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Abstract

Stratigraphic and paleontological investigations in Mugi Town, on the Pacific coast of Shikoku Island, revealed evidence
of as many as five tsunami inundations from events along the Nankai Trough between 5581 and 3640 cal yr BP. Nine
event deposits (E1-E9) were identified in cores ranging in length from 2 to 6 m, consisting of sandy and gravelly layers
interbedded with organic-rich mud. Sedimentary structures in the event deposits observed by computed tomography
included normal grading and sharp lower stratigraphic contacts. Event deposits E3, E6, E7, and E8 contained mainly
brackish-marine diatom species, suggesting that they had been deposited during inundation by seawater. In addition,
fossil diatom assemblages were markedly different above and below event deposits E3, E4, E6, and E8. For example,
assemblages below event deposit E6 were dominated by a freshwater species (Ulnaria acus), whereas assemblages above
it were predominantly brackish-marine (Diploneis smithii, Fallacia forcipata, and Fallacia tenera). We attributed these
changes to the increase of marine influence due to coastal subsidence associated with subduction-zone earthquakes, as
documented in the 1946 Showa-Nankai earthquakes. We conclude that event deposits E3, E6, and E8 and perhaps E4 and
E7 were deposited by tsunamis generated by subduction zone earthquakes along the Nankai Trough. The ages of these

incomplete geological record for these events.

Trough, Tokushima Prefecture

event deposits, as constrained by ten radiocarbon ages, suggest that some of the tsunamis that impacted Mugi Town
were correlated with those reported elsewhere along the Nankai Trough, thereby complementing the existing but still
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Introduction

The Pacific coast of Japan has been repeatedly affected by
subduction zone earthquakes and tsunamis. Long-term
forecasts of subduction zone earthquakes are calculated
by the Japanese government on the basis of earthquake
histories (The Headquarters for Earthquake Research Pro-
motion 2013). The long-term forecasts for the Nankai
Trough region in western Japan relied mainly on historical
documents from the last 1300 years (The Headquarters
for Earthquake Research Promotion 2001), although there
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were a few reports on geological records of prehistoric
tsunamis (Okamura et al. 2000). After 2001, geological
studies discovered evidence of unusually large prehistoric
tsunamis in other subduction zones, including Thailand
(Jankaew et al. 2008), Sumatra (Monecke et al. 2008), and
Hokkaido (Nanayama et al. 2003; Sawai et al. 2009a).
Along the Japan Trench, a tsunami deposit associated
with the 869 CE Jogan earthquake was identified (e.g., Abe
et al. 1990; Minoura and Nakaya 1991; Minoura et al.
2001) that later was recognized as a predecessor of the
2011 Tohoku earthquake and tsunami (Sawai et al. 2012).
The most recent evaluation for the Nankai Trough region
sought to incorporate geological records of prehistoric
earthquakes (The Headquarters for Earthquake Research
Promotion 2013). However, while more than 70 recent
publications have presented paleoseismological evidence
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(Garrett et al. 2016), only a few have provided the
well-dated evidence needed to understand past fault be-
havior through regional correlations (Fujino et al. 2018;
Tanigawa et al. 2018).

This study was carried out in a coastal lowland in
Mugi Town, adjacent to the Nankai Trough, with the
aim of identifying prehistoric tsunami deposits and esti-
mating event ages. Our findings provide new informa-
tion on the history of subduction zone earthquakes
along the Nankai Trough, complementing the meager
existing record.

Study area

Site selection

The study was carried out in a small and isolated fresh-
water wetland (about 250 x 150 m) in Mugi Town in
southeastern Shikoku Island (Fig. 1). The wetland is sep-
arated from the sea by a sand barrier through which a
narrow drainage channel runs (Fig. 1d). The barrier
shields the wetland from waves and tidal flows that
could lead to deposition of coarse marine sediments. No
rivers flow into the wetland, and therefore there is no in-
put of alluvial sediment. These topographical conditions
favor the preservation and identification of tsunami de-
posits because only extreme high-energy events are
likely to deliver sand or gravel into the wetland. Sandy
and gravelly event deposits interbedded within muddy
sediments are left undisturbed, making their identifica-
tion easier. The wetland is surrounded by coastal hills
mainly dominated by shale and sandstone (Kumon 1981;
Onishi and Kimura 1995; Yamaguchi et al. 2009) of late
Cretaceous to Eocene age (Suyari and Yamasaki 1987;
Shibata et al. 2008). The elevation of core locations
(Fig. 1d) ranges from 2.37 m at MG12 to 3.10 m at
MG11 (all elevations in this paper are reported with
respect to sea level at the Tokyo Peil). The present eleva-
tion of the sand barrier is approximately 4.0 m; however,
the natural elevation of the sand barrier is not known
because an embankment has been constructed upon it.
The site was formerly a rice paddy field, but it was aban-
doned about 10-15 years before the time of this study.
According to the town’s official history (Mugi Choshi),
the wetland has been isolated from recent flooding and
storm surges, but the barrier is low enough to have been
overtopped by the Showa-Nankai tsunami in 1946 (wave
height of 4.5 m in Mugi Town; Editing Committee of
the History of Mugi Town 1976, Central Meteorological
Observatory 1947).

Historical tsunamis in Mugi town

The last four great earthquakes along the Nankai
Trough (the 1605 CE Keicho, 1707 CE Hoei, 1854 CE
Ansei-Nankai, and 1946 CE Showa-Nankai earthquakes)
generated tsunamis that hit Mugi Town (Editing
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Committee of the History of Mugi Town 1976). The
post-disaster survey report of the Showa-Nankai earth-
quake (Central Meteorological Observatory 1947) indi-
cated that the tsunami inundation area included the
whole study site. The Showa-Nankai earthquake also
caused coastal subsidence of at least 0.3 m or more in this
area, such that groins built to stand above spring high
tides were submerged to about 0.3 m depth at spring tides
after the earthquake (Editing Committee of the History of
Tokushima Prefecture 1963). Other detailed information
on damages and coastal deformation caused by these four
earthquakes is summarized in Table 1.

Methods/Experimental

Sediment samples were collected at 13 locations
(MG01-MG13) along 2 transects, 1 perpendicular and
the other parallel to the shoreline (Fig. 1d). Samples at
all sites except MGO5 were obtained with a gouge auger.
At MGO5, sediment was sampled successively with a
Handy Geoslicer (Nakata and Shimazaki 1997) from 0 to
120 cm, a thin-wall sampler from 120 to 400 c¢cm, and a
Russian sampler from 400 to 450 cm depth below the
ground surface. Surface elevations of each location were
obtained with a GNSS survey instrument, Leica Viva
GS08 Plus GNSS receiver (Leica Geosystems).

Sedimentary structures in the MG05 samples were ob-
served using X-ray computed tomography (LightSpeed
Ultra 16, GE Healthcare Japan) at the Center for
Advanced Marine Core Research, Kochi University.
Cores were then split and peels were prepared using a
hydrophilic glue (SAC-100) for further observation of
sedimentary structures.

Subsamples for paleontological analysis were taken
every centimeter from cores MGO05 and MG10. Subsam-
ples were also taken from the other cores to provide
plant macrofossils for radiocarbon dating. Diatom ana-
lysis was carried out at 1-5 cm intervals in core MGO5.
Samples were prepared with the bleaching method pro-
posed by Nagumo and Kobayasi (1990) and Nagumo
(1995) and placed on slides for examination under an
optical microscope (x 600 magnification) and a scanning
electron microscope (JEOL JSM-6510). More than 200
valves were identified and counted on each slide. Diatoms
were identified and paleoenvironments were assigned on
the basis of standard sources (e.g., Patrick and Reimer
1966, 1975; Krammer and Lange-Bertalot 1986; Witkowski
et al. 2000; Kobayasi et al. 2006; Levkov 2009).

Plant macrofossils (e.g., fruits, seeds, needles, and
leaves) from core MG10 were picked out under a bin-
ocular microscope for interpretation of paleoenviron-
ments and radiocarbon dating (Table 2). All samples
were measured by accelerator mass spectrometry (AMS)
at Beta Analytic. Radiocarbon ages were calibrated by
using OxCal 4.3.2 software (Bronk Ramsey 2017) with
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Fig. 1 a Index map of Japan, showing the location and tectonic setting of the study area. b Map of Shikoku Island, showing localities where coastal
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showing the geography and sediment sampling points and transects (photograph CSI20121-C10-13 by the Geospatial Authority of Japan, taken 21
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the IntCall3 radiocarbon calibration dataset (Reimer et
al. 2013). The limiting ages were then used to constrain
the depositional ages of the events based on Bayesian
statistics (Table 3). This calculation was performed in
OxCal with the procedure proposed by Lienkaemper and
Bronk Ramsey (2009).

Results

Stratigraphy and radiocarbon ages

Beneath a top layer of paddy soil ranging in thickness
from 38 to 98 cm, the sedimentary sequences were com-
posed of organic silt (decomposed peat) containing

isolated beds of sand and gravel (Figs. 2, 3, and 4). The
sand and gravel layers were interpreted as event deposits
(E1 to E9, from top to bottom), indicating rapid depos-
ition of allochthonous sediment into quiescent wetland
environments, and are described below. Radiocarbon
ages from the sedimentary succession ranged from 6750
to 6931 to 1421-1690 cal yr BP (Fig. 2 and Table 2).

Diatom assemblages and plant macrofossils

The diatom assemblages from core MGO5 differed above
and below ~ 0.6 m elevation (Fig. 5). In the lower part of
the sediments, which included event deposits E2 to E9,
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Table 1 Information of the last four historical earthquakes and tsunamis

Name of Date (CE) @ Moment Rupture zone® Coastal® ¢ deformation  Number of tsunami Other descriptions in
earthquake magnitude (Mw) monuments in Mugi Town
Mugi Town
Keicho 3 February1605 No data Various No data No data Mantokuji temple was washed
interpretations away.” (The temple sat at
suggested 35mTPI)
Hoei 28 October1707  86° Z+A+B+C Nodata No data Tsunami waves ran up three
+ D (+E?) rivers More than 700 houses
were washed away and more
than 100 people died.
Mantokuji temple was washed
away.” The tsunami ran up to
about 1.5 km on the Uchizuma
River,
Ansei-Nankai 24 December1854 84° Z+A+8B Uplift in Cape Muroto 2 Playground and 640 houses were carried away
(1.2 m)Subsidence in Teba Island® and 39 people died. The
Kochi City (1.1 m) tsunami ran up to the steps
of the l\/lamtokugi temple along
the Mugi River.
Showa-Nankai 21 December1946 8.0°-8.3¢ A+B Uplift in Cape 3Two arein a The whole study site was
Shionomisaki playground, and inundated.? 151 houses were

(0.6 m) Cape Muroto
(0.5-0.9 m) Subsidence
in Mugi Town (0.3 m
or more)

Shishikui (0.6 m)

the other is in an
elementary school.

washed away and 52 people
diedf The western part of Mugi
Bay was more strongly affected
than the eastern part because
the tsunami came from the
east./

?From Sangawa (2007) and Ishibashi (2014)

BFrom Usami et al. (2013)

“From Tanioka and Satake (2001)

9From Central Meteorological Observatory (1947)

“Teba Island is located about 4 km south of Mugi Bay

fFrom Editing Committee of the History of Mugi Town (1976)
9From Murakami et al. (1996)

PUchizuma River is located about 1 km west of the study site

the diatom assemblages were dominated by brackish and
marine species. Brackish planktonic species included
Cyclotella atomus var. gracilis and Thalassiosira lacustris.
Among the benthic diatoms, brackish-marine species such
as Amphora coffeaeformis, Amphora pseudoholsatica,
Diploneis smithii, Diploneis suborbicularis, Fallacia forci-
pata, and F. tenera were most abundant. Below event de-
posit E6 (from - 1.25 m elevation to the bottom of the
core), freshwater-brackish species such as Ctenophora
pulchella and Cocconeis placentula were abundant. Fresh-
water species such as Eunotia spp. and Gomphonema spp.
were found around event deposit E4. Plant macrofossils
used for radiocarbon dating from core MGO05 included sub-
merged and floating-leaved plants, such as Ruppia mari-
tima, Zannichellia palustris, Najas spp., and Potamogeton
spp. (Table 2).

In the upper part of the sediments (above ~ 0.6 m),
diatom assemblages were characterized by an upward
decrease in brackish planktonic species and a drastic in-
crease in the proportion of freshwater species such as
Cymbella proxima, Cymbella tumida, Pinnularia spp.,
Stauroneis spp., and Surirella spp. In addition, the con-
centration of diatom fossils in the upper part, particu-
larly at 0.8-1.1 m elevation (Fig. 5), was lower than that

in the lower part. Samples above 0.8 m were character-
ized by mostly broken valves.

Given the sparseness of diatoms near the top of the
cores, plant macrofossils were quantitatively analyzed
below and above event deposit E1 at site MG10 (Fig. 6).
Below E1, plant macrofossils were dominated by Cla-
dium chinense, a brackish emergent plant. Above El,
they included abundant emergent and wetland plants
typical of a shallow freshwater environment, such as
Persicaria pubescens, Eriocaulon spp., and Monochoria
plantaginea.

Event deposits, their ages, and diatom assemblages

Event deposits (E1 to E9) and sedimentary structures
were identified in tomographic images of core MGO05
(Fig. 4), with the sedimentary characteristics of each
event deposit summarized in Table 4. The event deposits
were correlated across the cores based on their eleva-
tions, sedimentary features, and radiocarbon ages from
plant macrofossils below and above the event deposits
(Table 2). Ages from below event deposits were inter-
preted as limiting maximum ages, and ages from above
them were interpreted as limiting minimum ages. For
example, a radiocarbon age from unidentified leaves
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Table 2 Radiocarbon ages from Mugi Town

No. Site  Elevation (m, Conventional age Calibrated age2o range Material Lab no.
TP) (""C yr BP) (cal yr BP) (Beta-)

T MGO1 0.24to 0.21 1940 + 30 BP 1970-1820 Needles 465345

2 MGO03 0.26 to 0.23 3460 + 30 BP 3831-3642 Leaf 465341

3 MGO03 -003to - 3760+ 30 BP 4237-3994 Needles, Leaves, and Najas spp. & unidentified taxa 483201
0.06

4 MGO03 -263to - 6000 + 30 BP 6931-6750 Ruppia maritima 465342
266

5 MGO5 1.65 to 1.64 1660 + 30 BP 1690-1421 Cladium chinense 473445

6  MGO5 12410121 2340+ 30 BP 2457-2316 Seeds 503500

7 MGO5 1.15to 1.14 2740+ 30 BP 2920-2765 Cladium chinense 473446

8 MGO5 0.64 to 0.63 3340+ 30 BP 3678-3480 Cladium chinense 474818

9 MGO5 -0.15to — 3680 + 30 BP 4139-3914 Leaves 474369
0.16

10 MGO5 —-068to - 4030+ 30 BP 4572-4422 Needles 473447
0.69

11 MGO05 -0.72to - 4380+ 30 BP 5040-4863 Najas spp. 474796
0.73

12 MGO5 -086to—  4170+30BP 4831-4585 Leaves 473449
0.87

13 MGO5 —-092to—-  4260+30 BP 4870-4711 Leaf 474370
0.93

14 MGO5 —1.28t0 — 4750+ 30 BP 5586-5331 Zannichellia palustris 473450
129

15 MGO5 —1.79to — 4780+ 30 BP 5590-5468 Ruppia maritima and Zannichellia palustris 473451
1.80

16 MG06 0.99 to 0.97 2890 + 30 BP 3145-2928 Cladium chinense 481643

17 MGO6 —083to— 4140+ 30 BP 4824-4571 Moss stems, Najas spp., Zannichellia palustris and un 483425
0.89 identified taxa

18 MGO6 —1.761t0 — 4470+ 30 BP 5289-4976 Zannichellia palustris 482828
1.79

19 MGO6 —288to — 5450+ 30 BP 6301-6205 Najas spp., Zannichellia palustris and unidentified taxa 483202
291

20 MGO8 1.06 to 1.03 2610+ 30 BP 2776-2721 Cladium chinense 465343

21 MGO8 —-064to — 4020+ 50 BP 4570-4421 Leaf 465344
067

22 MG08 —200to — 4740 + 50 BP 5589-5326 Najas spp., Ruppia maritima,Zannichellia palustris and 483,427
203 unidentified taxa

23 MGI10 148 1to 146 2280+ 30 BP 2353-2161 Needles 503498

24 MG10 129to 1.27 2870+ 30 BP 3077-2881 Cladium chinense 503499

25 MG10 —039to — 3570+ 30 BP 3972-3731 Cladium chinense 483203
042

26 MG10 —0.75to — 5010+ 30 BP 5892-5656 Leaves, Najas spp. and unidentified taxa 483426
0.78

27 MGI10 —-066to — 5780+ 30 BP 6657-6500 Zannichellia palustrisRuppia maritima,and unidentified 483204
0.69 taxa

28 MGI13 099 to 097 2720+ 30 BP 2868-2761 Cladium chinense 481644

29 MGI13 —-268to — 4890 + 30 BP 5662-5587 Najas spp., Zannichellia palustris and unidentified taxa 482824
2.71

Ages were calibrated with OxCal version 4.3 (Bronk Ramsey 2017) and ranges at two standard deviations were computed with the calibration data of IntCal13
(Reimer et al. 2013)
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Table 3 Depositional ages of event deposits at MG05

Core location Minimum conventional

age nos. in Table 2

Maximum conventional
age nos. in Table 2

Name of event Age (cal yr BP, 10 range, 68.2%) Age (cal yr BP, 20 range, 95.4%)

MGO5 E1 2775-2451 2826-2350 7,8 56
MG05 E2 3813-3577 3954-3514 9,10 7,8
MG05 E3 4030-3789 4073-3640 9,10 7,8
MGO5 E4 4656-4503 4730-4452 12 9,10
MG05 E5 4841-4738 4853-4657 13 12
MG05 E6 5327-4878 5366-4838 14 13
MGO5 E7 5494-5349 5541-5338 15 14
MG05 E8 5542-5430 5581-5388 15 14
MG10 E1 2867-2346 3009-2263 24 23

Radiocarbon ages in Table 1 were constrained by OxCal version 4.3 (Bronk Ramsey 2017) with the calibration data of IntCal13 (Reimer et al. 2013). The age

estimation method is based on Lienkaemper and Bronk Ramsey (2009)

obtained below event deposit E4 represents a limiting
maximum age of 4831-4585 cal yr BP (No. 12 in
Table 2), whereas two ages from unidentified leaves and
needles above E4 correspond to limiting minimum ages
of 4139-3914 and 4572-4422 cal yr BP (Nos. 9 and 10
in Table 2).

The following subsections describe sedimentary fea-
tures and diatom assemblages of the nine named
deposits as well as the ages of the events responsible for
the deposits as constrained by radiocarbon dating. Con-
strained ages are reported with their 20 range as given
in Table 3.

E1 (event deposit 1)

Event deposit E1 consisted of medium to very coarse
sand (Fig. 4a) and was found at nearly all locations
(MGO03 to MG13, Figs. 2 and 3). Diatom assemblages

were very sparse and mainly dominated by freshwater
diatom species such as Cymbella proxima, C. tumida,
Pinnularia spp., Stauroneis spp., and Surirella spp. Its
depositional age was constrained at two locations by
four and two radiocarbon ages, respectively (Nos. 5-8 at
MGO5 and Nos. 23 and 24 at MG10 in Table 2). The
depositional age was 2826-2350 cal yr BP at MGO5 and
3009-2263 cal yr BP at MG10 (Table 3).

E2 (event deposit 2)

Event deposit E2 consisted of poorly sorted medium or
very coarse sand (Fig. 4b) and was found at sites MGO3 to
MGO06 (Fig. 2). It contained some subangular gravel at
MGO5 (Fig. 4b). Benthic diatom assemblages consisted of
freshwater species (e.g., Eunotia spp. and Gomphonema
spp.) and brackish species (e.g., Navicula peregrinopsis),
while planktonic diatoms included brackish species such

-
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as Thalassiosira lacustris. Its depositional age was con-
strained by four radiocarbon ages (Nos. 7-10 in Table 2)
as 39543514 cal yr BP (Table 3).

E3 (event deposit 3)

Event deposit E3 consisted of poorly sorted angular
gravel (Fig. 4c) and was found at MG02 and MGO04
through MG13 (Figs. 2 and 3). The gravel consisted of
granules and pebbles less than 3 c¢cm in diameter, and the
matrix was gray sandy mud. Mud clasts were observed
in MGO5 (Fig. 4c). The thickness of E3 varied from 4 cm
(MG13) to 74 cm (MGO08). It contained more specimens
of brackish-marine species (e.g., Thalassiosira lacustris
and Diploneis smithii) than freshwater species. Its depo-
sitional age was constrained by four radiocarbon ages
(Nos. 7-10 in Table 2) as 4073-3640 cal yr. BP (Table 3).

E4 (event deposit 4)

Event deposit E4 was a single layer of well-sorted sand
at six locations (MGO05, MGO06, and possibly MGO03,
MGO04, MG12, and MG13; Figs. 2 and 3). The grain size
ranged from very fine to very coarse sand. At MGO3,
MGO04, MG12, and MG13, a sand layer was observed
below E3 at the same elevation as E4 at MGO5, but
radiocarbon ages did not constrain the event ages well
enough to correlate them with the event age of E4 at
MGO5. In addition, multiple event deposits could be
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correlated with E4 at MGO03 and MG13. Therefore, the
correlation of E4 at MGO5 with the sand layers at
MGO03, MG04, MG12, and MG13 is tentative. A sand
couplet consisting of very fine to medium sand was ob-
served at MGO07 and MG08. At MGO5, this sand layer had
two subunits, an upper layer of sand 5 cm thick and a
lower layer of sand 8 c¢m thick, each with normal grading
from very coarse to fine sand (Fig. 4d). Two pieces of
wood were observed just above it. The sand particles were
the same size in the two subunits. Diatom assemblages
had a mixed composition of freshwater (Pinnularia spp.),
brackish (Navicula peregrinopsis), and brackish-marine
(Diploneis smithii and D. suborbicularis) species. The
depositional age of E4 was constrained by three radiocar-
bon ages (Nos. 9, 10, and 12 in Table 2) as 4730-4452 cal yr
BP (Table 3).

E5 (event deposit 5)

Event deposit E5 was found at MG05 and MGO06 and pos-
sibly at seven other locations (MGO03, MG04, MGO07,
MGO08, MG09, MG12, and MG13; Figs. 2 and 3). As with
E4, radiocarbon ages did not constrain the event ages well
enough to correlate with the event age of E5 at MGO05,
and multiple event deposits could be correlated with E5 at
MGO03, MGO09, and MG13. Therefore, the appearance of
E5 at MG03, MG04, MG07, MG08, MG09, MG12, and
MG13 is tentative. At MGO5, where this unit consisted of
patchy sand, it did not yield enough material for diatom
analysis. Its depositional age was constrained by two
radiocarbon ages (Nos. 12 and 13 in Table 2) as 4853—
4657 cal yr BP (Table 3).

E6 (event deposit 6)

Event deposit E6, composed of poorly sorted sand with
granules, was found at MGO5 and possibly at MGO06,
MGO08, and MG13 (Figs. 2 and 3). At MGO06, the sand
layer with a limiting maximum age of 5289-4976 cal yr
BP (No. 18 in Table 2) could be correlated with E6, E7, or
E8. At MGO08 and MG13, multiple event deposits could be
correlated with E6. Therefore, the appearance of E6 at
MGO06, MGO08, and MG13 is tentative. Tomographic im-
ages showed that its lower stratigraphic contact was de-
formed due to bioturbation or the presence of a load cast
(Fig. 4e). Diatom assemblages included brackish plank-
tonic species (e.g., Cyclotella atomus var. gracilis and
Thalassiosira lacustris) and brackish-marine benthic spe-
cies (e.g., Amphora coffeaeformis and A. pseudoholsatica).
Its depositional age was constrained by two radiocarbon
ages (Nos. 13 and 14 in Table 2) as 5366—4838 cal yr BP
(Table 3).

E7 (event deposit 7)
Event deposit E7 was found at MGO5 and possibly at
MGO06, MGO08, and MG13 (Figs. 2 and 3). It had three
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subunits at MGO5, an upper subunit of fine sand 0.6 cm
thick, a middle subunit of sandy organic silt 2.0 cm
thick, and a lower subunit of fine sand with parallel lam-
inae 2.8 cm thick (Fig. 4f). Diatom assemblages were
dominated by brackish-marine species Fallacia forcipata
and F. tenera. Its depositional age was constrained by
two radiocarbon ages (Nos. 14 and 15 in Table 2) as
5540-5338 cal yr BP (Table 3).

E8 (event deposit 8)
Event deposit E8 was found at MGO5 and possibly at
MG06, MGO08, and MG13 (Figs. 2 and 3). It consisted of

fine to medium sand at MGO5 and medium to coarse sand
at MGO8. It displayed parallel laminae and a sharp lower
stratigraphic contact at MGO5 (Fig. 4g). Diatom assem-
blages were characterized mainly by brackish-marine
species Fallacia forcipata and F. tenera and a brackish
species Navicula peregrinopsis. Its depositional age was
constrained by two radiocarbon ages (Nos. 14 and 15 in
Table 2) as 5581-5388 cal yr BP (Table 3).

E9 (event deposit 9)
Event deposit E9, a layer of poorly sorted angular peb-
bles, was found at MG03, MG04, MG05, MG09, MG10,
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and MG11, but we did not find any correlated gravel Discussion

layers at MG06, MGO07, or MGO8 (Fig. 2). No diatom
analysis was possible in this material. Based on a radio-
carbon age above this deposit (No. 15 in Table 2), this
event is older than 5590-5468 cal yr BP.

Paleoecology

Changes in the diatom assemblages below and above the
event deposits, as well as plant macrofossils within the
organic silt, suggest that the depositional environment at
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Event E1 E2 E3 E4 E5 E6 E7 E8 E9
characteristics
Number of " 4 1M or12 4-8 2-9 1-4 1-4 1-4 3-6
locations observed
Type of sediment ~ Sand Sand Granule- Sand Sand Sand Sand Sand Granule-
pebble pebble

“Grading No No No Multiple No No No No No

normal

grading
“Mud clast No No Yes No No No No No No
“Laminae No No No No No No Parallel ~ Parallel ~ No
“Lower contact Unclear Unclear Unclear Slightly Unclear  Sharp (deformed Unclear  Sharp Not found

sharp by bioturbation

or load cast)

*Subunits No No No ®Yes (2) No No PYes 3) No No
“Other No Poorly sorted Angular gravels, Sorted other Patchy  Poorly sorted No No Angular gravels,
sedimentological Poorly sorted than MGO5  sand poorly sorted
characteristics
“Diatoms Freshwater Freshwater Brackish-marine  Mixture Not Brackish-marine  Brackish- Brackish- Not analyzed
assemblages within  benthic benthic, brackish composition analyzed marine  marine
event deposits plankton

*These items are applied to MGO5 core
PNumbers of subunits are indicated in brackets

the study site changed from brackish to freshwater
marsh during the last ~ 5500 years (Fig. 5 and Table 2).
The samples from below ~0.6 m elevation contained
brackish planktonic diatoms that are common in brack-
ish water bodies in Japan (Fig. 5), and plant macrofossils
included hydrophytic taxa, suggesting standing water at
the study site. In samples from above ~ 0.6 m, brackish
and marine diatom species were scarce and freshwater
species were dominant, indicating that the environment
had changed to a freshwater marsh. Radiocarbon ages
show that this change occurred just before 3480-
3678 cal yr BP (Fig. 2 and Table 2).

Based on the change in plant macrofossils, it is likely
that after about 3000 cal yr BP, the study site was used
for agriculture. Before the deposition of event deposit
El, plant macrofossils were dominated by Cladium
chinense, a common species in salt marshes (Matsushita
et al. 2004; Tanabe et al. 2016). However, above E1, it
was replaced by Monochoria plantaginea, a well-known
weed in paddy fields (Takeuchi et al. 1995) (Fig. 6). The
emergence of M. plantaginea means that the study site
changed to a terrestrial cultivated area after E1 was de-
posited, although it is impossible to ascertain whether
the deposition of E1 was related to agricultural activity
or merely coincidental with it.

Origin of event deposits

Tsunamis, flash floods, and storm surges were consid-
ered as possible causes of the event deposits based on
their fossil assemblages, sedimentary features, and

paleoenvironmental settings. Event deposits E5 and E9
lacked sediment for diatom analyses; therefore, their ori-
gin was not considered further in this study. However,
they were most probably deposited by one of these three
types of events.

Diatom assemblages provide important information to
estimate the origin of event deposits (Hemphill-Haley
1996; Sawai et al. 2009b; Szczucifiski et al. 2012).
High-energy events such as tsunamis, flash floods, and
storm surges erode and transport sediment from the
surrounding area, producing sediment with a mixture of
allochthonous organisms, then redeposit it into
low-energy environments such as wetlands, lakes, and
ponds (Sawai et al. 2008). Diatoms in these deposits are
useful organisms for analyses because they have distinct
assemblages that are adapted to freshwater, brackish,
and marine environments.

The diatom assemblages within event deposits E3,
E6, E7, and E8 had large proportions of brackish and
marine species (Fig. 5). These included Fallacia forci-
pata and F. tenera, common in sandy beaches (Sabbe
et al. 1999; Sawai et al. 2009b; Joh 2013), and Diploneis
smithii, common in marine and tidal flats with high
salinity (Hirose et al. 2004; Chiba and Sawai 2014).
Therefore, these four deposits were not emplaced by
sedimentary processes that supply terrestrial material,
such as flash floods and slope collapses. Event deposit
E4 contained a mixture of freshwater, brackish, and
marine species, and deposits E1 and E2 contained
mainly freshwater species.
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Sedimentary features in some of the event deposits
were consistent with those in modern tsunami deposits.
For example, the normal grading seen within event de-
posit E4 is also common in deposits from the 2011
Tohoku tsunami (e.g., Yamada and Fujino 2013; Matsu-
moto et al. 2016), the 2004 Sumatra tsunami (Choowong
et al. 2008a, 2008b; Naruse et al. 2010), and the 1993
southwest Hokkaido tsunami (Nanayama and Shigeno
2006). Parallel laminae like those in deposits E7 and E8
are also documented in the 2011 Tohoku tsunami
deposit (e.g., Abe et al. 2012; Nakamura et al. 2012; Mat-
sumoto et al. 2016). However, some criteria for distin-
guishing tsunami deposits from deposits produced by
other extreme waves are difficult to apply at the study
site. For instance, tsunami deposits tend to extend over
wide regions and can be found more than a kilometer
inland, much farther than storm deposits (Goff et al.
2004; Morton et al. 2007). However, the core locations
of the study site were all within a few tens of meters of
the shoreline.

Changes in fossil diatom assemblages between samples
from below and above event deposits have been used as
possible indicators of synchronous seismic coastal
deformation along subduction zones in Washington and
Oregon (Atwater and Hemphill-Haley 1997; Atwater et
al. 2005; Nelson et al. 2008), Alaska (Shennan and
Hamilton 2006; Hamilton and Shennan 2005) and Hok-
kaido (Sawai et al. 2004). Coastal deformation suggests
that the source of the event deposit is not an unusual
storm surge or a distantly generated tsunami, as neither
is associated with deformation. In this study, for ex-
ample, the relative abundance of the brackish-marine
diatom species Fallacia forcipata and F. tenera increased
above event deposits E4, E6, and E8, and Diploneis
smithii and D. suborbicularis, typically reported as mar-
ine diatoms in Japan (Kosugi 1988; Chiba and Sawai
2014), increased above deposits E3 and E6. These
changes indicate an increased marine influence after
these four events (E3, E4, E6, and E8). Interpreting them
as the result of coastal subsidence is consistent with the
deformation associated with historical subduction-zone
earthquakes on the Nankai Trough, like the 1946 CE
Showa-Nankai earthquake (Editing Committee of the
History of Tokushima Prefecture 1963).

Diatom assemblages may change for reasons other
than subsidence. For example, breaching and closing
barriers can cause changes in salinity that may affect the
composition of diatom assemblages. However, the stable
dominance of planktonic diatoms (Thalassiosira lacus-
tris and Cyclotella atomus var. gracilis) (Fig. 5) and sub-
merged plants Najas spp. (Table 2) throughout the core
suggests that an enclosed brackish water environment
persisted between ~ 5500 and ~ 3600 cal yr BP without
interruptions due to breaching and closing of coastal
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barriers. As another example, meandering channels
could cause changes in diatom assemblages, but the
sedimentary sequences did not exhibit any cross-stratifi-
cation or reactivated surfaces of sandy sediment typically
recognized in tidal inlets and deltas.

We consider event deposits E3, E6, and E8 most likely
to be tsunami deposits associated with earthquakes along
the Nankai Trough. These three deposits met the criteria
of sedimentary characteristics, a large proportion of
brackish-marine species within the event deposit, and en-
vironmental change after the event. Together with radio-
carbon ages from sediments above and below these
deposits, the evidence suggests that earthquakes accom-
panied by tsunamis occurred at least three times between
5581 and 3640 cal yr BP (Fig. 5 and Tables 2 and 3).

Evidence from deposits E4 and E7 did not strongly
qualify them as tsunami deposits, but did not rule out
that origin. Within E4, freshwater species were more
abundant than brackish-marine species, but some modern
tsunami deposits also contain mainly freshwater species
(Tuttle et al. 2004; Szczucinski et al. 2012; Takashimizu et
al. 2012). Deposit E7 contained abundant brackish-marine
species, but there was no evidence of environmental
changes after the event. Although E7 may have been the
result of a storm surge or a remote tsunami, tsunamis
caused by events with no coastal deformation cannot be
ruled out (e.g, submarine slides and tsunami earth-
quakes), nor can events causing coastal deformation too
subtle to lead to a change in diatom assemblages. If E4
and E7 are accepted as tsunami deposits, then at least five
tsunamis may have left extensive sand sheets within our
study site between 5581 and 3640 cal yr BP.

Based on the archives of local history from Anan and
Hiwasa, storm inundation is unlikely to have resulted in
the event deposits recorded in this study. In the south-
eastern part of Tokushima prefecture, at least 62 storms
(described as “strong wind and rain” or “wind and rain”)
have affected the coastal area between 1626 and 1866
CE (Editing Committee of the History of Anan City
1995). In addition, recent records show that over 100
typhoons have struck the coast of Hiwasa between 1872
and 1955 CE (Editing Committee of the History of
Hiwasa Town 1984). If we assume that such storms have
continuously occurred over hundreds of years, and that
if they represented the possible origin of the event de-
posits in our study site, then more event deposits should
exist interbedded with mud layers. We thus conclude
that the five event deposits (E3, E4, E6, E7, E8) are not
associated with century-scale storms.

Event deposit E2 may have been generated by an
event, such as flooding, which supplied mainly terrestrial
material. Consistent with this interpretation are the
strong predominance of freshwater diatoms and the
absence of change in diatom assemblages after the event.
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The evidence related to event deposit E1 is inconclu-
sive. Fossil diatom assemblages below, within, and above
E1l consist mainly of fragments of the freshwater genus
Pinnularia (Fig. 5). However, the composition of plant
macrofossils shows that the environment changed from a
salt marsh to a freshwater submerged environment (Fig. 6).
The appearance of the paddy field weed Monochoria
plantaginea suggests that the environmental change was
due to human cultivation. Another possibility is the
non-tectonic regional sea-level change known as the Yayoi
Regression, which affected the Japanese coast between
2000 and 3000 yr BP (e.g., Ariake Bay Research Group
1965; Sakaguchi et al. 1985; Umitsu 1991; Tanabe et al.
2016). This regression may have led to coastal emergence
and desalination at the study site. Although coastal emer-
gence due to coseismic uplift from a subduction-zone
earthquake is conceivable, an uplift would be inconsistent
with the subsidence documented for other prehistoric
events in this study and for the 1946 CE Showa earth-
quake (Editing Committee of the History of Tokushima
Prefecture 1963). Further study is needed to assess
whether such an anomalous seismic event could have
occurred in this region.

Correlation of tsunami deposits with those at other sites
The five tsunami deposits identified in Mugi Town (E3,
E4, E6, E7, and E8) have the potential to be correlated
with tsunami deposits and other paleoseismological
evidence recognized in other regions. However, interre-
gional correlations are hampered because of the uncer-
tainty in radiocarbon dating, which usually has an error
greater than 100 years. Tephra layers have sometimes
been used as the basis for regional correlation (e.g.,
Nanayama et al. 2003; Sawai et al. 2012), but there are
no reports of tsunami deposits associated with tephra
layers in this region. Therefore, interregional correlation
of tsunami events currently depends only on radiocar-
bon dating. Given these circumstances, this study allows
possible correlations between our results and the results
of previous studies that may shed light on the simultan-
eity and rupture zones of subduction zone earthquakes.
Tsunami deposits contemporary with those found in
this study have been reported in two regions. A coastal
lowland in Nankoku City, about 70 km west of Mugi
Town in Kochi Prefecture (Fig. 1), was inundated by a
tsunami between 4560 and 3730 cal yr BP (Tanigawa et
al. 2018). This age was constrained by six radiocarbon
dates from plant macrofossils below and above the event
deposit in two core locations and overlaps with the age
of our event deposit E3 (4073-3640 cal yr BP). It also
could possibly be correlated with the age of our event
deposit E4 (4730-4452 cal yr BP), but the probability
distributions of these two ages overlap only slightly.
Thus, E3 or possibly E4 is correlated with the tsunami
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event in Nankoku City, although either correlation must
be considered tentative given the large errors of the
radiocarbon ages. However, if either event in Mugi Town
is correlated with a tsunami event in Nankoku City, it
suggests that a prehistoric tsunami affected a wide area
along the eastern coast of Shikoku Island, rather than a
more local tsunami generated by submarine mass move-
ment (Baba et al. 2017). The oldest tsunami deposit in
Nankoku City was constrained to two possible ages,
5510-4440 and 5980-4870 cal yr BP (Tanigawa et al
2018), and thus could be correlated with any one of four
event deposits in Mugi Town (E4, E6, E7, and E8).
Fujino et al. (2018) described tsunami deposits on the
Shima Peninsula, to the east of Mugi Town in Mie Pre-
fecture (Fig. 1), that may be correlated with our event
deposit E3, although they presented no environmental
analysis of fossil species. Depositional ages of their sand
H were 4040-3730 and 4368-3921 cal yr BP at two dif-
ferent locations, both of which overlap with that of our
E3. In addition to these examples, Okamura and Mat-
suoka (2012) described sandy event deposits interbedded
within lacustrine sediments in coastal areas elsewhere in
Kochi, Tokushima, and Mie Prefectures. However, their
depositional ages were not based on published radiocar-
bon ages, which prevent a detailed correlation of these
event deposits (Garrett et al. 2016).

Paleoseismological evidence other than tsunami de-
posits has also been reported by previous studies, along
with radiocarbon dating of marine carbonates. Shishi-
kura et al. (2008) recorded two episodes of coastal up-
lift in the southern part of the Kii Peninsula (Fig. 1)
around 4500 and 5200 cal yr BP, based on fossil records
of the sessile polychaete Pomatoleios kraussii. These ep-
isodes could be correlated with the events that led to
the deposition of E4 and E6, respectively. Ikehara
(1999) reported turbidites and Sakaguchi et al. (2011)
reported mud-breccia units, attributable to seismic
shaking, from the seafloor east of the Kii Peninsula and
dated them with radiocarbon ages from foraminifers. A
turbidite (turbidite 10) was bracketed by ages of 4270 +
50 and 4050 + 50 yr BP (Ikehara 1999). However, our
recalculation of these ages using OxCal 4.3.2 (Bronk
Ramsey 2017) with Marinel3 (Reimer et al. 2013) and
the local marine reservoir value AR = -7 +0 (Yoneda et
al. 2000) yielded a range of 3909-4513 cal yr BP, which
does not match the ages of tsunami deposits in Mugi
Town. A date from above the mud-breccia units pro-
vided a limiting minimum age of 3512 + 34 cal yr BP
(Sakaguchi et al. 2011). However, these correlations are
weak given the indefiniteness of the local marine reser-
voir effect. Local marine reservoir values are known to
vary among sites and materials (Yoneda et al. 2000,
2007; Shishikura et al. 2007; Hirabayashi et al. 2017)
but there is only one published estimate of the local
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reservoir effect (AR = -7 +0) along the Nankai Trough
(Yoneda et al. 2000).

Conclusions

This study investigated the geological record of prehistoric
tsunamis from Holocene coastal sediments in Mugi
Town. Tsunami deposits associated with earthquakes
along the Nankai Trough were identified from strati-
graphic and microfossil evidence, and their depositional
ages were estimated using radiocarbon ages from plant
macrofossils based on Bayesian statistics. We inferred the
following findings.

(1) As many as three or possibly five tsunami inundations
between 5581 and 3640 cal yr BP are recorded in this
coastal lowland in event deposits E3, E4, E6, E7, and ES8.
Sedimentary features recognized in all five event deposits
are consistent with modern tsunami deposits. Events E3,
E6, and E8 featured both a predominance of brackish-mar-
ine diatom species within the event deposit and evidence of
contemporaneous environmental changes probably associ-
ated with coastal subsidence. Event E4 featured environ-
mental changes like those associated with events E3, E6,
and E8, but had mixed freshwater, brackish, and
brackish-marine diatom species. Event E7 featured abun-
dant brackish-marine diatom species, but no evidence of
environmental changes coincident with the event.

(2) Tsunami deposits E3 (4073-3640 cal yr BP), E4
(4841-4486 cal yr BP), and E6 (5364-4854 cal yr BP) can
be correlated with tsunamis reported in other regions
along the Nankai Trough. Further geological studies are
needed in other regions to map the distributions of prehis-
toric tsunami deposits and coastal deformation.

(3) This site lacks evidence of tsunami inundation after
event deposit E1, probably because agricultural activities
continuously disturbed the surface sediments beginning
about 3000 years ago. A full history of tsunami inunda-
tions at this locality will require further research in
neighboring areas.

Abbreviations
cal yr BP: Calibrated radiocarbon years before the present; CE: Common era;
Mw: Moment magnitude
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