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Abstract

For geochemical analysis such as stable isotope ratio, radiocarbon dating and minor element analysis for a single
species of microfossils, a large number of specimens, is required. Collecting specimens one by one under a
microscope requires enormous time and effort. In this study, we developed a device that automates these efforts
and can be used without expert knowledge. Microfossils can be accurately classified and identified to taxonomic
species level using deep learning, which is one of the learning methods of artificial intelligence (AI), and picked up
using a micromanipulator installed in the microscope with an automated motorized X-Y stage. A prototype of the
classification model AI-PIC_20181024 showed the ability to classify microfossil species Cycladophora davisiana and
Actinomma boreale (radiolarians) with accuracy exceeding 90% at a confidence level > 0.90. Using this method, it is
possible to collect a large number of particles with speed and accuracy that cannot be achieved by a human
technician. Although this technology can only be used for specific species of microfossils, it greatly reduces the
hand work of picking and also enables chemical analysis, such as isotope ratio and minor element analysis, for small
microfossil species for which it had been difficult to collect enough specimens. In addition to microfossils, this
technology can be applied to other particles, with applications expected in various fields, such as medical, food,
horticulture, and materials.
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Introduction
Stable isotope ratio, radiocarbon dating, and minor
elemental analyses of a single species of foraminifera,
which is a group of microfossils, require a large number
of specimens. Current sampling practice is manually col-
lecting specimens one by one under a microscope by an
expert technician. Recent improvements in analytical
technologies have made it possible to carry out various
analyses on extremely small samples, but it is still diffi-
cult to secure sufficient quantities of sample for analysis.
For example, Ijiri et al. (2014) developed an inductive
high-temperature carbon reduction method that allows

measuring the oxygen isotope ratio of sub-milligram
quantities of biogenic opal. As a result, it has become
possible to analyze a single species of radiolarian Spongo-
trochus glacialis with a relatively large body. However, it
is still necessary to collect more than 1,000 specimens
for the majority of species of radiolarians (marine zoo-
plankton with opal skeleton) that have body size smaller
than 100 μm (< 0.1 μg/individual). In practice, it is diffi-
cult to collect enough individuals of the small radiolarian
species for analysis, and there is expected to be interest
in this never before reported data. However, before such
research can be undertaken, it is necessary to develop a
method for accurately classifying microfossils of arbi-
trary species and to collect them in large quantities.
In practical terms, one solution is to use a micro par-

ticle accumulator with a micromanipulator along with
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the latest artificial intelligence (AI) technology with
utilization of big data and a high-performance computer.
The micro particle accumulator can distinguish mineral
particles by conventional machine learning (Isozaki
et al., 2018), but it has not yet been possible to accur-
ately classify microfossils of delicate and complicated
forms. On the other hand, AI using deep learning
methods has been used for distinguishing objects
appearing in images. Unlike traditional machine learning
where a person extracts features, features are automatic-
ally extracted by the computer, making it is suitable for
classification of complicated forms like microfossils. Re-
cently, deep learning has been used to classify volcanic
ash particles (Shoji et al., 2018) and foraminiferal tests
(Mitra et al., 2019). However, in these previous methods,
a large number of microscopic images first needed to be
collected.
Therefore, we have developed a system that enables

accumulating a massive number of digital images of mi-
crofossils identified to the species level by integration of
existing technologies such as AI, digital image process-
ing, and precise micromanipulation (AIST Press Release,
2018). In this paper, we present an overview of this sys-
tem and the results of a practical test with radiolarian
fossils.

System overview
The system was basically designed to allow a series of
operations from classification to collection of microfos-
sils using three units (Fig. 1): (1) Image Collection Unit,

(2) Classification Unit, and (3) Particle Collection Unit.
These units are connected to each other with a newly
developed communication program. Each unit of this
system is described below.

Image Collection Unit
This unit automatically acquires microscopic images of a
large number of particles scattered on an observation
area using an electric X-Y stage microscope with com-
puter control. In this study, “Collection Pro” from Micro
Support Co., Ltd., which is documented in Isozaki et al.
(2018), was used as a base unit. This unit allows for
scanning of particles scattered on the sample tray using
a microscope with a high-resolution CCD (charge
coupled device) camera in an arbitrary area, and acquires
individual images clipped in arbitrary sizes and resolu-
tions by image processing (Supplementary Movie 1).
Particle sizes and their coordinates on the sample tray
are recorded by the computer.
When a single particle is taken alone in the clipped

image, it is recognized as one individual. However, if a
plurality of particles is overlapping, they are erroneously
recognized as one individual by image processing. To
minimize overlapping particles, a total of 60,000 dimples
with diameters of 90 and 140 μm were drilled on the tray
surface (Supplementary Figure 1), and a structure was
constructed such that one individual particle fits in each
indentation. As a result, particles can be efficiently dis-
persed to some extent and overlapping can be
minimized.

Fig. 1 Schematic of the automated microfossil collection system, which is composed of three units: Image Collection Unit, Classification Unit, and
Particle Collection Unit. A photo of the system is shown in the upper right. Image scanning over the tray and picking up microfossils can be seen
in Supplementary Movies 1 and 2
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Classification Unit
The Classification Unit consists of a computer operating
deep learning software and a program that facilitates
data exchange with the Image Collection Unit. This unit
has two roles: building a classification model based on a
large number of images obtained from the Image Collec-
tion Unit, and using the model to identify particles ex-
tracted by the Image Collection Unit during practical
classification work.
Deep learning was used to classify microfossil species

from images. One of the machine learning methods is
based on a multilayered neural network, which is a com-
putational model inspired by biological neural networks,
that can automatically learn features from images. The
deep learning software “RAPID machine learning” (NEC
Corp.), which incorporates a convolution neural network
(CNN) and can be tuned to quickly construct a classifi-
cation model from a large amount of data without using
a graphics processing unit (GPU), was adopted in this
system.

Particle Collection Unit
The target particles determined by the classification re-
sults are automatically picked up from the recorded coor-
dinates on the sample tray by the micromanipulator of
this unit. A vacuum suction type micromanipulator in-
stalled on the Image Collection Unit grips a particle at the
tip of a glass tube with a diameter of 30–50 μm (Fig. 2b).

Then, the particle is carried to the collection location and
released by stopping the vacuum.
A static-free field around the picking unit is generated

by a static electricity remover in order to avoid adsorption
of particles so that particles can be deposited. However,
when a captured specimen is placed on the sample tray by
the micromanipulator, it sometimes does not separate
from the nozzle tip due to static electricity. Therefore, an
adhesive sheet was placed in the collection area to help
separate particles from the nozzle. The microfossils can be
removed from the sheet with some ethanol.

Methods/Experimental
In this experiment, siliceous fossil-rich Pleistocene-
Holocene sediments collected from the Southern Ocean
and the Japan Sea were used. The samples were reacted
with 10% HCl and 10% H2O2 solutions in order to ex-
clude carbonate and organic matter, respectively, and
then were sieved using 63 μm stainless mesh. Clastic
mineral particles were extracted from residues on the
63 μm mesh by the method of Itaki (2006) in order to
concentrate siliceous microfossils as much as possible.
Dried particles ranging from 63 to 250 μm were mainly
radiolarians and clastic minerals and were distributed
homogeneously on the aluminum sample tray. Although
there were many radiolarian fossils in the particles larger
than 250 μm, the target species for classification and

Fig. 2 Photographs showing microfossil pick-up and collection. a Microfossils are picked up using the micromanipulator from among various
particles scattered on a specially designed sample tray. b An extracted microfossil (Cycladophora davisiana) gripped at the tip of the vacuum-type
micromanipulator. c The assemblage of C. davisiana collected on an adhesive sheet. Scale equals 200 μm
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collection in this study were mainly in the 63 to 250 μm
size fraction.
Digital images of particles on the sample tray were

taken with 280 × 280 dpi resolution under the epi-
illumination mode of the Image Collection Unit. A large
number of these images were used as the training data
for construction of the classification model using deep
learning by the Classification Unit. Generally, the train-
ing data should be composed of more than 1,000 images
in each category, including target species for picking and
other kinds of particles. Usually, collecting such a train-
ing dataset by human technicians requires a lot of labor
and time; however, this system can automate this step. If
a sufficient number of images cannot be collected for a
category of rare species, the training data are built out
with rotations and flips of a single image (Fig. 3).

The classification model based on the training dataset
is created using deep learning software in the Classifica-
tion Unit. Learning repetition is basically 30 epochs
(Supplementary Figure 2). The accuracy of the created
model is tested using images that were not used for the
model construction. Although the initial accuracy of the
newly constructed model is usually low, through repeti-
tion and revision of the training dataset, higher accuracy
can be achieved.

Results and discussion
Operation processes of the system including model con-
struction, classification, picking, and collection were
checked with radiolarian fossils in deep-sea sediment.
Radiolarian fossils with complicated and delicate sili-
ceous skeleton are suitable as a test material for this

Fig. 3 Screen shots of subsets of training data for a Actinmma boreale and b Cycladophora davisiana used in model AI-PIC_20181024
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system owing to the difficulties of species identification
and picking their small skeletons. Test results from the
process are noted as follows.

Training data and model construction
In classification by deep learning, all collected images
were applied to one of the previously learned categories.
The confidence level for each category of the image was
estimated, and the category with the highest value was
shown as the classification result. In this system, since
all the images acquired by the Image Collection Unit
were classified in one of several categories, it is necessary
to efficiently construct a classification model in order to
distinguish the target species from various particles.
The sample particles used in this experiment consisted

mainly of radiolarians and clastic particles. Although the
sample included multiple radiolarian species, we decided
to build a learning model with Cycladophora davisiana
and Actinmma boreale as the target species (Fig. 3).
In the initial constructed model AI-PIC_20181024, ap-

proximately 20,000 images of particles were selected
from more than 30,000 images collected by the system
and were categorized into the following 8 categories: C.
davisiana [1884 images], Cycladophora bicornis [1088
images], A. boreale [1796 images], Antarctissa spp. [2129
images], Larcopyle pylomaticus [1134 images], other ra-
diolarians [7919 images], clastic particles [1745 images],
shell fragments [564 images], and reflections of illumin-
ation [2514 images]. Although C. bicornis was not a tar-
get species, it was separately categorized for
differentiation from C. davisiana due to having similar
morphology. Antarctissa spp. and L. pylomaticus were
also categorized separately in this model; however, re-
sults for these categories were not evaluated in this study
due to difficulty in discrimination because of unreliable
images from the training data.
Practical tests based on model AI-PIC_20181024 were

performed using three samples from the Japan Sea
(IODP site U1422C 1H-1, 68–70 cm) and the Del Canõ
Rise in the Southern Ocean (45.7° S, 44.4° E, 2445 m in
water depth, Piston core site DCR1PC, #39). Confidence
level (0.00–1.00) meaning certainty of correct

classification, total number of images used in classifica-
tion through the scan, accuracy (number of correct clas-
sifications/number of categorized images) for C.
davisiana and A. boreale, and number of uncategorized
images with percentages are shown in Table 1.
In this practical test, the confidence level was set to

0.60 for U1422, and 0.80 and 0.90 for DCR1PC. When
the confidence level was 0.60, uncategorized images
accounted for 11% of 2,472 images, while when it was
0.90, about 60% of all particle images were considered as
uncategorized images and were excluded from classifica-
tion. The number of uncategorized images tends to be
higher with increasing confidence level.
The accuracy for C. davisiana for the same DCR1PC

sample was 70% and 92% at confidence levels of 0.80
and 0.90, respectively. Thus, accuracy increased with
confidence level but dropped with the number of images
categorized for this species. On the other hand, the ac-
curacy for both C. davisiana and A. boreale from sample
U1422C was 94% at a confidence level 0.60. Such high
accuracy for both of species despite the relatively low
confidence level of 0.60 was possibly related to the re-
duction in misclassification due to the low diversity of
radiolarian assemblages in this sample.
As demonstrated above, setting the confidence level

high results in an increased classification accuracy, while
many images are excluded due to being below the confi-
dence level. An ideal model is one that realizes both the
high accuracy and reduces uncategorized images, as is
shown for sample U1422C with confidence level 0.60.
Although model AI-PIC_20181024 was constructed
based on training data from both the Japan Sea and the
Southern Ocean, higher accuracy may be achieved by
building models independently for each region or time-
frame using local samples for training data.
In addition to radiolarians, classification models for

other microfossil groups such as foraminifers (marine
zooplankton with CaCO3 skeleton) and diatoms (phyto-
plankton with opal skeletons) have been attempted using
this system. Although radiolarian species can usually be
classified by a single view from one direction, foramin-
ifers should be observed from various directions in order

Table 1 Results of practical test for model (AI-PIC20191024) using samples U1422C, 1H-1, 68–70 cm (Japan Sea) and DCR1PC, #39
(Southern Ocean)

Item U1422C; 1H-1, 68–70 cm DCR-1PC, #39

(a) Confidence level 0.6 0.8 0.9

(b) Total number of images 2,472 11,416 9,815

(c) Actinomma boreale 45/48 (94%) 59/59 (100%) 41/41 (100%)

(d) Cycladophora davisiana 165/176 (94%) 103/149 (70%) 54/59 (92%)

(e) Uncategorized image 267 (11%) 4,335 (38%) 5,768 (59%)

(a) confidence level (0.00–1.00) meaning the certainty of correct classification, (b) total number of images used in classification through the scan, (c–d) accuracies
(number of correct classification/number of categorized images) for Cycladophora davisiana and Actinmma boreale, and (e) number of uncategorized images with
percent of total
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to recognize the 3-dimensional characteristics of the
skeleton. This means that a mechanism for distinguish-
ing foraminiferal species from multi-directional images
is required. In the case of diatoms, digital images using a
higher-power microscopic lens using composite focusing
image programs are needed to capture their smaller
skeletons. To resolve these issues for various microfossil
groups, further development of this system is expected
as a next step.

Particle collection
Using the model AI-PIC_20181024, C. davisiana was se-
lected by the Classification Unit from the residue of the
test sample spread on the sample tray by the Image Col-
lection Unit. The classified particle images were dis-
played on the operation monitor of the Image Collection
Unit for checking, and the misclassified particles were
excluded from the target by a human technician in order
to avoid including wrongly identified particles. Correctly
classified images can be organized and stored as add-
itional training data, which can later be used to con-
struct a more accurate classification model.
After the classification was completed, all identified C.

davisiana specimens were sequentially picked up from
their recorded coordinates on the tray by the microma-
nipulator (Supplementary Movie 2). In advance of col-
lecting the particles, it is necessary to accurately set the
position information of the suction nozzle tip of the mi-
cromanipulator, the approach direction to the particles,
and the collection area of the picked up particles. The
accuracy of this setting is important for reducing pick-
up failure. In this experiment, 70–80% of the identified
particles could be collected successfully. Failure seemed
to occur when there was a small distance between the
tip of the nozzle and the target. Improving collection ef-
ficiency is an improvement point for the system.
In this practical test, using samples that contained suf-

ficient numbers of the target species, the picking speed
was about 120 specimens per hour. If the sample con-
tains sufficient numbers of the target species, the target
number of specimens for analysis may be reached with a
single sample, but it may be necessary to repeat the
process with additional samples if the number collected
is not sufficient.

Conclusions
An automated microfossil pick-up system with imple-
mentation of AI technology was newly developed, and
results of a practical test of this system confirm the prac-
tical use of a classification model with sufficiently high
accuracy. Using this automated system, microfossils
could be collected on species level, whereas previously, a
huge amount of time and labor was required to collect
the samples by hand. The model AI-PIC_20181024 used

in this experiment can be used to classify two radiolarian
species, C. davisiana and A. boreale, with accuracies of
more than 90% at a confidence level of 0.90, but almost
half of the images remain uncategorized. The number of
uncategorized images decreased at lower confidence
levels (0.60 and 0.80); however, the accuracy also tended
to deteriorate at these confidence levels. In order to col-
lect target microfossils more efficiently, it is important
to construct an excellent classification model that has
high accuracy even at low confidence levels. Because the
system and classification model reported in this paper
are still in the prototype stage of development, both the
device and model are improved for the practical uses.
In addition to applications to microfossils, this system

can be applied to the classification and extraction of
mineral particles. This system can be adapted to various
specialized sorting needs, such as preparation of high-
purity materials in the steel industry, sorting of plant
seeds and fish eggs, removal of impurities and contami-
nants in foods, and sorting of abnormal cells, embryos,
or platelets. In order to achieve workable systems in
these fields, further development is needed to link AI
and microscope systems and to develop a separator suit-
able for each type of particle.
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1186/s40645-020-00332-4.

Additional file 1. : Supplementary Movie 1: Collection of particle images
through scanning on the sample tray. Particles detected by image
processing are shown as red areas, and they are clipped as individual
images. (PPTX 27074 kb)

Additional file 2. : Supplementary Movie 2: Picking up microfossils from
the sample with the micromanipulator and depositing them on the
collection area. Three trials are recorded. The first two collections were
successful. The third one failed, likely because the tip of the nozzle was
not brought close enough to the target. (PPTX 21185 kb)

Additional file 3. : Supplementary Figure 1: Dimensions of the particle
dispersion tray. A total of 60,000 dimples with diameters of 0.14 mm and
0.09 mm were drilled on the tray surface. (a) Upper view of the plate, (b)
cross-sectional view of the plate and (c) cross-sectional view of dimples
with diameter of 0.14 mm and 0.09 mm. All dimensions are in millime-
ters. (AI 355 kb)

Additional file 4. : Supplementary Figure 2: Diagram showing error
values for each learning repetition through 30 epochs on the deep
learning software RAPID.
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