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images using principal component analysis
and neural network
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Abstract

We present a method for automated segmentation of dust storm areas on Mars images observed by an orbiter. We
divide them into small patches. Normal basis vectors are obtained from the many small patches by principal
component analysis. We train a classifier using coefficients of these basis vectors as feature vectors. All patches in
test images are categorized into one of the dust storm, cloud, and surface classes by the classifier. Each pixel may
be included in several dust storm patches. The pixel is classified as a dust storm or the other classes based on the
number of dust storm patches that include the pixel. We evaluate the segmentation method by the receiver
operator characteristic curve and the area under the curve (AUC). AUC for dust storm is 0.947–0.978 if dust storm
areas determined by our visual inspection are assumed to be ground truth. Precision, recall, and F-measure for dust
storm are 0.88, 0.84, and 0.86, respectively, if we remove false negative pixels efficiently and maintain the size of
true positive dust storms using two different threshold values. The tuning parameters of the classifier used in this
study are determined so that the accuracy for dust storm is maximized. We can also tune the classifier for cloud
segmentation by changing the parameters.
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Introduction
The planet Mars is regularly affected by dust storms that
cover contiguous areas ranging in size from local
(10,000 km2) to global (> 5 × 107 km2) and present a var-
iety of hazards/challenges to present and future explor-
ation of the planet. Martian dust storms are atmospheric
phenomena visualized by dust suspended in the atmos-
phere. The atmospheric phenomena controlling dust
storms are suggested by the storms’ shapes and sizes, as
well as the season, region, and local time of initiation.
Wang et al. (2011) showed the distribution of curvilinear
dust storms in the southern hemisphere observed by
MGS/MOC. Guzewich et al. (2015) clearly showed the
frequency, regionality, and seasonality of “textured dust
storms” seen in MGS/MOC images. Guzewich et al.
(2017) revealed the relationship between the frequency
of textured dust storms in images from the Mars Color

Imager onboard the Mars Reconnaissance Orbiter
(MRO/MARCI) and the surface albedo. Their climato-
logical research on curvilinear or textured dust storms
suggested their mechanisms statistically for the first
time, which had a large impact on dust storm studies.
Although they assumed that active convection inside
dust storms was reflected in the storms’ textures, they
did not clarify what types of atmospheric phenomena
are associated with the production of large surface
stresses that trigger first dust lifting.
The shape, texture (mesoscale cloud top morphology,

Kulowski et al. 2017), and size of dust storms and the
climatology of these characteristics are important clues
to understanding Martian dust storms. The relations be-
tween such characteristics and the phases of the variety
of atmospheric waves as well as the frequency of tex-
tured/curvilinear dust storms and the spatial and sea-
sonal variations of the cumulative area are also worth
investigating (Wang 2007; Wang et al. 2011; Guzewich
et al. 2015, 2017). However, it is time-consuming to de-
tect all dust storms visually because of the vast number
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of images taken by just two instruments, the MGS/MOC
and MRO/MARCI. It is also difficult to objectively de-
fine which features characterize dust storms. Even ap-
proximate categorization of dust events into textured
dust storms, untextured yet discrete dust storms, and
haze depends on the subjective experience of the human
observer. For these reasons, visual detection and
categorization of the three types of dust storm textures
introduced by Kulowski et al. (2017) would not be
exactly reproduced by another human viewing and char-
acterizing the images. Furthermore, we perceive a need
to update the criteria for detecting dust events, espe-
cially obscured ones such as untextured yet discrete dust
storms and haze, via visual detection. Therefore, it would
be useful to be able to automatically detect dust events,
measure their shape, pattern, and size, and improve the
objectivity and reproducibility of dust storm detection. If
a dust storm “catalog” summarizing the shape, size, and
textures of dust storms was produced objectively, it
would be an important database for studies of atmos-
pheric phenomena controlling dust storm initiation. In
addition, we may be able to automatically detect and
categorize dust storms using images taken by
narrow-angle cameras as well as global swath images
taken by MGS/MOC and MRO/MARCI.
Maeda et al. (2015) automatically evaluated the exist-

ence of dust storms in Mars images using a support vec-
tor machine (SVM), which is an algorithm for pattern
recognition using supervised learning that has been ap-
plied to classification and regression. Their algorithm
successfully detected 80% of human-identified dust
storms, but they did not try automated segmentation of
dust storm regions in their study. Ogohara et al. (2016)
also successfully evaluated the existence of water ice
clouds (WICs) in the Martian atmosphere using an SVM
trained by a few simple statistics of images. Performance
of their algorithm was about 80%, comparable with
Maeda et al. (2015), but automated segmentation of
WICs was beyond their work. In a general application of
pattern recognition and computer vision, an image is di-
vided into several small patches and each patch is classi-
fied into one or more classes (e.g., Coupé et al. 2011).
Turk and Pentland (1991) introduced eigenfaces using
principal component analysis (PCA) for face recognition.
Jiang et al. (2017) also used the patch-based method and
PCA for face recognition. In this study, we apply the
combination of the patch-based approach and PCA to
Mars images to segment Martian dust storms. This en-
ables us not only to evaluate the existence of dust
storms, but also to measure the shape and size of dust
storms automatically. Furthermore, we may be able to
recognize and categorize textures of dust storms because
we can obtain information on which basis images con-
tribute to a patch classified as a dust storm. In the

“Methods/Experimental” section, we provide an over-
view of the observation data that we use in this study
and the pre-processing of input image data. We also de-
scribe details of our algorithm for automated segmenta-
tion of dust storm areas using PCA and machine
learning. Results and performance evaluation of the al-
gorithm are shown in the “Results and discussion”
section.

Methods/experimental
Data
We used reflectance data from red and blue bands
(575–675 nm and 400–450 nm, respectively) images ac-
quired by MGS/MOC (Malin et al., 2010). In this study,
we begin our investigation of methods for segmentation
of dust storm areas with only the region centered
around 180° E–40° N where many textured dust storms
have been observed (Guzewich et al. 2015). This region
is suitable for training a classifier described in the fol-
lowing subsection because there are many samples of
true dust storms. We examine 800 × 600 pixels (40° ×
30°) subsets of the full-size MOC wide-angle camera
(MOC-WA) image swathes. The subsets are centered at
180° E–40° N and extracted from MOC-WA images
taken in the late northern fall of MY24 and MY26, one
of the active seasons of dust storms in this latitude band
(Guzewich et al. 2017). Red and blue band images of
MOC-WA were obtained through the U.S. Geological
Survey (USGS, https://ida.wr.usgs.gov/d_access.htm).
Noise reduction, radiometric calibration, and coordinate
transformation to longitude-latitude coordinates were
done using ISIS3 (https://isis.astrogeology.usgs.gov/
index.html). Opposition surge and low-frequency pat-
terns of reflectance were removed from the images using
methods presented by Wang and Ingersoll (2002) and
Ogohara et al. (2016). Coherent longitudinally inhomo-
geneous patterns shown by Ogohara et al. (2016) were
filtered out using the longitudinal running mean of a full
31-pixel width.
Figure 1a shows a typical dust storm red band image

in the region of 160° E–200° E and 25° N–55° N ob-
tained after the pre-processing noted above. The reso-
lution is 0.05° pixel−1. Textures at the top of the dust
storm are clearly seen. However, surface albedo patterns
clearly visible in the bottom of the image might poten-
tially be falsely classified as a dust storm, and therefore,
we attenuate the surface albedo patterns by subtracting
a regionally defined, dust-free background image from
each investigated image of interest. Each pixel value of
the background image, Ib(i,j), is expressed as follows:

Ib i; jð Þ ¼ min
1≤n≤ 9

In i; jð Þ; ð1Þ

where In means the nth image. The nine images used for
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producing Ib are listed in the (Additional file 1: Figure
S1). They were chosen arbitrarily from images where
few or no dust storms were seen. After some trials using
less than nine images to create a background subtraction
image, we determined that we were best able to attenu-
ate the surface patterns relative to dust storms and
clouds using at least nine images. Figure 1b shows an

example of a dust storm image obtained by subtracting a
background image from Fig. 1a. The surface patterns
seen in Fig. 1a have been attenuated in Fig. 1b, and the
dust storm has been emphasized. Note that we do not
necessarily remove the surface patterns completely al-
though the surface patterns might be much attenuated
in the subtracted image if more than nine images were
used.

Basis determination
We extract many patches (a sub-sampled region of size
N ×N pixels within the original image) from six images
showing dust storms in the red band observed at differ-
ent times and those in the blue band observed at the
same times as the red band. These twelve images of dust
storms (six observations in two bands) were chosen be-
cause they were already known to have dust storms in
them and were chosen arbitrarily from among those ex-
amined that had dust storms. A patch of N = 10, at the
resolution of the MOC-WA images, is comparable in
size to the smallest dust event summarized by Cantor et
al. (2001) in the northern part of the images used for
this study. Extreme values of N (e.g., N = 2 or 100) are
inappropriate because the method for dust storm seg-
mentation proposed in the following sections implicitly
assumes that the patch size is comparable to or smaller
than dust storms and larger than the patterns character-
istic of dust storms. Therefore, the cases of N = 10, 20,
and 30 are investigated in this study. All patches are ex-
tracted from the six images allowing the superposition
of two adjacent patches, which share (N-2)N pixels. A
list of the patches is created by starting at one corner of
the image and stepping by two pixels in one direction,
until the next corner is reached, then returning to the
start, at the same place in the first direction, but then
shifting by two pixels in the second direction.
Patches classified as “surface” are the dominant classi-

fication in the list because the majority of the pixels seen
in these images shows the surface, rather than dust or
ice clouds. Imbalance in the number of patches between
the three classes may cause a reduction of classification
accuracy of the two minor classes. This means that the
classifier can distinguish the surface from the other re-
gions but cannot separate dust storm and cloud. In
addition, we should use the same number of patches in
the three values of N to compare the performances of
the proposed method between N = 10, 20, and 30.
Therefore, we actually extract 140,000 patches of each
class randomly from the list of the patches in each of
the values of N after assigning each patch to one of the
three classes in the manner described in the “Classifier
and ground truth” subsection. This number of patches
for each class is limited by the memory constraints of
our computer system that are required during

Fig. 1 Examples of images and ground truth of dust and cloud
distributions used in this study. a An example of a pre-processed
image in the red band. The albedo patterns on the surface and
topography (e.g., craters) are recognized visually in the bottom of
the image although they are weaker than the dust storm seen in
the center of the image. b The subtracted image produced from a.
c The ground truth of the distributions of dust storms and clouds
seen in a and b. We prepare the ground truth subjectively based on
the red and blue band images
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processing, especially in the case of N = 30. Letting M be
the number of patches generated from the six subtracted
images, M is 420,000 (140,000 × 3) in each of the three
values of N used.
The ith patch (1 ≤ i ≤M) can be expressed as an N2 di-

mensional vector, ti∈ℝN2
, whose elements are identical

to the pixel values of the patch. We derive basis vectors
of the N2 dimensional space using PCA. Note that the

average patch, the mean over all the M patches, t∈ℝN2
,

is subtracted from each of the M patches before the
PCA is done. The normalized basis vectors derived by
PCA are perpendicular to each other, and an arbitrary
vector can be uniquely expressed as a linear combination
of them. The number of the basis vectors is generally N2

but N2 is so large that it takes a long time to determine
the best combination of parameters for classification and
to train a classifier using it. Therefore, we choose the K

(<N2) basis vectors with the largest eigenvalues, ePCA j∈

ℝN2 ð1≤ j≤KÞ , from the N2 basis vectors derived by
PCA. K is determined so that the cumulative proportion
of variance, i.e., the variability in the pixel reflectances
across the M patches, represented by a linear sum of the
K basis vectors, becomes larger than 99%. Note that
each of the K basis vectors does not necessarily corres-
pond to some kind of variability in reflectance that can
be interpreted physically.

Feature vector
t is subtracted from each patch vector. Subtracted patch
vectors are defined as follows:

si ¼ t i−t 1≤ i≤Mð Þ ð2Þ
si can be expressed uniquely as a linear combination

of N2 PCA basis vectors. But, because K <N2, we cannot
exactly express it using ePCAj (1 ≤ j ≤ K). Thus, we ap-
proximate it by an orthogonal projection, si

′, on a plane
mapped by ePCAj:

s0i ¼ Uci; ð3Þ
ci ¼ UTsi; ð4Þ

where U is an orthogonal projection matrix, U = (ePCA1,
ePCA2,⋯, ePCAK). ci = (ci1, ci2,⋯, ciK)

T ∈ℝK is a coeffi-
cient vector and means the position of si

′ in the sub-
space mapped by U.
We use reflectance images in the two bands, red and

blue, as described in the previous section. We extract K
basis vectors using PCA from M patches of each band.
K depends on the band. A feature vector used for the
classification is a combination of the two feature vectors
derived from one red patch and one blue patch. Letting
tRi and tBi be the averages of the ith patch (the mean
value over all elements of ti) in the red and blue bands,

respectively, the feature vector of the ith patch, fi, is de-
fined as follows:

f i ¼
cRi
cBi
tRi
tBi

0
BB@

1
CCA ð5Þ

where cRi ¼ ðcRi1; cRi2;⋯; cRiKRÞT and cBi ¼
ðcBi1; cBi2;⋯; cBiKBÞT are coefficient vectors of the ith
patch in the red and blue bands, respectively. KR and KB

are the numbers of the basis vectors that contribute
most to encompassing the image variability in their re-
spective bands as defined by the PCA analysis.

Classifier and ground truth
We adopt a multilayer perceptron (MLP) classifier,
which is included in scikit-learn0.18.1 (Python 3.5.1).
MLP is a feedforward artificial neural network (NN) that
imitates biological neural networks. NNs have been used
for several fields in planetary science (e.g., classification
of asteroid spectra, Howell et al. 1994) and engineering
(e.g., identification of environment models around space
robots, Venkataraman et al. 1993). An MLP at least con-
sists of three layers of neurons, the input layer, output
layer, and one or more hidden layers between them. The
numbers of hidden layers and neurons in each layer are
typical tuning parameters controlling the complexity and
ability of the network. There is only one hidden layer in
this study. We provide an overview of the MLP in the
“Appendix” section for readers who have no experience
in machine learning. Please see the “Appendix” section
for the meanings of technical terms used later in this
section. The number of neurons in the hidden layer
Nneuron = {10, 20, 30, 70, 100}, the learning rate (const.) γ
= {10−4, 10−3, 10−2, 10−1}, and the maximum number of
iterations Tmax = {100, 300, 500, 700, 1000, 5000} are de-
termined by grid search for each patch size so that ac-
curacy for the dust storm class is maximized. The
activation function for the hidden layer is the so-called
“ReLU” function, f(x) = max(0, x), for all patch sizes. The
solver for weight optimization is a stochastic
gradient-based optimizer, Adam, proposed by Kingma
and Ba (2015). The parameters for the optimization are
listed in Table 1. We did not arbitrarily choose the ReLU
function, the Adam optimizer, and the parameters
shown in Table 1, but adopted them in this study be-
cause they are popular techniques with popular param-
eter choices and produced adequate results, as discussed
in the “Results and discussion” section.
The ground truth of the segmentation was prepared

by the authors in advance of training the classifier. We
first assign each pixel to a dust storm, cloud, or surface
class based on our subjective experience. Thus, some
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patches may contain two or more classes represent-
ing different labeled regions of pixels with them.
Next, if both the dust storm and cloud areas inside
each patch are smaller than 20% of the patch area
(N2 pixels) (Ishii et al., 2016), the patch is labeled
“0” indicating the surface class. If not, the patch is
assigned the label of the larger of the two other
classes (“1” for dust storm and “2” for cloud). The
MLP is trained using the feature vectors of the
patches (fi in Eq. (5) and Eqs. (6) and (10) in the
“Appendix” section) with the true labels (gi in Eq.
(10) in the “Appendix” section). The six subtracted
images and corresponding ground truth images of
the segmentation that we used for training are
shown in the (Additional file 2: Figure S2). Dust,
cloud, and surface patches used for training are the
same as those from which the basis patch vectors
are determined and the number of patches of each
class is 140,000 in the cases of N = 10, 20, and 30.
We could use more surface patches because the sur-
face area is much larger than areas of dust storm
and cloud. However, we chose 140,000 patches from
all surface patches randomly to avoid an imbalance
in the number of patches between the three labels as
described in the “Basis determination” subsection.
Observations that can physically decide whether fea-

tures seen in images are dust storm, clouds, or some-
thing else already exist. The Thermal Emission
Spectrometer onboard MGS (MGS/TES) can measure
optical thickness of dust and water ice cloud separately.
Such types of observation data with physical information
on dust and cloud seem to be suitable for the ground
truth data instead of visual inspection by the authors.
However, the footprint of TES is extremely narrow com-
pared to the field of view of MOC and thus rarely
crosses local dust storms. TES observations are not
enough to train the classifier. Therefore, we do not pre-
pare the ground truth images based on TES observations
but based on visual inspection by the authors to main-
tain the number of patches available for training.

Probability image
What is classified into the dust storm class or the others
is not each image but each patch. If patches into which
an image is divided as shown in the “Basis determin-
ation” subsection are targets of classification, the shape
of a dust storm cannot be sufficiently resolved. Then, we
shift a target patch, which is classified into one of the
three classes in a test image, pixel by pixel, longitudin-
ally, and latitudinally. An arbitrary pixel is basically in-
cluded in N2 target patches. Letting nD(i, j) be the
number of patches which include a current pixel (i, j) (i,
j ∈ ℤ) and are categorized as a dust storm, we hereafter
call nD(i, j)/N

2 the “dust storm probability” of the pixel
(i, j). An image whose pixel values are a dust storm
probability between 0 and 1 is obtained, which is called
a “probability image” in this study. The shape and size of
a dust storm can be measured accurately by regarding
pixels whose dust storm probability is larger than a
threshold value as the dust storm. Letting nC(i, j) be the
number of patches which include a current pixel (i,
j) and are categorized as a cloud, we can also define the
“cloud probability” of the pixel (i, j), nC(i, j)/N

2.

Results and discussion
The classifier, in practice, must be able to separate sur-
face, dust storm, and cloud areas in images different
from those used in its training. In the following subsec-
tions, we test five chosen subtracted images (Add-
itional file 3: Figure S3) and refer to them as the “test
images” hereafter. Textured dust storms seen in four of
the five test images were most distinctive (note that one
of the five test images shows no dust storm), and there-
fore, we could prepare reliable ground truth images.

Probability image
Figure 1b already mentioned in the “Data” subsection is
one of the subtracted images used for evaluation of the
method developed in this study and is excluded in the
phase of training the classifier. Figure 1c indicates the
true distributions of a dust storm and clouds included in

Table 1 Parameters for the MLP classifier included in scikit-learn0.18.1. These are the same as commonly used values. See Kingma
and Ba (2015) for the meanings of the parameters for the Adam optimizer

Parameter Value

Penalty for regularization 0.0001

Batch size 200

Tolerance of optimization 10−4

Whether to shuffle samples in each iteration True

Whether to use early stopping to terminate training when the validation score is not improving False

β1 for adam 0.9

β2 for adam 0.999

for adam 10−8
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Fig. 1b, which were prepared based on the authors’ vis-
ual inspection. Figure 2a, b, and c are probability images
of dust for N = 10, 20, and 30, respectively, derived from
Fig. 1b. Figure 2d, e, and f are those of WIC. The shape
of the dust storm is resolved more precisely in the case
of N = 10 (Fig. 2a). But, the wavy features in the north-
west area of the image should not be recognized as dust
storms, because they seem to be typical WICs associated
with topographically generated gravity waves, the
so-called lee waves. In the cases of N = 20 and 30 (Fig. 2b,
c), a high probability of dust storm associated with WICs
still remains in the northwest of the probability images.
However, dust storm probability near the eastern and
western edges of the images is smaller than that in the
case of N = 10. Nevertheless, the size of the dust storm
in the case of N = 20 (Fig. 2b) is comparable with that in
the case of N = 10 shown in Fig. 2a. Cloud probability is
high in the northern part of the images in Fig. 2d, e, and
f and seems to vary inversely proportional to N. Cloud
probability in the wavy area does not decrease largely
with the size of patches. However, the area of high prob-
ability around the wavy WICs itself is clearly smaller
than that of the true wavy WIC area shown in Fig. 1c.
The wavy patterns of WICs seem to be confused with
dust storms, especially in the case of N = 10.

Receiver operator characteristic curves
In this subsection, we evaluate how accurately dust
storm areas are determined in the test images that were

not used for training. Note that we here have to divide
an image into two classes (dust storm or not dust storm)
and do not need to distinguish between cloud and sur-
face areas. Therefore, we binarize probability images of
dust by thresholding of the images, that is, we produce
an image of pixel values of either 0 or 1 (black or white)
by determining whether the dust probability in that pixel
is below or above some chosen threshold value. How-
ever, the binary images highly depend on the threshold
value used to binarize the probability images. The best
threshold values may be different between N = 10, 20,
and 30. Therefore, we cannot compare the results of N
= 10, 20, and 30 derived using a single threshold value
straightforwardly. Thus, evaluation methods independ-
ent of threshold values as well as those that depend on
threshold values have been proposed in the discipline of
pattern recognition. Those partinent to this study are
described briefly in the “Appendix” section. Figure 3
shows one method, receiver operator characteristic
(ROC) curves calculated by sweeping the threshold
values in probability (Fawcett 2006), indicating the rela-
tionship of the true and false positive rates. ROC curves
have been used in the fields of medical imaging and are
independent of the ratio of the true positive area (dust
storm) and the true negative area (the others). Area
under the curve (AUC) is used for evaluating the per-
formance of the algorithm independently of the thresh-
old value (see Appendix and Fawcett 2006 for details).
The maximum and best values in AUC are 1. AUC in

Fig. 2 Examples of probability images in the cases of N = 10, 20, and 30 derived from Fig. 1b. a, b, and c are probability images for dust storm in
the three cases, respectively. d, e, and f are those for WIC
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the case of N = 30 is the highest among the three cases
for dust storm as shown in Fig. 3. The case with N = 30
is the best in that true positive pixels can drastically in-
crease only by tolerating just a small number of false
positive pixels. However, 30 pixels (1.5°) in latitude
roughly correspond to 90 km. The smallest dust storms
among local dust storms summarized by Cantor et al.
(2001) were about 17 × 17 km2. They may be attenuated
in dust probability images in the case of N = 30 due to
their small size compared to the patch size. Figure 4
shows the dust probability images in the cases of N = 20
and 30 produced from a subtracted image in which a
small local dust storm can be seen. The small dust storm
has a horizontal scale of 100 km. Dust probability
around it is obscured and clearly lower in the case of N
= 30 than in the case of N = 20. This does not only lead
to underestimation of the area of the small dust storm
but also makes it difficult to detect the existence of the
small dust storm. Nevertheless, the difference in AUC
between N = 20 and 30 is just 0.003. Thus, we focus on
results of N = 20 hereafter rather than N = 30 to suppress
false negatives of dust storms.

Binarized image
For segmentation of dust storm regions, we need to
binarize the probability images using a threshold value
as indicated in the above subsection and evaluate the
generalization ability of the method using evaluation in-
dices such as precision, recall, and F-measure (e.g., Faw-
cett 2006). A threshold value close to 1 drastically
reduces positive pixels in binary images in general. Pre-
cision gets close to 1 but recall is extremely reduced. As
the threshold value decreases, the positive areas grow
and other tiny positive areas appear in the binary images.
As a result, recall becomes greater than precision.

Although priorities of precision and recall are up to indi-
vidual research interest, improving precision (i.e., redu-
cing false positive pixels) without reducing recall (i.e.,
maintaining true positive pixels) is generally encouraged.
Thus, we binarize the probability images using two
threshold values in this study. At first, we generate a
binary image, BL, from a probability image using the lar-
ger threshold, pL, as shown by the white region in Fig. 5a.
Positive areas seen in BL tend to be small and then recall
is low. However, the positive areas in BL can be regarded
as being in dust storms with high reliability. At the next
step, we generate another binary image, BS, from the
same probability image using the smaller threshold, pS,
as shown by the gray regions in Fig. 5a. The positive
areas seen in BS tend to be large, and then, recall is high
although precision is low. This means that the positive
areas in BS include the surface or WIC regions as well as
dust storm regions. It should be noted that the all posi-
tive regions in BL (white in Fig. 5a) are inside the posi-
tive regions in BS (gray in Fig. 5a). However, not all the
positive regions in BS include positive regions in BL.

Fig. 3 ROC curves and AUCs for the dust storm class. The blue, red,
and green lines correspond to the patch sizes of 10 × 10, 20 × 20,
and 30 × 30 pixels, respectively

Fig. 4 Probability images for dust in the cases of a N = 20 and b 30.
Although a small dust storm shown by the white arrows can be
seen near 177° E–38° N, it is obscured in b
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Then, we regard the positive regions in BS which do not in-
clude positive regions in BL as false positives and remove
them. We can detect the true dust storm regions with high
recall, suppressing the increase of false positive pixels due
to decreasing the threshold value. Figure 5b shows a trinar-
ized image generated from the probability images of dust
and WIC shown in Fig. 2b and e using (pL, pS) = (0.95, 0.5).
The size of the dust storm is maintained, and the tiny false
positive regions seen in Fig. 5a are removed. We binarize
the probability images used for the ROC curves in the “re-
ceiver operator characteristics curves” subsection and cal-
culate precision, recall, and F-measure from the binarized
images and the ground truth images. Table 2 shows the
evaluation indices directly calculated from all of the pixels
of the five binary images derived from the test images via
the probability images. Note that each evaluation index is
not an average over the five index values calculated from
the five binary images. For both dust storm and cloud, re-
call in the case of the two threshold values (0.84) is compar-
able with or higher than those in the cases of the single
threshold value. On the other hand, precision (0.88) is be-
tween the two cases of the single threshold value. There-
fore, F-measure improves in the two-threshold values cases.

(pL, pS) = (0.95, 0.5) used for binarization is just an ex-
ample and actually depends on the individual motivation
of the segmentation of dust storms. If one is investigat-
ing the size distributions of dust storms including small
dust storms, one has to decrease pL. If the shape of rela-
tively large dust storms is a major target, both pL and pS
should be large. The sensitivity of these results to loca-
tion and season is discussed in the next section.
Generally speaking, Martian dust storms are bright in

the red band and as dark as the surface in the blue band.
On the other hand, Martian clouds are bright in the red
and blue bands and especially much brighter than the
surface in the blue band. Cantor et al. (2001) visually de-
tected dust storms based on the difference in the surface
albedo from adjacent areas in both the bands. As they
did, we have prepared the ground truth of the segmenta-
tion based on differences in appearance between dust
storms, clouds, and the surface due to such differences
in their optical properties. The ground truth data for op-
tically thick phenomena with textures different from the
surrounding surface are reliable (e.g., Kulowski et al.
2017). However, those for optically thin dust haze and
clouds are not always as reliable as those for optically
thick dust events. We have experienced difficulty in
visually deciding whether the pattern seen in the north-
ern part of the target region is a dust haze or cloud.
Therefore, what have been reported in this study are
conservatively an algorithm for the segmentation of op-
tically thick dust events and clouds, and its performance.
Nonetheless, our algorithm for the automated segmen-

tation achieves high AUC if we evaluate the algorithm
based on the subjective ground truth. The results of the

Fig. 5 Results of the segmentation using the proposed method. a A trinarized image of dust derived from Fig. 2b using a single threshold value.
The white region is the positive region when using the larger threshold value, pL. The gray regions including the white one are positive regions
when using the smaller threshold value, pS. b A trinarized image of dust (white) and WIC (gray) derived from Fig. 2b and e using the
combination of two threshold values. pL and pS are 0.95 and 0.5, respectively

Table 2 Precision, recall, and F-measure for dust storm
calculated from all of the five test images. The two threshold
values, pL and pS, are 0.95 and 0.5, respectively

Threshold value Precision Recall F-measure

pL 0.97 0.51 0.67

pS 0.83 0.84 0.83

pL and pS 0.88 0.84 0.86
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segmentation shown in this paper can depend on who
prepares the ground truth used for training the classifier
and evaluating the algorithm. For example, someone
may regard the area around 187° E–38° N as a part of a
dust storm. Figure 2a and b show that the area around
187° E–38° N is partially recognized as a dust storm, al-
though it is not included in the true dust storm area
shown in Fig. 1c. This means that the classifier is not so
sensitive to such minor variations in the ground truth
data depending on the inspectors’ experience. Therefore,
we expect that we could achieve physics-based segmen-
tation with as high AUC as that presented in this study
if objective, adequate ground truth data based on other
observations (e.g., radars and spectrometers) became
available.
The segmentation results presented in the current

work are not sensitive to possible variations in the
ground truth images depending on the inspectors, but it
is also true that the segmentation results are not neces-
sarily independent of the authors’ experience because
the ground truth images used for training the classifier
and evaluating its performance are prepared subjectively.
The proposed method, however, enables fast detection
and segmentation of dust storm areas in Mars images
with less work based on rigid (but subjective) detection
criteria. This helps us intercompare the results of seg-
mentation or detection of dust storms done by several
researchers and enables us to reproduce their results.
Therefore, the proposed method still makes a large con-
tribution to the improvement of objectivity and reprodu-
cibility of dust storm detection.
Precision and recall in the case of the two threshold

values are 0.88 and 0.84 if the two threshold values are
0.95 and 0.5. Twelve percent of dust storm areas detected
by our method are not dust storm and 16% of true dust
storm areas are not detectable. However, the overesti-
mation in the area of dust storms is just 4% as a result of
our tuning the two threshold values so that precision and
recall become comparable (i.e., F-measure is as high as
possible). Our method for dust storm segmentation has a
high reliability on measuring area of dust storms. Even if
one is intent to measure the shape and size of each dust
storm, the method has high enough accuracy because the
size distribution of dust storms is not modified over sev-
eral orders by the error in the area of ~ 15%.
We have tuned the parameters for an MLP so that the

performance of dust storm segmentation reaches the
peak. Therefore, Figs. 2 and 5 imply that AUC and
F-measure for ice clouds are both lower than those for
dust storms. But, this method is not necessarily unsuit-
able for the segmentation of ice clouds. The evaluation
indices for clouds can improve if we adopt parameters
that maximize the performance of cloud segmentation.
This method is also useful for segmentation of clouds.

This study has focused on the region with a high fre-
quency of dust storms revealed by Guzewich et al.
(2015, 2017) and Kulowski et al. (2017). The tuning pa-
rameters of the MLP mentioned above may be valid in
some regions but may be invalid in other regions be-
cause patterns of dust storm and haze may depend on
locations (i.e., latitude, altitude, and slope angle). They
may be also invalid for other images taken at another
time if patterns of dust storms vary with season and
Mars year, because training and test images we have
used are much less in number than images of the region
taken during the lifetime of MOC. The region we have
focused on is favorable for “plume-like” dust storms de-
fined by Kulowski et al. (2017). There still remains the
possibility that the classifier in this study is not applic-
able to the segmentation of the other two types of dust
storms (“pebbled” and “puffy” dust storms). However, we
can do the segmentation with a performance comparable
with the presented method if the classifier is trained for
every type of dust storm depending on the region, sea-
son, and local time. Textured dust storms as shown in
Fig. 1b should be successfully separated at least.

Conclusions
We have investigated an algorithm for automated seg-
mentation of dust storms in Mars images observed by
MGS/MOC. We have divided an image into small
patches and have expressed them as linear combinations
of the basis patch images extracted by PCA. Coefficients
of the basis images have been used for training the clas-
sifier, a neural network. All patches included in the test
images are categorized into one of the three classes, dust
storm, cloud, and something else (usually the ground
surface) by the classifier. Pixels will appear in multiple
patches, for which some patches containing that pixel
will be categorized as a dust storm while some other
patches containing that pixel will be categorized as a dif-
ferent class. Using the ratio of patches that classify a
pixel as a dust storm to the total number of patches that
include that pixel, we evaluate whether the pixel is a part
of a dust storm or not to sufficiently resolve the shape
and size of dust storms. The ratio of patches in which a
pixel is classified as a dust storm to all patches that in-
clude the pixel is called the dust storm probability (of
that pixel) in this study. Area under the ROC curves can
be calculated from the dust storm probability images by
sweeping the threshold value for binarization. AUC for
the patch sizes N = 10, 20, and 30 are 0.947, 0.975, and
0.978, respectively. AUC is the highest in the case of N
= 30 but relatively small dust storms cannot be detected
in that case due to the large patch size. The AUC of the
algorithm presented in this study cannot be compared
with that of other algorithms, because the AUC of algo-
rithms for dust storm segmentation has never been

Gichu and Ogohara Progress in Earth and Planetary Science            (2019) 6:19 Page 9 of 12



reported by previous research so far. However, the AUC
of our algorithm is comparable with those of algorithms
reported in other research fields (e.g., medical imaging,
Hatanaka et al. 2018). Our algorithm has as high per-
formance as other segmentation algorithms in the fields
of general image processing.
We can automatically obtain a catalog summarizing

the shape, size, and texture of the variety of dust storms
if we apply this algorithm to the vast number of Mars
images taken by orbiters for about 20 years. The exist-
ence of such a comprehensive catalog would be an im-
portant resource for understanding the climatology and
processes of Martian dust storms.

Appendix
Multilayer perceptron
Readers can easily find tutorials on MLPs or NNs in
standard textbooks (e.g., Bishop 2006) and on the inter-
net. Here, we briefly overview the concept, structure,
and parameters of the MLP used in this study for
readers who have no experience in machine learning
based on Bishop (2006). Figure 6 shows a schematic
view of the MLP used in this study, which consists of an
input, output, and one hidden layer. In this study, the in-
put layer is a feature vector of each image patch
expressed by fi shown in Eq. (5), the output layer is the
series of possible classifications for a patch (i.e., dust
storm, ice cloud, or surface), and the hidden layer is the
mathematical process transforming the input to the out-
put. The numbers of neurons in the input layer repre-
sent the number of features (the dimension of fi), K′ =
KR + KB + 2, and the number of neurons in the output
layer represents the number of classes, 3. The number of

neurons in the hidden layer, Nneuron, is a tuning param-
eter and roughly controls the number of adjustments
made to the inputs to accurately transform them into
one of the output classes (neurons). This network,
shown in Fig. 6, is expressed as the following function:

yih f i;W
1ð Þ;W 2ð Þ

� �
¼σ

XNneuron

n

znW
2ð Þ
hn

 !
ð6Þ

zn ¼ ϕ
XK 0

l

f ilW
1ð Þ
nl

 !
: ð7Þ

fil indicates the lth components of the ith feature vector
defined by Eq. (5). Wnl

(1) is a weighting factor between
the lth neuron of the input layer and the nth neuron of
the hidden layer, and Whn

(2) is a weight between the nth
neuron of the hidden layer and the hth neuron of the
output layer. ϕ(∙) :ℝ→ℝ and σ(∙) :ℝ→ℝ are arbitrary
nonlinear activation functions (i.e., mathematical trans-
formations) of the hidden and output layers, respect-
ively, that enable the classifier to be applicable to
nonlinear classification problems. For multiclass classifi-
cation problems so far, the softmax function expressed
by the following equation has been the conventional ex-
pression used for σ:

σ ahð Þ ¼ eahX3
j

ea j

; ð8Þ

where ah =
PNneuron

n znW
ð2Þ
hn .

The ground truth vector of the ith patch, gi is as
follows:

g i ¼
1 0 0ð ÞT The true label is}0}

� �
0 1 0ð ÞT The true label is}1}

� �
0 0 1ð ÞT The true label is}2}

� � ∈ℝ3

8><
>: ð9Þ

Letting yi be (yi1, yi2, yi3)
T, the error function of this

network is expressed as follows:

E W 1ð Þ;W 2ð Þ
� �

¼ 1
2

XM
i

yi f i;W
1ð Þ;W 2ð Þ

� �
−g i

��� ���2
ð10Þ

Training this classifier means solving the optimization
problem of the weights by minimizing E (i.e., searching
for optimal weights so that E is minimized). Once the
optimal weights are determined, we can predict the clas-
ses of test patches not used for training by replacing fi,
with the test patch vectors.
Optimization of Eq. (10) is usually a multidimensional

problem and has multiple local minimums. Therefore,
several algorithms for getting the global solution within

Fig. 6 A schematic view of the structure of the MLP used in
this study
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a realistic time, called “optimizers” or “solvers,” have
been reported. An optimizer called stochastic gradient
descent (SGD) has been widely used, and several opti-
mizers that diverged slightly from SGD have been devel-
oped recently. Although the details of each optimizer are
beyond the scope of this paper, it should be noted that
most optimizers update the weights iteratively based on
their unique updating rules at the learning rate. Large
learning rates increase the risk of oscillation of E, and
small learning rates increase the risk that E will not con-
verge within realistic iteration times. Increasing K′,
Nneuron and the number of hidden layers also make the
optimization problem difficult due to the increased
number of local minimums although it enables segmen-
tation of Mars images into several classes based on slight
differences in local patterns by extremely fine parameter
tuning.

Evaluation indices
Here, we briefly introduce the five indices frequently
used for evaluating the performance of a classifier for
the understanding of readers (see Fawcett 2006 for de-
tails). The confusion matrix shown in Fig. 7 defines true
positive, true negative, false positive, and false negative.
For example, pixels recognized as dust storm after the
binarization but that are outside the true dust storm
areas defined by a human operator are called false posi-
tive pixels. The numbers of true positive, true negative,
false positive, and false negative pixels are referred to as
TP, TN, FP, and FN, respectively. In addition, the true
positive rate, false positive rate, precision, and recall are
defined as follows:

True positive rate ¼ TP
TPþ FN

; ð11Þ

False positive rate ¼ FP
FPþ TN

; ð12Þ

Precision ¼ TP
TPþ FP

; ð13Þ

Recall ¼ TP
TPþ FN

: ð14Þ

A harmonic mean of precision and recall is referred to
as an F-measure. It should be noted that improving either
precision or recall results in a decrease in the other. The
easiest way to improve recall is to develop an algorithm
that regards the entire image as dust storm and minimizes
precision. It clearly makes no sense to use such an algo-
rithm. Therefore, the F-measure, which is kept low if ei-
ther of precision or recall is significantly low, has been
another index to measure the performance of the classi-
fier. The F-measure, however, still depends on a threshold
value for binarization and we have had a difficulty using
the F-measure to compare different classifiers trained
using different parameters and features. Here, the
trade-off relationship between FP and FN should be noted.
Considering that an increase in TP is equivalent to de-
crease in FN, TP can be increased by decreasing the
threshold value and increasing FP. In Eqs. (11) and (12),
TP + FN and FP + TN are constants indicating the num-
bers of pixels assigned the labels “dust storm” and any
others by a human operator, respectively. Therefore, an
ROC curve shows the relation between true positive rate
and false positive rate equivalent to that between TP and
FP when continuously changing the threshold value for bi-
narization. Assuming that a drastic improvement in the
true positive rate that incurs a slight increase in the false
positive rate is desirable (the left part of the ROC curves
shown in Fig. 3), AUC is a reasonable evaluation index in-
dependent of the threshold value.
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