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Preface
Recent technological developments in high-definition
data collection of earth surface topography and geophys-
ical properties have led to advances in measuring earth
surface processes and dynamics. Here, the term “high
definition” includes but does not infer “high resolution.”
Higher resolution data often provides more detailed in-
formation. However, high-resolution data might also
introduce more noise, capture denser information than
is required to represent a feature and/or its 4D proper-
ties, or may inhibit the explanation of a phenomenon at
larger scales. There are also locations currently being ex-
plored where high-resolution data collection is not pos-
sible yet because the technology does not exist. For
example, the ability to obtain even low-resolution bathy-
metric data in previously inaccessible areas, like deep
oceanic and lacustrine environments, can be innovative
and reveal unknown features. Therefore, “high-definition
data” may comprise a range of resolutions. High-defin-
ition data are those data that lead scientists to new ana-
lyses of the Earth’s surface and permit novel findings
that advance the geosciences. Applications of
high-definition or high-resolution data are often found
in both temporal and spatial contexts, such as chron-
ology (Ishizawa et al. 2017), palaeoenvironments (Land-
ais et al. 2015), meteorology (Harris et al. 2014; Ushio et
al. 2015), subsurface geology (Cella and Fedi 2015; Ito et
al. 2018), and surface morphology (Oguchi et al. 2013;
Tarolli 2014). The theory, acquisition, processing, mod-
eling, and analysis of high-definition data are progressing
rapidly in geosciences (Passalacqua et al. 2015). Further-
more, there is increasing demand for well-documented
datasets and open-source tools, which are crucial for
further advances in science and the instrumentation.

This SPEPS (SPecial call for Excellent Papers on hot
topicS) contains seven research papers that are invited
as the state-of-the-art articles in the use of
high-definition topographic and geophysical data. Sev-
eral of these articles were presented in the thematic ses-
sion of the Japanese Geoscience Union annual meeting
of 2017. The session was dedicated to the applications of
high-definition topographic and geophysical data in a
range of geosciences, and the main objective of the
present special issue is a wide description of innovative
research on high-definition topographic and geophysical
data for both the technical issues and geoscientific appli-
cations. Various sensors are used in the methodologies,
including laser scanning, SfM-MVS (structure-from-mo-
tion multi-view stereo) photogrammetry, GNSS (global
navigation satellite system) positioning, SAR (synthetic
aperture radar) interferometry, gravity, and electromag-
netic sensors, based on terrestrial, aerial, or aquatic plat-
forms. Some of the representative ones are terrestrial
laser scanning (TLS), unmanned aerial system (UAS),
and subsurface geophysical measurements. TLS and
UAS provide high-density point clouds of land surface,
whose data are often utilized in the form of digital eleva-
tion model (DEM) or digital surface model (DSM).
Geophysical approaches, including gravity measurements
with a higher resolution, can be applied to reveal de-
tailed underground structures which are invisible from
the surface. The topics of the papers range from theoret-
ical examinations to practical applications.
Wasklewicz et al. (2017) proposed a theoretical frame-

work of the uncertainty estimation for various sensor
measurements of topographic data, including conven-
tional low-resolution DEMs and high-resolution laser
scanning or photogrammetric datasets. The work was
specifically designed to increase the capability of topo-
graphic change detection using different sources of topo-
graphic data by evaluating theoretical and actual errors
over space and time. The findings highlight the strong
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potential for the use of legacy datasets in detecting
long-term topographic changes.
Recent landscape changes can also be captured via

high-definition platforms, such as TLS and UAS to pro-
duce new insights into landscape evolution in area experi-
encing seismic activity. TLS was used to detect subtle
ground displacement at a centimeter scale in a mud vol-
cano (Hayakawa et al. 2017). An active mud volcano often
reacts to a large seismic shake with its surface uplift, but
the authors revealed that the mud volcano also actively
“breathe” with frequent uplift and subsidence even when
no shake is present in the region. Such temporal variations
in the mud volcano activities will be further explored with
subsurface information to reveal its detailed structure and
mechanisms. Saito et al. (2018) explored the topographic
changes of landslide-prone areas with a particular
emphasis on the effects of a severe earthquake, using
high-definition topographic data derived from UAS-
photogrammetry. They found landslides triggered by the
earthquake are much deeper when compared to those
caused by heavy rainfall. The difference likely reflects the
amplification of seismic acceleration in relationship to the
topographic conditions.
Another advantage of the high-definition topographic

data obtained by TLS and UAS-photogrammetry is the
capability of analyses by the 3D structure of landscapes.
Obanawa and Hayakawa (2018) quantified the volume of
3D polygons representing changed portions in coastal
bedrock cliffs, based on the 3D point clouds taken by
both TLS and UAS-SfM photogrammetry. The timing
and volume of the eroded rock mass were recorded, and
possible causal mechanisms, such as oceanic wave at-
tacks and earthquakes, were explored to provide a dee-
per understanding of this dynamic environment. The
findings indicate the wave attacks are more effective in
triggering rockfalls than earthquakes, while the other
factors including gradual weakening of rock strength by
weathering may also affect the stochastic erosion.
Photogrammetric approaches designed to acquire

high-definition topographic data are quick and versatile.
Gomez and Purdie (2018) demonstrated the capability of
quick hazard assessments using high-definition topo-
graphic data derived from photogrammetry of aerial im-
ages. The images were taken from a UAS and a manned
helicopter in rockfall-prone areas in New Zealand, where
rapidly degrading glaciers cause the severe conditions of
mountain slopes despite the presence of attractive hiking
tracks. They showed that a quick data acquisition and
rough estimates by simple simulation are critical to pro-
tecting people visiting such spectacular, but potentially
dangerous natural areas.
The objects of topographic measurement are not only

on terrestrial surfaces, but also can be identified for
aquatic and subsurface areas. Yamasaki et al. (2017)

proposed a novel way to acquire the morphological data
of subaqueous sediment surface using a low-cost port-
able sonar initially designed for the detection of fish. An
acoustic approach was demonstrated for a lake bottom
mound likely caused by landslides. As an application of
high-definition geophysical data, Kusumoto (2017) de-
rived the gravity gradient tensor from dense gravity sur-
vey data carried out along a profile and estimated the
dip angle of a fault in a sedimentary basin using its
eigenvector. The author concludes this is a practical
method to estimate the fault dip from gravity anomalies
from high-definition gravity measurements.
The papers presented in this special issue are only a part

of the growing field of the high-definition data acquisition
and applications, but each study shows advances to the
field of geoscience. The advances, in conjunction with the
free access to the special issue articles in this open journal,
provide a valuable outlet to increasing demand to share
such high-definition geoscientific data in an open plat-
form. The PEPS platform provides an integral inter-
national venue to achieve the transfer of cutting-edge
knowledge on a variety of topics of relevance to the
broader Earth science community. The diversity of topics
covered in this issue and others should appeal to re-
searchers trying to piece together the heterogeneous na-
ture environmental change across our planet and others.
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