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How parameter specification of an Earth
system model of intermediate complexity
influences its climate simulations
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Abstract

Earth system models (ESMs) consist of parameterization schemes based on one’s perception of how the Earth
system functions. A typical ESM contains a large number of parameters (i.e., the constants and exponents in the
parameterization schemes) whose specification can have a significant impact on an ESM’s simulation capabilities.
Sensitivity analyses (SA) is an important tool for assessing how parameter specification influences model
simulations. In this study, we used an Earth system model of intermediate complexity (EMIC)—LOVECLIM as an
example to illustrate how SA methods can be used to identify the most sensitive parameters that control the
simulations of several key global water and energy cycle variables, including global annual mean absolute surface
air temperature (TG), precipitation and evaporation over the land and over the oceans (PL, PO, EL, EO), and land
runoff (RL). We also demonstrate how judiciously specifying model parameters can improve the simulations of
those variables. Three SA methods MARS, RF, and sparse PCE-based Sobol’ method were used to evaluate a pool of
25 adjustable parameters chosen from land, atmosphere, and ocean components of LOVECLIM and their results
were intercompared to ensure robustness of the results. It is found that with different parameter specification, TG
can vary from 10 to 20 °C, and the values of PL, PO, EL, and EO can change by more than 100%. An interesting
observation is that the value of RL vary from 13,000 to 35,000 km3, far below the observed climatological value of
40,000 km3, indicating a model structural deficiency in representing land runoff by LOVECLIM which must be
corrected to obtain more reasonable global water budgets. We also note that parameter sensitivities are significantly
different at different latitudes. Finally, we showed that global water and energy cycle simulations can be significantly
improved by even a crude automatic parameter tuning, indicating that parameter optimization can be a viable way to
improve ESM climate simulations. The results from this study should help us to understand the parameter uncertainty
of a full-scale ESM.

Keywords: Parameter sensitivity analysis, Earth system model of intermediate complexity, LOVECLIM, Parametric
uncertainty

Introduction
Earth system models (ESMs) are an indispensable tool for
gaining an understanding on how the climate system
works and how its various components such as land, at-
mosphere, and oceans interact with each other. They have
been used extensively to simulate the past and future

climatic processes and events. The simulation and predict-
ive capabilities of ESMs are influenced by several factors
such as the specification of model forcings, the specifica-
tion of initial and boundary conditions, and the represen-
tation of model physics. In the past, much attention has
been paid to develop various models of different complex-
ities. Over the recent years, researchers become increas-
ingly aware that tuning is an essential aspect of climate
modeling (Hourdin et al. 2017). The purpose of tuning is
to reduce the distance between model results and the ob-
served climate by adjusting the values of various parame-
ters. It has been shown that the simulation capability of a
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climate model may be enhanced significantly by adjusting
the values of even one or two of its model parameters
(Collins et al. 2006; Gent et al. 2011; Sanderson et al.
2008; Tebaldi and Knutti 2007; Williamson et al. 2013).
In fields such as hydrology and engineering, parameter

tuning or optimization methods have been commonly
used to estimate model parameters. However, parameter
optimization of climate models is an enormous compu-
tational task for the following reasons: (1) optimization
of climate model parameters is a high-dimensional prob-
lem because climate models usually contain a large
number of adjustable parameters (dozens or even hun-
dreds of parameters), and the number of model experi-
ments to optimize those parameters is exponentially
proportional to the dimensionality; (2) climate models
simulate many climatic variables (e.g., temperature, pre-
cipitation, evaporation, wind speed, and pressure), and
the optimization problem must be framed as a multi-
objective optimization problem, which further increases
the number of model experiments needed to identify op-
timal parameter solutions; and (3) climate models are
expensive to run because they must be run globally and
cover time span over many years. Even with today’s most
advanced supercomputers, the amount of computational
resources required for optimizing the parameters of a
climate model can still be prohibitive.
Climate models vary in complexity from simple concep-

tual models to sophisticated earth system models (Claussen
et al. 2002; Eby et al. 2013). Simple conceptual models are
useful in developing and exploring the variability of individ-
ual processes in the climate system. However, these models
only describe a very limited number of processes and vari-
ables. Current state-of-the-art Earth system models (ESMs)
provide very detailed descriptions of the Earth system, in-
cluding more feedbacks and processes. Because of their
complexities, the number and length of simulations that
can be conducted are limited by the availability of computa-
tional resources and it is not practical to perform parameter
estimation exercises on full-scale ESMs. Another class of
models, known as the Earth system models of intermediate
complexity (EMICs), helps bridge the gap between the sim-
plest and most complex climate models (Claussen et al.
2000). EMICs provide a fairly complete description of the
Earth system, including almost all components of the Earth
system, but this often occurs in an idealized manner or at a
lower resolution than the models described above. To ex-
plore the various feedbacks among different components of
the climate system, EMICs simulate long-term climate
changes with parameterization schemes to simplify the vari-
ous processes and details of the climate system. These
models are usually applied to certain scientific questions,
such as understanding climate feedbacks on millennial time
scales or exploring sensitivities in which long model inte-
grations or large ensembles are required (Claussen et al.

2002; Petoukhov et al. 2005). To a certain extent, EMICs
combine the advantages of simple conceptual models and
Earth system models and overcome their disadvantages. As
computing power increases in the future, this model class
will continue to advance in terms of resolution and com-
plexity. This study uses an EMIC model as an example to
study how parameter specification affects climate model
simulations and to explore potentials for improving climate
model simulation through parameter perturbations.
Despite the differences between EMICs and ESMs in

model conceptualization and structures, we hope the ex-
periences with parameter specification methods (such as
uniform sampling, sensitivity analysis, etc.) of simple and
computational affordable EMICs can be applied to full-
scale ESMs to improve ESMs performance with less
computational resources.
In our previous studies (Duan et al. 2017; Gan et al.

2014; Gong and Duan 2017; Gong et al. 2015; Gong et
al. 2016a; Gong et al. 2016b), an uncertainty quantifica-
tion (UQ) framework was developed to quantify the un-
certainty of large, complex dynamic system models, such
as land-surface, weather, and climate models, which in-
clude many physical processes and cost a substantial
amount of computational resources to run. The uncer-
tainty quantification framework includes the following
steps: (1) using parameter screening to reduce the num-
ber of adjustable parameters, (2) building a surrogate
model to emulate the response surfaces of the original
model to the variation in the adjustable parameters, and
(3) running the surrogate model with the sensitive pa-
rameters to optimize the original model. Sensitivity ana-
lysis (SA) methods have been shown to be very effective
for parameter screening to determine the parameters
which exert significant influence on climate model simu-
lations of interested variables (Gutiérrez et al. 2009;
Ratto et al. 2012; Shahsavani and Grimvall 2011). SA
methods use a design of experiment (DoE) approach to
sample model parameters within a feasible range and
quantify the influence of each adjustable parameters to
the model output. The parameters that have significant
influence to model outputs are screened out as import-
ant parameters. So far, there have been numerous stud-
ies that have used SA methods to examine the
parametric sensitivity of hydrology (Gupta and Razavi
2018; Ricciuto et al. 2018; Sarrazin et al. 2016; Zadeh et
al. 2017) and land-surface models (Bastidas et al. 2006;
Liu et al. 2004; Santanello Jr et al. 2011; Xiong et al.
2010), numerical weather prediction (NWP) models (Di
et al. 2015; Johannesson et al. 2014; Quan et al. 2016),
and climate models (Edwards and Marsh 2005; Fanning
and Weaver 1997; Murphy et al. 2004; Neelin et al.
2010).
We intend to employ SA methods to identify the most

sensitive parameters that have significant influences on
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the simulation of interested climatic variables such as
surface air temperature, global water budget components
including precipitation, evaporation over land and ocean,
and runoff over land simulated. Here, we chose an
EMIC named LOVECLIM as an example to illustrate
the effectiveness of SA methods. Then we evaluated the
perturbed parameters and find some individual param-
eter sets have better agreements to some aspects of se-
lected climatic variables, implying that automatic
parameter tuning has the potential to further improve
the performance of LOVECLIM.
We choose to focus on sensitivity of parameter specifi-

cation on the simulations of surface air temperature and
global water balance components in this study because
those climatic variables have the most direct impacts on
human beings and on Earth’s sustainability. Recent IPCC
assessment reports suggested that current GCMs per-
formed reasonably well in capturing the global mean
temperature trend over the last 150 years. However,
there was a persistent discrepancy between different
GCMs in terms of global mean absolute temperature
simulations, which differed by as much as 3 °C in both
IPCC AR4 and IPCC AR5 (IPCC 2007; IPCC 2013;
Mauritsen et al. 2012). All climate models are supposed
to confirm to physical laws such as the conservation of
mass and energy and water’s freezing point always being
0 °C given Earth’s condition. When the global mean
temperature simulations differ by 3 °C or more, the fol-
lowing issues would arise. The involved models would
contain very different land states (i.e., water may be in li-
quid state more likely in one model, while in frozen state
in another) and this would ultimately affect the land
hydrological processes. In addition, the land-atmosphere
interactions would be very different, leading to different
global water and energy budgets. Therefore, absolute
global surface air temperature is an important metric for
summarizing the state of the global climate (Hansen et
al. 2006). Parameter specification can strongly affect the
simulation of the hydrological cycle on Earth (Chahine
1992), which in turn influences Earth’s simulated climate
in a variety of ways. The exchanges of moisture and heat
between the atmosphere and Earth’s surface fundamen-
tally affect the dynamics and thermodynamics of the cli-
mate system (Jones 2014). According to the Clausius-
Clapeyron relation, the specific humidity increases expo-
nentially with temperature under a background of cli-
mate change (Allen and Ingram 2002). The Clausius-
Clapeyron relation states that the water-holding capacity
of the atmosphere increases by approximately 7% for
every 1 °C rise in temperature. Incorrect simulation of
hydrological cycle would lead to incorrect simulation of
extreme climatic events, such as extreme precipitation
and drought. By choosing global mean absolute surface
air temperature and global water budget components as

the parameter optimization targets (Eyring et al. 2016;
Mauritsen et al. 2012), we hope to achieve better simu-
lated global climate patterns. This article includes five
sections: Introduction gives the background to the re-
search; Methods and tools introduces the sampling
method, sensitivity analysis method, and tools used in
this study; Model and parameters introduces the basic
information for LOVECLIM and the adjustable param-
eter information; Results and discussion analyzes and
discusses the experimental results; and Conclusions pro-
vides the summary and conclusions.

Methods and tools
The purpose of a sensitivity analysis (SA) is to quantify
the influence of different parameters on the model out-
puts of interest. The SA process works as follows: (1)
identify the adjustable parameters and their feasible
ranges, (2) generate samples in high-dimensional param-
eter space and run the model with those samples, and
(3) choose one or more appropriate SA methods and ob-
jective functions to quantify the parameter sensitivity
with the input parameters and output variables. The ad-
justable parameters and their feasible ranges are pre-
sented in “Results and discussion” section. Below, we
provide a brief description of the sampling method, SA
method and tools used in this study.

Sampling method
In previous research (Gong et al. 2016a), we have found
that the good lattice points (GLP) method can generate
relatively more uniform samples than other methods,
such as the widely used Monte Carlo and Latin Hyper-
cube methods; therefore, we choose this sampling
method in this study. The GLP method is also called the
Korobov lattice rules (Hlawka 1962; Korobov 1959a;
Korobov 1959b; Korobov 1960), which is a number
theory-based quasi-Monte Carlo (QMC) method. The
GLP design is generated by the following equations:

qki ¼ khi mod nð Þ
xki ¼ 2qki−1ð Þ=n ; k ¼ 1;⋯; n; i ¼ 1;⋯; s

�
ð1Þ

where n represents the number of samples, s represents
the number of dimensions, xki represents the coordinate
of the kth sample point in the ith dimension, qki repre-
sents an internal variable, and hi represents an element
in the generating vector. The range of coordinate xki is
restricted to [0,1]. The greatest common divisor of hi
and n is 1. The vector (n : h1,⋯, hs) is called the generat-
ing vector. If the point set Pn = {xk = (xk1,⋯, xks), k = 1,
⋯, n} is more uniform than any other generating vec-
tors, then the point set Pn is selected as the GLP set.
With the uniformly scattered samples generated by the
GLP method, we can cover the parameter space with
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less samples and, thus, save computational resource
costs for the sensitivity analysis.

Sensitivity analysis methods
This study employed two qualitative SA methods to per-
form the parameter screening: multivariate adaptive re-
gression splines (MARS) and random forests (RF).
Moreover, to validate the parameter screening results
obtained by the qualitative methods, the sparse polyno-
mial chaos expansion (PCE)-based Sobol’ method (SPC)
was applied to compute the total effects of the
parameters.

Multivariate adaptive regression splines
The MARS method (Friedman 1991) is a generalization
of the stepwise linear regression, and it is suitable for
high-dimensional problems. We call the two expanded
piecewise linear basis functions (x − t)+ and (t − x)+ used
in the MARS the reflected pair, where t is a constant
called the knot. Our aim is to form reflected pairs for
each parameter Xj with knots at each xij value for that
input. Therefore, the collection of basic functions is

C ¼ X j−t
� �

þ; t−X j
� �

þ
n o
� t∈ x1 j; x2 j;⋯; xNj

� �
; j ¼ 1; 2;⋯; p

� � ð2Þ
where N represents the number of samples, p represents
the total number of adjustable parameters, and Xj repre-
sents the j-th adjustable parameter.
The MARS method includes a forward procedure and

backward procedure. First, we build a forward stepwise
linear regression using the functions from the set C and
its products. Thus, the model has the form

f Xð Þ ¼ β0 þ
XM
m¼1

βmhm Xð Þ ð3Þ

where β0 represents the intercept, βm represents the
slope, and f(X) corresponds to the predicted value of the
observable variables (i.e., the output variables), such as
temperature or precipitation. Both β0 and βm are regres-
sion coefficients in the regression model, and their
values are estimated by minimizing the residual sum-of-
squares. Each hm(X) is a function of C or a product of
two or more similar functions, and M represents the
number of functions. Equation (3) is a regression model
that can predict the value of the observable variable yi
with the parameter value X.
This model typically overfits the data; therefore, a

backward deletion procedure should be applied. The
term whose removal causes the smallest increase in the
residual squared error is deleted from the model at each

stage to produce an estimated best model ( bf λ ) for each
size (number of terms) of λ. The MARS procedure uses

generalized cross-validation (GCV) to estimate the opti-
mal value of λ:

GCV λð Þ ¼

Xn
i¼1

yi− bf λ xið Þ
� �2

1−M λð Þ=nð Þ2 ð4Þ

where n represents the number of observations, yi repre-
sents the ith observation, bf λðxiÞ represents the estimated
value of yi, and M(λ) represents the number of effective
parameters in the model.
The importance of the removed variable is measured

by the increase in GCV values between the pruned
model and overfitted model (Steinberg et al. 1999). The
greater the increase in GCV is, the more important the
removed variable.
The MARS method can also be used as a surrogate-

model. Shahsavani et al. (2010) showed that using the
MARS surrogate model to replace the original dynamic
model can provide acceptable estimates of the total sen-
sitivity indices at much lower costs.

Random forest
The random forest (RF) is a very efficient and increas-
ingly popular machine-learning algorithm for both clas-
sification and regression problems that was introduced
by Breiman (2001). RFs are a substantial modification of
bagging (Breiman 1996) that construct multiple trees
(i.e., forests) using bootstrap sampling, and their deci-
sions are averaged. The main difference between RFs
and bagging is that a RF searches a randomized subset
of input variables to determine a split at each node,
which is the reason why it is called “random” forests.
The basic principle of RFs is a group of weak learners
that can come together to form a strong learner.
The random forest algorithm is as follows:

1. Extract a bootstrap sample, Z*, of size N from the
training data.

2. For each of the bootstrap samples, grow a random
forest tree by recursively repeating the following
steps ((a) to (c)) for each terminal node of the tree
until the minimum node size nmin is reached.
(a) Randomly select m variables from the total p

variables, where m < < p.
(b) Among the m variables, pick up the best

variable/split point.
(c) Split the node into two daughter nodes using

the best split.
3. Predict the new data by aggregating the predictions

of the N trees.

Compared with other classification and regression
techniques, the RF has its unique advantages: RFs can
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avoid overfitting because of the law of large numbers,
and RFs can be used to identify important factors. The
total number of splits can determine the importance of
this variable. The more splits the variable has, the more
sensitive the variable is.

Sparse PCE-based Sobol’ method
The Sobol’ method (Sobol’ 1993) is a quantitative SA
method based on the principle of variance decompos-
ition and can be applied to nonlinear, nonmonotonic
mathematical models. Its core idea is to decompose the
total variance of the objective function into the variance
of a single parameter and the variance of the interaction
between parameters. By comparing the three methods of
PEST, RSA, and ANOVA with the Sobol’ method, Tang
et al. (2006) considered that the Sobol’ method is more
robust and superior to other methods in both single ob-
jective and multi-objective sensitivity analyses.
Suppose the problem can be considered as y = f(X) =

f(X1,⋯, Xk), where y represents the objective function of
the model output (e.g., the root mean square errors of
the simulated values and default values), and X = (X1,⋯,
Xk) is the vector of the k model factors (e.g., parameters)
to be used to control the behavior of the model. Without
loss of generality, each parameter Xi was supposed to be
feasible in range [0, 1]. Our purpose is to explore how
much of the total variance D(y) in y can be explained by
variability in the factors of X. The Sobol’ method com-
putes this by decomposing the function f(X) into terms
of increasing dimensionality, such that each successive
dimension represents how much the interaction between
parameters increases.

f X1;X2;⋯Xkð Þ ¼ f 0 þ
Xk
i¼1

f i Xið Þ

þ
X

1≤ i< j≤ k

f ij Xi;X j
� �þ⋯

þ f 1;2;⋯;k X1;⋯;Xkð Þ ð5Þ

where f0 is constant that equals to the expected value of
f(X), fi(Xi) is a function of the ith parameter, fij(Xi, Xj) is
a function of the ith and jth parameters, etc. The inte-
grals of the decomposed functions (also called sum-
mands) fi(Xi), fij(Xi, Xj), ⋯, f1, 2, ⋯, k(X1,⋯, Xk) are equal
to zero:

Z 1

0
f i1;i2;⋯;is Xi1 ;⋯;Xisð Þdxik ¼ 0 if 1≤k ≤s ð6Þ

All the summands can be computed recursively like
this:

f 0 ¼
Z1
0

…

Z1
0

f Xð ÞdX;

f i Xið Þ ¼
Z1
0

…

Z1
0

f Xð ÞdX�i− f 0;

f ij Xi;X j
� � ¼ Z1

0

…

Z1
0

f Xð ÞdX�ij− f 0− f i Xið Þ− f j X j
� �

;

ð7Þ
The notation ~ means the parameters are excluded

like this X~i = (X1, … , Xi − 1, Xi + 1, … , Xk).
The total variance of the function f(X) is defined as:

D Yð Þ ¼
Z 1

0
⋯

Z 1

0
f 2 Xð ÞdX− f 20 ð8Þ

And the contribution of a generic term f i1;⋯;isð1≤ i1
< ⋯ < is≤kÞ to the total variance can be written as

Di1;⋯;is ¼
Z 1

0
⋯

Z 1

0
f 2i1;⋯;is

Xi1 ;⋯;Xisð ÞdXi1⋯dXis

ð9Þ
where Di1;⋯;is denotes the partial variance corresponding
to (i1,⋯, is), the integer s is called the order or the di-
mension of the index. On this basis, the total variance of
the output variable Y can be decomposed into of all par-
tial variances:

D yð Þ ¼
Xk
i¼1

Di þ
X

1≤ i< j≤ k

Dij þ⋯D1;2;⋯k ð10Þ

where Di represents the contribution of factor Xi to D(y)
and Dij represents the contribution of the interaction be-
tween factors Xi and Xj. Similarly, D1, 2, ⋯k represents
the contribution by the interaction of k factors. The
Sobol’ sensitivity index of s factors is defined as

Si1;⋯;is ¼
Di1;⋯is

D Yð Þ ; 1≤ i1 < ⋯ < is≤k ð11Þ

and the sum of all Sobol’ sensitivity indices equals to 1:

1 ¼
Xn

i¼1
Si þ

X
1≤ i< j≤ k

Sij þ⋯þ S1;2;⋯;k ð12Þ

In the Sobol’ method, Si =Di/D(Y) is the main effect
(i.e., the first-order effect) of the ith variable, and Sij =
Dij/D(Y) is the interaction effect (i.e., second-order ef-
fect) of the ith and jth variables. STi = 1 −D~i/D(Y) repre-
sents the total sensitivity of the ith variable, where D~i

represents total variance excluding the ith variable.
Total effect reflects the parameter’s overall contribu-

tion to the total variance. The total effect of a factor Xi
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is the sum of the first-order effect (main effect) and all
other order effects involving Xi, including two factor
interaction effects and all higher order interaction
effects.
Traditionally, the Sobol’ indices are evaluated with

Monte Carlo sampling, and to obtain an accurate es-
timation the number of sample size (equals to num-
ber of model simulation) is usually very high. Sobol’
method is too expensive for computationally expen-
sive models. Using surrogate model to replace the ex-
pensive dynamic model in Sobol’ method can
significantly save the computational resources. Sudret
(2008) proposed a post-processing of polynomial
chaos expansions (PCE) that can directly obtain the
Sobol’ sensitivity indices from the polynomial coeffi-
cients of PCE. Comparing with the Monte Carlo sam-
pling and the PCE-based way of computing Sobol’
indices, Sudret’s PCE-based method cost less compu-
tational resources and can obtain more accurate
result.
Here is a brief introduction to sparse PCE Sobol’

method. Considering a random vector with independent
components X ∈ℝk and a computational model Y = f(X)
with finite variance, the polynomial chaos expansion of
f(X) is defined as:

Y ¼ f Xð Þ ¼
X
α∈ℕ k

λαΨα Xð Þ ð13Þ

where the Ψα(X) are multivariate polynomials orthonor-
mal with respect to the distribution of X , α ∈ℕk is a
vector of indices that identifies the components of the
multivariate polynomials Ψα, and the corresponding λα ∈
ℝ are the coefficients of each orthonormal. Equation
(13) is usually referred to as the polynomial chaos ex-
pansion (PCE) of Y. In realistic applications, the trun-
cated polynomial chaos expansions are usually
introduced to retain only a finite number of PCE terms:

f Xð Þ ≈ f PC Xð Þ ¼
X
α∈A

λαΨα Xð Þ ð14Þ

In this equation, A is the set of vectors of selected in-
dices of multivariate polynomials. This equation is called
the full polynomial chaos. The key of constricting a
sparse polynomial chaos (SPC) is to determine the coef-
ficients λα of each term. In this paper, we used the or-
thogonal matching pursuit (OMP) originally proposed
by Pati et al. (1993) to determine the polynomial
coefficients.
The Sobol’ indices can be computed from the polyno-

mial coefficients λα directly as follows:

E f Xð Þð Þ ≈ λ0;
V f Xð Þð Þ ≈

X
α∈A
α≠0

λ2α;

Si ≈
1

V f Xð Þð Þ
X
α∈ASi

λ2α with ASi ¼ α : αi > 0; αk ¼ 0 for k≠if g;

STi ≈
1

V f Xð Þð Þ
X

α∈ASTi

λ2α with ASTi ¼ α : αi > 0f g;

ð15Þ

where ASi is the set of indices vectors that only have the
ith factor, while ASTi is the set of indices vectors that
have the ith factor and maybe also others, E(f(X)) and
V(f(X)) are mean and variance of f(X), respectively. The
confidence intervals of Sobol’ sensitivity indices can be
estimated with the bootstrap method (Efron 1979).

Tools
The Uncertainty Quantification Python Laboratory (UQ-
PyL) (Wang et al. 2016) is a flexible software platform
designed to quantify uncertainties in large complex dy-
namical models. UQ-PyL integrates different kinds of
UQ methods, including experimental design, statistical
analysis, sensitivity analysis, surrogate modeling, and
parameter optimization. In this study, we used the unre-
leased developed version of the UQ-PyL for the experi-
mental design and sensitivity analysis. The MARS
algorithm is available from the open-source software py-
earth (https://github.com/scikit-learn-contrib/py-earth),
the Sobol’ method implemented in SALib (https://
github.com/SALib/SALib), and the Sparse PCE-based
Sobol’ method we used comes from UQLab (https://
www.uqlab.com/).

Model and parameters
We selected an EMIC called LOVECLIM (Goosse et al.
2010) to explore the parameter sensitivity of its various
output variables. LOVECLIM has five components: the
atmospheric model ECBILT (Opsteegh et al. 1998), the
sea-ice and ocean model CLIO (Goosse and Fichefet
1999), the terrestrial biosphere model VECODE (Brovkin
et al. 1997), the ocean carbon-cycle model LOCH (Mou-
chet and François 1996), and the ice-sheet model
AGISM (Huybrechts 2002). Originally, the ECBILT and
CLIO were coupled in the late 1990s (Goosse et al.
2001; Goosse et al. 2002). This version is followed by the
ECBILT-CLIO-VECODE model, which includes the ter-
restrial biosphere (Renssen et al. 2003; Renssen et al.
2005). The LOVECLIM acronym (LOCH-VECODE-
ECBILT-CLIO-AGISM) has been used when the LOCH
and AGISM models were part of the system. In this
study, we used LOVECLIM version 1.3 and only coupled
the ECBILT-CLIO-VECODE components. The LOCH
and AGISM components were not utilized in this article
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because they are not necessary for the processes investi-
gated here, they are not public, and their use is subject
to permission.
Loutre et al. (2011) and Goosse et al. (2007) explored

the impact of parameter changes on the performance of
the LOVECLIM with various parameter sets. Based on
their experience on selecting adjustable parameters and
the physical meanings of the parameters, 25 parameters
in LOVECLIM are chosen as the adjustable parameters
in this study. Previous studies have shown that approxi-
mately ± 30% perturbations in the default parameter
values were suggested for the sensitivity and uncertainty
analyses (Tan et al. 2017). One way to make the reduc-
tion of model large-scale biases and the parameterization
development processes more “in tune” is by deriving an
acceptable range of parameter values instead of a single
value from the aforementioned process studies and use
this range when tuning global simulations (Hourdin et
al. 2017). Based on our experience and the physical
meanings of the adjustable parameters, we determined
the feasible ranges of the parameters, as shown in
Table 1. These adjustable parameters can be classified
into three categories: atmosphere, land, and ocean. A
rough rule of thumb about the sample size is that at
least 10 × n sample points are needed to identify the key
factors (i.e., parameters), where n represents the number
of experimental factors (Levy and Steinberg 2010). In
this study, 25 × 10 = 250 samples were generated with
the GLP method.

Results and discussion
Experiment on the perturbed parameters
We performed climate simulations using LOVECLIM
over a 2100-year period from 1 to 2100 C.E. using the
default model parameters as treat the simulation as con-
trol run. We then run LOVECLIM model 250 times
using sampled parameter sets generated by the GLP
method described in “Methods and tools” section for the
same period. We chose six output variables as the ana-
lysis objects: global mean near-surface air temperature
(TG), total global runoff over land surface (RL), total pre-
cipitation over land surface and ocean (PL and PO), and
total evaporation over land surface and ocean (EL and
EO).
According to the analysis of these output variables, we

found that 189 simulation results are valid, while the
other simulations drifted or crashed during the simula-
tion period. We have also examined the trends of TG in
these 189 simulations over the period 1001 to 1800 C.E.,
the maximum absolute value of the trends is 0.00291 °C/
year, which is within a reasonable range. Figure 1 shows
all of the time series of the output variables simulated
with perturbed parameters, with the redline denoting
the climatological means of observations and the black

line denoting the ensemble mean. The climatological
means of observations of TG used is the twentieth-
century average provided by NOAA (https://www.ncdc.
noaa.gov/sotc/global/201613), and the global water
budget components RL, PL, PO, EL, and EO is obtained
from the work by Trenberth et al. (2007) based on ERA-
40 reanalysis data. Their ensemble spreads span across a
wide range, and the differences between the highest
values and lowest values are significant. From Fig. 1a–f,
the maximum ranges between the highest values and
lowest values are 10.35 °C, 22.16 × 103 km3, 88.67 ×
103 km3, 264.82 × 103 km3, 84.17 × 103 km3, and
269.61 × 103 km3, respectively. Note that the ensemble
spreads of some variables covered the climatological
values, including TG, PL, PO, EL, and EO. However, the
observed climatological mean of RL is out of the range
of the ensemble spread, indicating a model structural
problem, which will be elaborated more in details later.
Figure 2 shows the probability density function for the

results of the output variables using perturbed parame-
ters and compares them with the simulation results
using the default parameter and climatological mean
values. Compared with the climatological mean, the
simulation with default parameters has a warming bias
of approximately 1 °C, and PL, PO, EL, and EO are all
positively biased, indicating a more active hydrological
cycle than observed occurred. Compared with the ERA-
40 reanalysis data, RL has a significant negative bias and
EL has a strong overestimation. Comparing with the real
world, the runoff over land surface is too little, while
evapotranspiration over land is too much. The positively
biased EL leads to biased surface latent heat flux and
may possibly have some influence of global energy
balance.
The entire simulated hydrological processes in LOVE-

CLIM seem to be significantly biased. Taking the control
run with default parameters as an example, almost all of
the precipitation over land was evaporated. As shown in
Fig. 2b, the error in RL was as large as 16.28 × 103 km3,
equals to 40.7% of the 40 × 103 km3 total global runoff.
Furthermore, none of the perturbed parameter sets can
simulate large enough runoff values. It might be very dif-
ficult to find a parameter that can correct the bias of
runoff without degrading other processes. This result in-
voked us to think about the problem of the model struc-
ture. According to Goosse et al. (2010), a very simple
LBM (land-surface bucket model) is used to describe
hydrological processes. The LBM has a bucket scheme,
whose bottom has no water leakage. The only way to
generate runoff is to fill up the bucket. This might be a
possible reason for the negatively biased runoff. In the
real world, part of the soil water stored in deep layers
does not take part in evapotranspiration; it becomes run-
off if the deep soil is saturated while the topsoil is
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unsaturated. Consequently, in hydrological models, usu-
ally a leaky bucket (or multiple leaky buckets) are used
to describe this process. If the bucket is not leaky, all of
the water must take part in evapotranspiration, similar
to a “shallow sea” scenario, and runoff cannot be gener-
ated from half-filled bucket. The oversimplified LBM
model may lead to negatively biased runoff, overesti-
mated evapotranspiration and latent heat flux over land,
and biased thermodynamic discrepancy between land
and ocean. Too much water involved in land evapotrans-
piration may possibly be the reason why the simulated
global hydrological cycle is stronger than that of the real
world, as it pumps more water into the atmosphere. Be-
cause of the complex interactions among the atmos-
phere, land, sea, and biosphere, the influence of a biased
hydrological process may distort the global climate and
lead to biased future climate projections.

The overall sensitivity analysis results
The simulation results of year 1951 to 2000 C.E. were
selected for sensitivity analysis. Figure 3 shows the SA
results for three output variables: global mean surface
temperature, total global precipitation, and total global
evaporation with three SA methods: the MARS, random
forest, and sparse PCE-based Sobol’ methods (SPC). The
sensitivity scores of the 25 parameters are normalized to
[0, 1]. The blue columns in the figures represent the SA
results (MARS GCV score) of the MARS method; the
red columns in subfigures (a) (c) (e) represent the SA re-
sults (RF score) of the random forests, while the red col-
umns in subfigures (b) (d) (f ) represent the SA results
(Sobol’ indices) of the SPC method. As shown in Fig. 3a,
b, the parameters P1, P3, and P4 are very sensitive to
surface temperature with the three SA methods, while
the other parameters are not sensitive to surface
temperature within the adjustable range of parameters
we chose in this study. For the total global precipitation

Table 1 List of selesscted adjustable parameters and their
ranges of LOVECLIM

Index Module Parameter Definition Default Range

P1 ECBILT-
atm

ampwir Scaling coefficient for the
longwave radiation
scheme
(amplw)—general value
(excluding the equator
area).

1 [0.5,
1.5]

P2 ECBILT-
atm

ampeqir Scaling coefficient for the
longwave radiation
scheme (amplw)—for the
equator area between
15° S and 15° N.

1.8 [1.0,
2.5]

P3 ECBILT-
atm

expir Exponent for the
longwave radiation
scheme

0.4 [0.2,
0.6]

P4 ECBILT-
atm

relhmax Precipitation also occurs
if the total precipitable
water below 500 hPa is
above this relevant
threshold.

0.83 [0.50,
0.90]

P5 ECBILT-
atm

cwdrag Drag coefficient to
compute wind stress

2.1E-3 [1.0E-3,
4.0E-3]

P6 ECBILT-
atm

cdrag Drag coefficient to
compute sensible and
latent heat fluxes

1.4E-3 [1.0E-3,
2.0E-3]

P7 ECBILT-
atm

uv10rfx Reduction in wind speed
between 800 hPa and
10 m

0.8 [0.7,
0.9]

P8 ECBILT-
atm

dragan Rotation of the wind
vector in the boundary
layer (unit: degree)

15 [10, 20]

P9 ECBILT-
land

alphd Albedo of snow 0.72 [0.60,
0.90]

P10 ECBILT-
land

alphdi Albedo of bare ice 0.62 [0.50,
0.80]

P11 ECBILT-
land

alphs Albedo of melting snow 0.53 [0.30,
0.60]

P12 ECBILT-
land

albice Albedo of melting ice
(general)

0.44 [0.30,
0.60]

P13 ECBILT-
land

albin Albedo of melting ice
(Arctic)

0.44 [0.30,
0.60]

P14 ECBILT-
land

albis Albedo of melting ice
(Antarctic)

0.44 [0.30,
0.60]

P15 ECBILT-
land

cgren Increase in snow/ice
albedo under cloudy
conditions

0.04 [0.01,
0.10]

P16 ECBILT-
atm

corAN Reduction in
precipitation over the
Atlantic (North)

−0.085 [−0.10,
−0.05]

P17 ECBILT-
atm

corAS Reduction in
precipitation over the
Atlantic (South)

−0.085 [− 0.10,
− 0.05]

P18 ECBILT-
atm

corAC Reduction in
precipitation over the
Arctic

−0.25 [−0.30,
− 0.20]

P19 ECBILT-
land

evfac Maximum evaporation
factor over land

1 [0.5, 1]

Table 1 List of selesscted adjustable parameters and their
ranges of LOVECLIM (Continued)
Index Module Parameter Definition Default Range

P20 ECBILT-
land

bmoismfix Maximum bucket depth
(unit: m)

0.15 [0.01,
0.50]

P21 CLIO-
ocean

bering Scaling factor for
computing the Bering
Strait throughflow

0.3 [0.2,
0.5]

P22 CLIO-
ocean

ai Coefficient of isopycnal
diffusion (unit: m2 s−1)

300 [200,
400]

P23 CLIO-
ocean

aitd Gent-McWilliams
thickness diffusion
coefficient (unit: m2 s−1)

300 [200,
400]

P24 CLIO-
ocean

ahs Horizontal diffusivity for
scalars (unit: m2 s−1)

100 [50,
150]

P25 CLIO-
ocean

ahu Horizontal viscosity (unit:
m2 s−1)

1E5 [0.5E5,
1.5E5]
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and total evaporation, the results of the MARS, RF,
and SPC methods are consistent with each other, and
the parameters P1, P2, P3, P4, P6, and P19 are sensi-
tive. The confidence intervals of Sobol’ indices have
also been estimated with bootstrap method. The 25%
and 75% quantiles of each indices were shown in
Fig. 3b, d, f. Comparing with the magnitude of Sobol’
indices, the range of confidence intervals are relatively
small, leading to a high confidence of the result of
sensitivity analysis. Although there are some discrep-
ancies in the order of sensitivity scores, three differ-
ent methods have reached a consensus that which

parameters are sensitive and which are not. In gen-
eral, we can conclude that the three methods produce
similar results with satisfying confidence to make a
solid conclusion.
Furthermore, we have also evaluated the parameter

sensitivity of pre-industrial age (1701 to 1800 C.E.). Gen-
erally speaking, the sensitivity analysis results are similar
to that of current age (1951 to 2000 C.E.). All of the fig-
ures presenting sensitivity analysis results of both pe-
riods can be found in the Additional file 1: Figures S1–
S12. In the following parts of this paper, only results of
current age (1951 to 2000 C.E.) were presented.

Fig. 1 The time series of output variables simulated with default and perturbed parameters. a Global mean near-surface air temperature (TG).
b Total global runoff over land surface (RL). c Precipitation over land surface (PL). d Precipitation over ocean (PO). e Evapotranspiration over
land surface (EL). f Evaporation over ocean (EO)
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Sensitivity analysis results of global mean output
variables
Figure 4 shows the sensitivity results of the global
mean values of 20 output variables (Table 2) to 25
adjustable parameters provided by the SPC method.
We find that parameters P1, P3, P4, and P19 are sen-
sitive for almost every variable. Parameters P2, P5,
P6, and P9 are sensitive for 8–15 variables. All other
parameters are slightly sensitive for the selected out-
put variables.

Referring to the parameter list in Table 1, we find that
the sensitive parameter P1 and P2 are scaling coefficient
for the longwave radiation scheme, which controls the
radiation due to the anomaly of humidity. The param-
eter P3 is the exponent of humidity anomaly for the
longwave radiation scheme. The sensitivity of the above
three parameters confirms our prior knowledge that the
longwave radiation from atmospheric water vapor is an
important factor in the global climate system. The P4
parameter, which is about microphysics and

a b

c d

e f

Fig. 2 The probability density function (PDF) of the simulation with perturbed parameters, simulation with default parameters and the climatological mean
data. a Global mean near-surface air temperature (TG). b Total global runoff over land surface (RL). c Precipitation over land surface (PL). d Precipitation over
ocean (PO). e Evapotranspiration over land surface (EL). f Evaporation over ocean (EO)
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precipitation, can also influence many aspects of global
climate. As the only global microphysics parameter, P4
controls the amount of atmospheric water vapor and
precipitation worldwide, and consequently influence the
global energy balance. The drag coefficients P5 (for wind
stress) and P6 (for sensible and latent heat fluxes) are
also important because they played an important role in
land-atmosphere interactions. P6 is more important be-
cause the sensible and latent heat flux can influence
both energy and water balance. The parameters P1 to P6
are about global water and energy balance in the atmos-
phere module, and we have confirmed that they have
strong influence to the global climate simulation. The
snow albedo P9 can influence radiation and temperature
terms, confirming that the parameterization of snow
cover is important for climate modeling. The maximum
evaporation factor over land (P19), which can adjust the
evapotranspiration amount over land surface, is also sen-
sitive to many output variables, indicating the

importance of land surface evapotranspiration process to
the global climate system.
However, some parameters that are considered to be

also important, or at least functional, were shown to be
only slightly sensitive in our results. The snow/ice pa-
rameters such as the albedos of bare ice (P10), melting
snow (P11), melting ice (P12, P13, P14) and correct fac-
tor of snow/ice albedo under cloudy conditions (P15),
the precipitation and microphysics regional reduction
factors P16~P18, and all of the ocean module parame-
ters P21~P25. The most unexpected result is that all of
the ocean parameters are only a little sensitive in the
time scale of thousands of years, which somehow dis-
agree with our prior knowledge that the ocean processes
controls the climate variability in the time scale of hun-
dreds to thousands of years. All of the three sensitivity
analysis methods, namely MARS, RF, and SPC, have
reached a consensus that the ocean parameters are at
least not relatively important in the range evaluated in

a

f

d

e

c

b

Fig. 3 SA results of the three variables with the MARS, random forests, and SPC methods. a Sensitivity scores for the global mean surface temperature
via MARS and the RF. b Sensitivity scores for the global mean surface temperature via the MARS and SPC methods. c Sensitivity scores for total global
precipitation via MARS and the RF. d Sensitivity scores for total global precipitation via the MARS and SPC methods. e Sensitivity scores for total global
evaporation via MARS and the RF. f Sensitivity scores for total global evaporation via the MARS and Sobol’ methods
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this research. Furthermore, the confidence interval esti-
mated with SPC made this conclusion more solid.
To further confirm this conclusion, we have also eval-

uated the interaction effects with SPC method. The re-
sults have been shown in Additional file 1: Figures S3
and S4. Both the mean value and the standard deviation
of Sobol’ indices were presented. The results indicated
that only a few interactions are significant, and most
others, such as the ocean module parameters P21~P25,
do not have strong interactions. The standard deviation
represented the uncertainty, or the confidence of Sobol’
indices estimation. Generally speaking, the uncertainty
of interaction estimation is relatively not large, confirm-
ing that the estimation of interaction effects is accurate
enough to make a solid conclusion.
To sum up, considering the parameterization scheme

and the implemented physics of LOVECLIM, some pa-
rameters in this model are really not strongly sensitive
to the listed model output variables, yet they might be
sensitive to some variables not involved in this study,
such as the meridional overturning circulation (MOC).
Further investigation with more recent advanced sensi-
tivity analysis methods and involving more simulated
processes may lead to deeper understanding about the
model behavior and the deep interactions between at-
mosphere, land, ocean and cryosphere.

Spatial dependence of sensitivity results
Figure 5 shows the MARS GCV of the grid mean values
of surface air temperature to 25 adjustable parameters.
This figure presents the spatial distribution of the

Fig. 4 Sobol’ sensitivity index of global mean output variables (x-axis) to the 25 adjustable parameters (y-axis)

Table 2 Output variables of LOVECLIM

No. Name Definition

1 q Specific humidity

2 ts Surface temperature

3 bm Bottom moisture

4 shf Surface sensible heat flux

5 lhf Surface latent heat flux

6 r Relative humidity

7 alb Surface albedo

8 ssr Surface solar radiation

9 tsr Top solar radiation

10 str Surface thermal radiation

11 ttr Top thermal radiation

12 evap Surface evaporation

13 pp Total precipitation

14 sp Surface pressure

15 snow Total snow fall

16 evap_land Surface evaporation over land

17 evap_sea Surface evaporation over sea

18 pp_land Total precipitation over land

19 pp_sea Total precipitation over sea

20 TOA Top of the atmosphere net flux
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sensitivity index MARS GCV of surface air
temperature, indicating the diversity of sensitivity
index between land/sea surfaces and between different
latitudes. Generally, there are nine parameters that
are globally sensitive regarding surface temperature.
Among them, P1, P3, and P4 are the most sensitive
parameters for surface temperature. P1 and P3 are
more sensitive in mid- and high-latitude regions,
while P4 is more sensitive in tropical regions. The
sensitivities of P1, P3, and P4 do not have significant
land/sea differences. P2, P5, P6, P9, P19, and P25 are
marginally sensitive and have some latitudinal dis-
crepancies. Other parameters are nearly insensitive for
every variable.
In Fig. 6, parameters P1, P3, P4, P5, and P19 are the

most sensitive parameters, while P2, P6, P9, and P25 are
marginally sensitive for the global grid mean values of
precipitation. P5 is very sensitive in the tropical Pacific
region, while P1 and P3 are not sensitive in this region.
P4 has several sensitive regions west of the continents.
P19, as a maximum evaporation factor over land, is sig-
nificantly sensitive globally over both land and sea.
In Fig. 7, parameters P1, P3, and P19 are the parame-

ters that are most sensitive to evaporation, while P2, P4,
P5, P6, P9, and P25 are marginally sensitive. P2 is sensi-
tive in the tropical region, and P5 is sensitive in the trop-
ical Pacific.

Figures 5, 6, and 7 also show the spatial distributions
of the parameter sensitivities. Generally, parameters
related to longwave radiation have a greater impact in
mid- and high-latitude regions, while parameters related
to microphysics and the land-surface evapotranspiration
factor have a greater impact on low latitudes. Upon a
comparison with Fig. 4, we find that the sensitivity pa-
rameters are almost the same for both the grid mean
values of the variables and the global mean values.

Potentials for improving climate simulations using
perturbed parameters
To verify the usefulness of the sensitivity analysis, we
have selected two parameters sets with better simulation
results than the default parameters for the six variables
involved in this paper. They are the 24th and 47th sam-
ple points of the 189 valid simulations. Figure 8 com-
pared the errors between observations and simulated
values using default parameters with those using the
24th, 47th sampling parameters respectively. The vari-
ables we considered from left to right are the simulated
values of TG, RL, PL, PO, EL, and EO. We can find that
the errors of most variables between observations and
the simulated values with the 24th, 47th sampling
parameters are less than the errors between observations
and the simulated values with default parameters (espe-
cially the PO), while both of the errors of RL are similar.

Fig. 5 Sensitivity index (MARS GCV) of gridded surface air temperature to the 25 adjustable parameters
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Fig. 6 Sensitivity index (MARS GCV) of gridded total global precipitation to the 25 adjustable parameters

Fig. 7 Sensitivity index (MARS GCV) of gridded total global evaporation to the 25 adjustable parameters
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This shows that some of the errors can be greatly re-
duced by tuning the most sensitive parameters, while
the remained model errors can be attributed to both
model structure and model input.

Conclusions
In this study, we used SA methods to identify the most
sensitive parameters for surface temperature, total pre-
cipitation, and total evaporation. The results of the three
SA methods are consistent with each other: There are
three to seven parameters that are deemed most sensi-
tive in LOVECLIM depending on which climate vari-
ables are evaluated. In addition, the sensitive parameters
for temperature and the water cycle components are dif-
ferent. Some of the sensitive parameters can affect
temperature as well as climatic variable associated with
the water cycle, and their effects are global. This result is
very significant, as it reveals that if we would prefer to
tune some of the adjustable parameters, we would need
to focus on only a few of the parameters and not all of
them. The spatial distribution of the parameter sensitiv-
ity is different. Parameter sensitivity has obvious differ-
ences at different latitudes and smaller differences
between sea and land surfaces. In general, parameters re-
lated to longwave radiation have a greater impact on
mid- and high latitudes, while parameters related to
microphysics and the land-surface evapotranspiration
have a greater impact on low latitudes. The screened pa-
rameters are generally consistent with the physical inter-
pretations of the model parameters. Some parameters
about snow/ice albedos and ocean seem only a little
sensitive.

We would like to emphasize that the 25 parameters
considered here do not comprise all tunable parameters
in the LOVECLIM model. Similarly, we only selected
some of the important output variables in LOVECLIM
for the sensitivity analysis in this study. In the future, we
are going to explore the sensitivity of more parameters
in more complex Earth system models and compare sen-
sitivity of more output variables with advanced analysis
tools. However, the results obtained here can still pro-
vide a useful reference for anyone who would like to
utilize a similar strategy. Furthermore, we also found
that the simulation results of the climatic variables we
selected from some of the sampled parameters are better
than the results using the default parameters. It indicates
that there is a great potential to improve climate simula-
tion by optimizing the model parameters. We therefore
recommend that parameters optimization should be
used as one of the ways to improve the simulations of
the climate system. To perform optimization in such
cases, future studies must make use of more sophisti-
cated optimization tools, including the surrogate
modeling-based optimization approach, to save compu-
tational resources and, therefore, feasibly achieve a
multi-objective optimization strategy for the model cali-
bration of complex dynamic models.
In this study, the total global runoff simulated using

the default parameters is 16.28 × 103 km3 (40.7%) lower
than the total global runoff obtained from the ERA-40
reanalysis data. Meanwhile, the total global precipitation
and evaporation from both land and sea surfaces are lar-
ger than those in the reanalysis data, implying a bias to-
ward stronger global hydrological cycle compared to

Fig. 8 Errors between the simulated valued of global mean near-surface air temperature (TG), total global runoff over land surface (RL),
precipitation over land surface (PL), precipitation over ocean (PO), evapotranspiration over land surface (EL), evaporation over ocean (EO) by the
default parameters, and the 24th and 47th sampling parameters and the corresponding observations

Shi et al. Progress in Earth and Planetary Science            (2019) 6:46 Page 15 of 18



that of the real world. The biased hydrological cycle
might be a possible reason for the 1 °C warmer global
temperature and may lead to unknown distortions in
Earth system simulations. It is almost impossible to re-
duce the error only through parameter tuning if the
model physics is not properly represented. If the param-
eters of a physically incorrect model were forced to fit
the observations, the interior processes in the model
would be wrong as well, and the future climate projec-
tion might be untrustworthy. The reason for the biased
hydrological cycle might be due to the oversimplified
land-surface hydrological processes. This leads to the
problem that no matter how the parameter values are
perturbed, runoff is always negatively biased. This fact
suggests that although parameter calibration is some-
times useful, it has limit in solving the model structure
problem. Tuning the parameters, of course, does not
have the ability to correct problematic or oversimplified
model structures. Therefore, the model structure of
LOVECLIM needs to be further improved, especially in
terms of its hydrological circulation process.

Additional file

Additional file 1: Figures S1-S6. Sensitivity analysis results of current
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