. 3 Normalized abundances of the lithophile (blue) and siderophile (red) elements in the bulk Mercury. Abundances are normalized to Al and Cl
chondrites and plotted against log of their 50% condensation temperatures (K) at 10 Pa (see Yoshizaki and McDonough (2020)). Volatility trend for
Mercury constrains its S content in the core. The predicted S content is consistent with either an extension of the volatile trend for the siderophile
and/or and addition of Cl chondritic volatiles with 50% condensation temperatures <1000 K. See text for details

(Hutson & Ruzicka, 2000). The consequence of significant
CaS fractionation would result in changes to critical chon-
dritic ratios (e.g., Ca/Al, Ca/Ti, and Al/Ti). Observations
from the orbiting spectrometers on the MESSENGER
Mission did not find such unusual ratios (Nittler et al.,
2018). In contrast, chondrules from enstatite chondrites,
which contain highly reduced silicates, are highly frac-
tionated in both Al/Ti and Ca/Al. Above this critical tem-
perature of 1000 K condensation of fosterite and Fe-Ni-Si
metal occurs, without accompanying sulfide precipitation.
The result of these conditions is a bulk condensate with a
Mg/Si value that is higher than in enstatite chondrites and
Si-enriched metals; these are the features proposed for our
model Mercury composition.

In Table 2, we present compositional models for the
cores and bulk silicate shells of Mercury, Earth and Mars.
The models for the Earth comes from McDonough (2014)
and Mars from Yoshizaki and McDonough (2020). The
model for Mercury is based on its bulk compositional
model (Table 1) along with the following constraints:
(1) Mg, Al, and Ca is solely concentrated in the sili-
cate shell, (2) Ni and S is partition between the core
(60%, including and FeS component) and silicate shell
(40%) following the models of Namur et al. (2016) and
Boujibar et al. (2019), (3) the silicate shell's Mg# = 0.99,
(4) the Si contents of metals in EH chondrites, and (5) Si
being partitioned between the core (35%) and the silicate
shell (65%).

3.1.1 Implications of the model

Incorporation of silicon, sulfur, and other elements into
the Fe-Ni core of Mercury influences its size, density,
and solidus temperature. Lowering the solidus of the core
keeps it molten and convecting, thus providing the crit-
ically important conditions for dynamo action and mag-
netosphere generation (Schubert et al. 1988; Tosi et al.
2013). Magnetospheres of terrestrial planets deflect solar
wind particles. This deflection shield is important for a
planet’s atmospheric retention (i.e., losses due to radiation
and solar winds), keeping water present at the surface, and
protection of its biological habitat (See et al. 2014).

Based on the compositional estimates given in Table 1,
chondritic ratios of refractory elements, and planetary
K/Th values, we have calculated the present-day radio-
genic heating rate (pW kg~!) and total planetary radio-
genic power (TW) according to the method outlined
in McDonough et al. (2020). The estimated bulk ura-
nium contents of Mercury, Earth, and Mars are 7, 13,
and 15 ppb (107 kg/kg). Because of its small frac-
tion of silicate shell, Mercury has the least amount
of total radiogenic power of the terrestrial planets
(Table 1).

4 Distribution of Fe (and Ni) in the protoplanetary
disk

The Fe content of chondrites typically ranges from 1/5 to

<1/3 of their total mass, with Fe/Si typically 0.74 £0.12,
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Table 2 Composition of silicate shells and metallic cores of the terrestrial planets
Mercury? Earth® Mars©

Bulk silicate shell, atomic% (wt%)
) 5530 (42.3) 58.5 (44.0) 593(43.2)
Mg 25.93(25.9) 20.0(22.8) 16.9(18.7)
Si 14.6 (19.6) 159 (21.0) 16.6 (21.3)
Fe 0.17 (0.46) 24(6.3) 45(11.4)
Al 2.127) 1.85(2.35) 1.55(1.90)
Ca 1.5(29) 1.34(2.53) 1.13 (2.06)
S 4.1 (6.3) - _
Mag# 0.99 0.89 0.79
Mg/Si 1.53(1.32) 1.26 (1.09) 1.01(0.88)
Al/Si 0.143(0.137) 0.117(0.11) 0.0929 (0.089)
Fe/Si 0.0118(0.024) 0.150 (0.30) 0.269 (0.54)
Silicate mass (kg)? 86 x10% 404 x10% 527 x10%

Core, including an FeS component, atomic% (wt%)
O - 6.4 (2.0) 16 (5.2)
Si 76(4.0) 7.3(4.0) -
Fe 81 (86) 78 (86) 68 (80)
Ni 44 (4.9 44 (5.1) 6.0 (7.4)
S 6.0(3.6) 3.0(1.9) 9.9 (6.6)

Values outside and inside parentheses are in atomic% and wt%, respectively
@This study.

®McDonough (2014).

“Yoshizaki and McDonough (2020).

9dPlanet masses from https//nssdc.gsfc.nasa.gov/planetary/factsheet/. Bulk silicate shell fractions are 0.260, 0.676, 0.820 for Mercury, Earth and Mars, respectively

whereas some rare chondrite groups (i.e., CB, CH, and G
types) can have Fe/Si values up to 8 (Fig. 2b). Our model
for the terrestrial planets have Fe/Si varying from 3.7 to
0.7 from Mercury to Mars (Table 1). The ratio of metallic
iron to total iron varies from 1 (EH and EL chondrites) to
0 (CI and CM) in the chondrites, whereas the terrestrial
planets have intermediate values (Fig. 2b and Table 1).

The amount of iron accreted by a chondritic parent
body or a terrestrial planet is not set by any particular rule
and likewise the same is true for its metal to oxide fraction.
A planet’s mass fraction of metallic core to silicate shell
reflects the time-integrate redox condition during accre-
tion and core-mantle differentiation. Impact-induced ero-
sion/evaporation can also modify a core’s mass fraction
(Cameron et al. 1988). Accretion sets the relative con-
tents of Fe/O, Fe/Si, Fe/Mg, and Mg/Si, which accounts for
~ 93% of its mass (Fig. 1).

Mercury has the largest metallic core fraction, high
Fe/Al (40) and Mg/Si (0.99) values (Table 1 and Fig. 2),
and a silicate sphere with negligible Fe (i.e., Mg# ~ 0.99)
(Nittler et al. 2018). By comparison, Mars has a smaller
metallic core, a lower Fe/Al (7.3) and Mg/Si (1.02), and a
silicate shell with a low Mg# (0.79) than Mercury and the

Earth (9.7, 1.11, and 0.89, respectively) (Table 1). There-
fore, in relative terms the silicate shells of Mars, Earth (and
Venus), and Mercury get progressively thinner, their cores
bigger, and their mantles more Mg#-rich with decreasing
heliocentric distance.

Here we show that the uncompressed densities (Fig. 4)
and mean atomic numbers (Z, Table 1) of the terrestrial
planets increases with decreasing heliocentric distance.
These trends also extend to bodies in the asteroidal belt:
undifferentiated and differentiated asteroids are less dense
than the terrestrial planets (Fig. 4). Most chondrites have
sub-solar Fe/Si (Fig. 2b) and show a marked variation
in Fe/Si and metallic iron content. Thus, the outward
decrease of planetary density appears to primarily reflect
dynamic metal-oxide separation in the protoplanetary
disk, rather than post-accretionary processes.

5 Processes in the protoplanetary disk

Significantly, condensing iron-nickel grains, and other
metallic alloys, in the protoplanetary disk are distinctly
influenced by aerodynamic, gravitational, photophoretic,
and electromagnetic sorting forces, compared to silicates
(Larimer and Anders 1970; Weidenschilling 1978; Wurm
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et al. 2013; Kruss and Wurm 2018). We highlight elec-
tromagnetic separation of magnetized micro-particles of
Fe-Ni alloys (existing below their Curie point with a sta-
ble magnetic spin) from silicates (Harris and Tozer 1967;
Larimer and Anders 1970) coupled with metal-oxide sep-
aration during chondrule formation as being effective
segregation processes (e.g., Connolly Jr. et al. (2001)).
Recently, Wurm et al. (2013) also observed that pho-
tophoretic separation enhances a metal-silicate fraction-
ation. Thus, these physical fractionation processes likely
occurred in the protoplanetary disk and may well explain
the observed variations in Fe/O, Fe/Si, and Fe/Mg in
chondrites and terrestrial planets. The degree of sunward
enrichment of magnetic micro-particles in the protoplan-
etary disk appears to scale radially with its magnetic field
strength.

Paleomagnetic measurements of meteorites and their
inclusions provide unique constraints on spatial and
temporal changes of the magnetic field in the proto-
planetary disk. Meteoritic records indicate the magnetic
field intensity of ~50 uT at 2.5 AU and ~ 2 Myr
after the solar system initiation (f) (Fu et al. 2014),
whereas at 3-4 Myr after £y, it weakens to <20 uT
at 3—4 AU (Cournede et al. 2015; Desch et al. 2018).
Finally, the nebular gas and thus its magnetic field
deceased at ~4 Myr after ¢y, as recorded by the volcanic
achondrite angrite (Wang et al. 2017). These observa-
tions document a decrease in the nebular magnetic field
strength with increasing heliocentric distance and time
after £g.

The terrestrial planets formed closer to the Sun com-
pared to these meteorites and their components, given
their present-day distributions. Chronological studies of
planetary materials and planetary accretion models indi-
cate that Earth and Mars grew rapidly within the first 2
Myr after £y, although their final accretion continued for
more than 10 Myr (Kleine et al. 2009; Dauphas and Pour-
mand 2011). Early, rapid growth of the inner rocky planets
is envisaged at locations closer to the Sun compared to
meteorites and their constituents. Thus, it is likely that
terrestrial planets formed under a stronger solar magnetic
field compared to outer, younger meteoritic materials.

We show a correlation between the metallic core frac-
tion and heliocentric distance for the terrestrial planets
(Fig. 4). This trend is interpreted as resulting from spatial
and temporal decays of magnetic field strength in the pro-
toplanetary disk, which is consistent with paleomagnetic
intensities recorded in meteorites (Bryson et al. 2020; Fu
et al. 2020), magneto-hydrodynamic (MHD) disk models
(Bai 2015), and accretion rates of stars (Wardle 2007).

Accretion rates for solar-mass stars in protoplanetary
disks can have multi-Myr timescales (~ 10~ to 1077 Mg,
yr~!) (Hartmann et al. 2016). Collisional accretion, pro-
toplanetary disk winds, and electromagnetic fields may
control the evolution and dispersal of matter during the
planet formation. The magnetic field strength (B) in a
protoplanetary disk should decrease with heliocentric dis-
tance. In addition, the azimuthal magnetic fields are likely
to be strongest in the disk midplane (Bai 2017), the site of
planetary accretion. The required B to drive gas accretion
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onto the central star can be determined using equation
19 of Wardle (2007): where B ~0.1-1 x (r/au)(~12% mT,
assuming appropriate accretion rates. Using this equation,
the estimated time averaged magnetic field strength dur-
ing the planet formation in the presence of a protoplan-
etary disk is ~ 0.3-3 mT at Mercury, ~ 0.1-1 mT at the
Earth, ~ 3-300 uT at » = 2.5 AU (main belt asteroids), and
~ 6-60 1T at r = 10 AU. The latter two values are consis-
tent with paleomagnetic measurements of the Semarkona
meteorite (2.3 AU) by Fu et al. (2014) and the chondrite
WIS 91600 (i.e. 10 AU, the putative initial formation loca-
tion for WIS 91600, ungrouped C2 chondrite) reported by
Bryson et al. (2020).

Kruss and Wurm (2018) suggested that enhanced
growth of iron-rich dust aggregates in the inner region of
protoplanetary disks leads to an iron gradient in the solar
system. A corollary of this model is that planetary migra-
tion in the inner solar system did not disrupt this final
result and that the Fe content can help us determine where
and when an object was dominantly formed. The experi-
ment carried out by Kruss and Wurm (2018) observed a
critical magnetic field strength (~ 2 mT) where chains of
magnetic grains start to form (their Fig. 9) due to stronger
magnetic attraction relative to collisional repulsion. Later
experiments by Kruss and Wurm (2020) observed chains
of magnetic grains aggregating into clusters in a magnetic
field above a given mass fraction of iron (their Fig. 10).
These early experiments provide some support for form-
ing mercury-type planets, but their results depended on
the magnetic field strength and the mass fraction of iron.
It is not clear if these experiments would only apply to
regions around Mercury (where the magnetic fields are
strongest), or extend out to the orbits of Earth and Mars.

Nebular gas carries the magnetic field in the proto-
planetary disk. Metal-silicate segregation by solar mag-
netic forces is only effective before nebular gas dissipation
(Kruss and Wurm 2020; Wang et al. 2017). Mercury’s for-
mation under reduced conditions in the presence of a
gas disk with a strong magnetic field implies a Tsccretion
age that is restricted to when a nebular envelope existed.
Accretion in the presence of nebular gas is consistent with
pebble accretion models of planetary formation, which
may have contributed to the early formation of Mars
and iron meteorite parent bodies (Johansen et al. 2015).
Therefore, a key implication of our model is an early for-
mation age (~ 2 Myr) for Mercury, comparable to that
of Mars (Dauphas and Pourmand 2011; Yoshizaki and
McDonough 2021). Furthermore, our model does not
require a giant impact event and partial loss of its silicate
shell for the origin of Mercury’s large core (Benz et al.
2007; Asphaug and Reufer 2014).

Is our model applicable to exoplanetary systems? Unfor-
tunately the database at present is not large enough to
conduct a thorough assessment. TRAPPIST-1, our best
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documented exoplanetary system (i.e., 7 planets with Mg,
Rg, and orbiting data), does not have a mercury-type
planet. It is, however, an unusual system in that these
planets are (1) close in (0.01 to 0.06 AU), (2) orbiting an
ultra-cool, low mass, red dwarf star (~ 0.09 M), (3) their
masses and radii are large relative to those of the star,
and (4) they are predicted to have roughly similar compo-
sitional characteristics (Agol et al. 2021). The chemistry
of this star is poorly understood, given its cool tempera-
ture. Thus, typical comparisons between these planets and
their star composition cannot be completed.

Dense mercury-like exoplanets have been identified, but
they are less common and often Earth-sized and larger
objects (e.g., Santerne et al. (2018); Bonomo et al. (2019);
Price and Rogers (2020); Schulze et al. (2021)). Interest-
ingly, K2-229 b (0.6 days year !, 1.2 Rg, and 2.6 Mg) has a
core mass fraction (70%) equivalent to Mercury’s, and its
Fe-enrichment contrasts with its star’s chemistry (Saterne
et al. 2018). Several other Fe-rich exoplanets have been
identified (e.g., see Table S5 in Schulze et al. 2021) many
of which orbit close to their star that has a composition
similar to our Sun’s. Future exoplanetary observations will
test this hypothesis of compositional fractionation in the
protoplanetary disk by an evolving magnetic field and its
control on planetary chemistry during accretion.

The potential for a habitable zone in an exoplane-
tary systems may be influenced by physical and chemical
processes controlling the distribution of metal and sili-
cate in an evolving protoplanetary disk. These processes
can control the size and composition of a planet’s core.
The chemical equilibrium during accretion and metal-
silicate differentiation reflects the local redox conditions
and influences the amount of light elements partitioned
into the core. In turn, these factors influence the stabil-
ity and duration of the core’s dynamo, which generates
the planet’s magnetosphere and serves to protect a yet
unrealized biosphere. These factors, plus the distribution
of some critical life supporting elements (e.g., 90% of the
Earth’s phosphorus budget is in the core), are critical in
establishing a planet’s prospects for habitability.

6 Conclusions

We have developed compositional models for the terres-
trial planets that takes note of their chemical differences
as a function of their heliocentric positions. The pres-
ence and size of their metallic cores depends on the redox
environment in the protoplanetary disk and the planet’s
mass fraction of accreted metal alloys, the latter of which
is controlled by electromagnetic processing in the disk.
We use the measured K/Th values of the terrestrial plan-
ets to estimate its volatile element inventory (e.g., bulk
sulfur content). The redox condition during core forma-
tion, controls the identity and amount of light elements in
the core (e.g., S, Si, O). These light elements significantly
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lower the core’s solidus and extends its molten-state life-
time. Collectively, these factors contribute to convection
in a molten core and dynamo action.

These attributes of our solar system may be equally
applicable to exoplanetary systems. The generation of a
planetary magnetosphere, which nurtures life, shapes a
planet’s habitability. It is likely that life’s sustainability
critically depends on being sited in the Goldilocks zone
and having the right amount of metallic core, which con-
tains an appropriate amount of a light element and is not
cooling too fast.
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