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Abstract

We propose a deep learning approach for identifying tropical cyclones (TCs) and their precursors. Twenty year
simulated outgoing longwave radiation (OLR) calculated using a cloud-resolving global atmospheric simulation is
used for training two-dimensional deep convolutional neural networks (CNNs). The CNNs are trained with 50,000
TCs and their precursors and 500,000 non-TC data for binary classification. Ensemble CNN classifiers are applied to
10 year independent global OLR data for detecting precursors and TCs. The performance of the CNNs is
investigated for various basins, seasons, and lead times. The CNN model successfully detects TCs and their
precursors in the western North Pacific in the period from July to November with a probability of detection
(POD) of 79.9-89.1% and a false alarm ratio (FAR) of 32.8-53.4%. Detection results include 91.2%, 77.8%, and

74.8% of precursors 2, 5, and 7 days before their formation, respectively, in the western North Pacific. Furthermore,
although the detection performance is correlated with the amount of training data and TC lifetimes, it is possible to
achieve high detectability with a POD exceeding 70% and a FAR below 50% during TC season for several ocean basins,
such as the North Atlantic, with a limited sample size and short lifetime.
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Introduction

Tropical cyclones (TCs), also referred to as typhoons,
cyclones, and hurricanes, cause significant damage to
human life, agriculture, forestry, fisheries, and infra-
structure. For example, Typhoon Lionrock in 2016
caused record-breaking heavy rainfall, which resulted in
severe floods and the loss of 23 lives in Japan. More-
over, TCs occasionally form very close to and approach
countries at low latitudes (e.g., the Philippines) with
rapid intensification. Therefore, accurate prediction of
TC track and intensity is necessary. Early prediction of
TC formation is important not only from an academic
but also from a disaster mitigation perspective.
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TCs form from convective disturbances in the tropics
(Riehl 1954). Dynamic environmental conditions (e.g.,
small vertical wind shear, low-level cyclonic vorticity,
and non-zero planetary vorticity) and thermodynamic-
ally favorable environmental conditions (e.g., sea sur-
face temperature >26°C, existence of convective
instability, and mid-tropospheric moisture) necessary
for TC formation were proposed in the pioneering
work of Gray (1968, 1975). However, because only a
small percentage of convective disturbances in the tro-
pics develop into TCs under favorable environmental
conditions (Emanuel 1989), accurate and early predic-
tion of TC formation is still a developing area of re-
search. The Japan Meteorological Agency (JMA)
extended the Dvorak method (Dvorak 1975; Dvorak
1984), which estimates TC intensity based on satellite
infrared imagery (IR), to tropical depressions (max-
imum sustained surface wind speed <17.5ms™'). This
extension, known as early-stage Dvorak analysis (EDA),
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has been utilized in operational forecasts since 2001
(Tsuchiya et al. 2001), and the JMA issues early warn-
ings on typhoon occurrence 1 day before its formation
based on EDA. The National Hurricane Center (NHC)
and Central Pacific Hurricane Center (CPHC) also use
the advanced Dvorak method for predicting TC genesis
with lead time and accuracies of 48 h and 15-57%, re-
spectively (Cossuth et al. 2013). Yamaguchi and Koide
(2017) demonstrated that that the predictability of TC
genesis could be improved to 35-79% by combining
the Dvorak method and multi-model ensemble fore-
casts. On the other hand, with recent advancements in
high-performance computing and numerical weather
prediction, TC formation could be simulated 2 weeks in
advance in case studies of eight typhoons in August
2004 (Nakano et al. 2015), Hurricane Sandy in 2012,
and Super Typhoon Haiyan in 2013 (Xiang et al. 2015).

In recent years, deep learning, a machine learning
method based on neural networks, has been receiving
increasing attention and is being applied to various pat-
tern recognition tasks (Krizhevsky et al. 2012; Simonyan
and Zisserman 2015). In meteorology, several studies
have proposed applying deep neural networks to existing
TC detection (Liu et al. 2016; Kim et al. 2017), tornado
prediction (Trafalis et al. 2014), hurricane pathway pre-
diction (Kordmahalleh et al. 2015), and extreme rain fall
prediction (Gope et al. 2016). Although several studies
have used deep learning approaches for TCs after their
formation, no research has considered this approach
for detecting TCs before their formation.

In general, there are two approaches to detecting ex-
treme events such as TCs: the model-driven approach
(deductive approach), including numerical simulation,
and the data-driven approach (inductive approach), in-
cluding machine learning. The model-driven approach
has the limitation that the prediction error increases
with lead time because numerical models are inher-
ently dependent on initial values. On the other hand,
machine learning, as a data-driven approach, requires
a large amount of high-quality training data. Most re-
lated works use reanalysis data and/or satellite obser-
vational data and labeled data as TCs or precursors
based on the best track data provided by meteoro-
logical agencies. However, best track data for a TC’s
occurrence well ahead of its formation is limited be-
cause the best track data is basically generated using
the EDA technique and are limited in accuracy and
elapsed time. For example, the best track data from the
Regional Specialized Meteorological Center (RSMC),
Tokyo, captures precursors 60 h before TC formation,
on average, whereas simulation data from cloud-re-
solving global atmospheric models (Kodama et al
2015) and TC tracking algorithms capture TC forma-
tion 107 h ahead, on average.
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In this work, we adopted the deep learning ap-
proach to detect precursors of TCs before their for-
mation using only two-dimensional (2D) Outgoing
Longwave Radiation (OLR) data, which is equivalent
to IR and is a good proxy of atmospheric deep con-
vection and cloud cover. In our 2D deep convolu-
tional neural networks (CNNs), we use 30year
cloud-resolving global atmospheric simulation data
(20 year data for training and 10 year data for verifica-
tion) and a TC tracking algorithm for automatic label-
ing. Although the basic concept, simulation data, and
TC tracking algorithm of this work are the same as
those in our previous conference paper (Matsuoka et
al. 2017), the present study improves the deep learn-
ing architecture and investigates predictive ability for
various basins, seasons, and elapsed times.

The manuscript is organized as follows. The “Data”
section presents the climate simulation data and TC
tracking algorithm. The “Method” section explains the
training data preparation, deep convolutional neural
networks, and evaluation metrics of prediction results.
The “Results and discussion” section examines the
detection results, including detectability for each ocean
basin, spatial detectability, seasonal detectability, and
long-term detectability. The “Conclusions” section
provides a summary of the main conclusions of the
present work.

Data

Climate simulation data

Thirty year atmospheric simulation data were pro-
duced by the Nonhydrostatic Icosahedral Atmos-
pheric Model (NICAM) with a 14km horizontal
resolution (Kodama et al. 2015). This model employs
fully compressible nonhydrostatic equations and
guarantees the conservation of mass and energy.
Equations were discretized by the finite volume
method. One characteristic feature of this model is
that it explicitly calculates deep convective circula-
tions without using any cumulus parameterizations.
Moist processes are calculated using a single-moment
bulk cloud microphysics scheme (NSW6) (Tomita
2008). HadISST (Rayner et al. 2003) is used for lower
boundary condition. The seasonal march of TC gen-
esis, TC track, and TC intensity in each basin is well
simulated, as described in Kodama et al. (2015). The
dataset includes simulated OLR, precipitation, wind
velocity, pressure, temperature, water vapor, and
cloud (liquid, ice, rain, snow, and graupel) for 30 years
since January 1979. OLR and precipitation are output
every hour, and other physical quantities are output
every 6 h. An example of simulation results of OLR is
depicted in Fig. la. Three TCs and three precursors
are reproduced at 0:00:00 08/17/2008 UTC.
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Fig. 1 a An example of the simulated OLR. Blue and red squares show TCs and their precursors, respectively. Numeric values next to the squares

represent elapsed time (positive numbers: TCs, negative numbers: precursors). b Detection results of TCs (blue dots) and their precursors (red
dots) during 1979-2008 from NICAM. The definition of basins is based on Fudeyasu et al. (2014)

This model is suitable for reproduction of tropical phe-  oscillation (MJO) (Miura et al. 2007). For additional details
nomena such as TCs (Nakano et al. 2015; Nakano et al.  on this model, please see the original and review papers
2017a; Nakano et al. 2017b) and the Madden—Julian (Tomita and Satoh 2004; Satoh et al. 2014).
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TC tracking

To detect TCs and precursors, we employed a TC
tracking algorithm for six-hourly outputs of the hori-
zontal components of wind, temperature, and sea level
pressure (SLP). This algorithm was originally proposed
by Sugi et al. (2002) and optimized for NICAM data by
Nakano et al. (2015) and Yamada et al. (2017). In the
first step, grid points at which the SLP was 0.5 hPa less
than the mean of its surrounding area (eight-neighbor
grids) were selected as candidate TC centers. In this
step, grid points that met the following criteria were
considered as “TCs”: (i) the maximum wind speed at
10 m is greater than 17.5m/s, (ii) the maximum rela-
tive vorticity at 850 hPa is greater than 1.0 x 107®s7%,
(iii) the sum of temperature deviations at 300, 500, and
700 hPa is greater than 2 K, (iv) the wind speed at 850 hPa
is greater than that at 300 hPa, (v) the duration of each de-
tected storm is greater than 36h, and (vi) the TC is
formed within a limited range of latitudes (30° S—30° N).
In the second step, these grid points were connected
with nearest neighbors in time, and tracks of “precur-
sors” (before becoming TCs), “TCs,” and “extratropical
cyclones” were subsequently obtained.

Figure 1b shows the result of applying the above
algorithm to the 30 year NICAM data. TCs and pre-
cursors are represented by blue and red dots. In 30
years, 2532 TCs were detected (72-103 TCs per
year). The numbers of TC tracks, detected samples,
positive samples in training data, and average life-
time in each ocean basin (North Indian Ocean, west-
ern North Pacific, eastern North Pacific, North
Atlantic, South Indian Ocean, South Pacific, and
South Atlantic) are listed in Table 1. The definition
of basins is taken from Fudeyasu et al. (2014) and il-
lustrated in Fig. 1b. Detected TCs and precursors
were used not only for labeling data, but also for
ground truth. Ground truth was provided before-
hand as the center point of TCs and precursors to
evaluate identification results.
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Methods/Experimental

Training data preparation

In this work, we performed a CNN-based binary classi-
fication that categorizes 2D cloud data (OLR) into “de-
veloping TCs and their precursors” or “non-developing
depressions.” Binary classification is the task of categor-
izing (or classifying) objects into two groups (positive
examples and negative examples) on the basis of classi-
fication rules. Before classification, it is necessary to
prepare a labeled training data set, which is a series of
sample data with the labels (positive or negative).

In the present work, at first glance, it appears natural
to categorize the data into the following three classes:
TCs, precursors, and non-developing depressions. How-
ever, since they are defined by the threshold value of
maximum wind speed, it is difficult to identify them
from cloud images. Figure 2a indicates a 2D histogram
of cloud cover and elapsed time of all detected TCs in-
cluding precursors by using the TC tracking algorithm.
Here, we define cloud cover as (OLR.x — OLRcan)/
(OLRyax — OLR i), Wwhere OLRcqp is the mean value of
OLR in 64 x 64 grids, and OLR,,, = 300.0 W/m? and
OLR,,;, = 100.0 W/m> Figure 2a shows the developing
phase and dissipation phase in which the cloud cover
increases and decreases over time, respectively. All
precursors (elapsed time <0) were in the developing
phase; therefore, we could identify both precursors and
TCs in the developing phase (inside yellow dotted line)
under the same category “developing TCs and their
precursors” (referred to here as “TCs”) for labeling su-
pervised data. The range was 30.0-95.0% for cloud
cover and was from 10 days before to 7 days after for-
mation, which could cover 97.0% of all precursors of
TCs (in Matsuoka et al. 2017, the cloud cover range
was 30.0-90.0% and covered 92.0% of all precursors of
TCs). The other category, “non-developing depres-
sions” (hereinafter referred as “non-TCs”), are low
pressure clouds that were candidates for TCs but did
not satisfy criteria (i)—(vi). For the binary classification,

Table 1 The numbers of TC tracks, detected samples, positive samples in training data, and average lifetime in each basin

Number Average lifetime [day] Number of detected samples (number of positive samples in training data)

of 1€ TCs Pre-TCs TCs Pre-TCs

tracks
North Indian Ocean 169 46 29 3011 (1422) 2162 (1184)
Western North Pacific 754 6.8 3.1 21,546 (9549) 13,514 (8023)
Eastern North Pacific 589 4.8 78 11,880 (4478) 14,392 (7976)
North Atlantic 125 44 4.1 2582 (788) 1767 (758)
South Indian Ocean 525 55 3.7 7989 (4757) 7989 (4148)
South Pacific 367 4.2 4.0 6649 (3503) 5346 (3193)
South Atlantic 3 16 23 22 (15) 27 (26)
Total 2532 54 45 53,679 (24,512) 25,488 (25,308)
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Fig. 2 a Histogram of cloud cover and elapsed time for developing TCs and their precursors. Positive and negative values of elapsed time
indicate before formation (precursors) and after formation (TCs), respectively. b, ¢ Examples of training data for binary classification of b
developing TCs and precursors (positive examples) and ¢ non-TCs (negative examples)

we labeled “TCs” and “non-TCs” data as “positive” and
“negative” examples, respectively.

Examples of “TCs” and “non-TCs” are shown in Fig. 2b,
c. Although these figures are visualized images of OLR,
the actual training and test data are single-precision
floating point numbers. Their horizontal sizes were
approximately 1000 km x 1000 km (64 x 64 grids). For
training, 20 year data (1979-1998) were used, and the
remaining 10 year data (1999-2008) were used for pre-
diction tests. The numbers of positive data (TCs and
precursors) and negative data (non-TCs) for training
were approximately 50,000 and 1000,000, respectively
(the numbers of positive data in training data in each
basin are listed in Table 1). Generally, the numbers of
positive and negative data are often set to same number in
binary classification. In this work, in order to train the
CNN with a vast number of negative data, ten training data
sets including the same 50,000 positive data and 50,000
randomly chosen negative data were generated for ten
deep CNNs. By combining multiple CNNs, the influence
of initial value dependence becomes smaller than when
only single CNN is used (Freund and Schapire, 1997;
Kearns and Valiant 1989; Breiman 1996; Breiman 2001).

Training and prediction using deep convolutional neural
networks

We used a 2D deep CNN for binary classification
(Table 2). CNNs are algorithms of neural networks used
for image recognition and classification and for directly
learning visual patterns from images. CNNs usually
consist of convolutional layers, pooling layers, and fully
connected layers (LeCun et al. 1999; Krizhevsky et al.

2012). Convolutional layers extract local features (fea-
ture maps) of input images, pooling layers allow spatial
invariance by reducing the resolution of the image, and
fully connected layers determine which features most cor-
relate to a particular class. Dropout is a regularization
technique where randomly selected neurons are ig-
nored during training for preventing overfitting in a
neural network.

Our CNN architecture comprises four convolutional
layers, three pooling layers, and three fully connected
layers. Input data were 64 x 64 grids of OLR data

Table 2 The architecture of our deep CNN. The parameters of
the input layer, convolutional layers, pooling layers, and fully
connected layers are denoted as [input data size] (e.g., 64 X 64),
[filter size]l@[number of feature maps] (e.g., 3 x 3@32),
[pooling window size] (e.g., 2x 2), and [number of units]
(e.g., 2048), respectively

Layer Shape
Input 64 %X 64
Convolution 1 3x3@32
Convolution 2 3% 3@64
Pooling 2x%2
Convolution 3 3 X 3@64
Pooling 2x2
Convolution 4 7x7@128
Pooling 2x%2
Fully-connected 2048
Fully-connected 2048
Fully-connected 2
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consisting of single-precision real numbers, and output
was generated in two classes (1 or positive: TCs; O or
negative: non-TCs). Hyper parameters were optimized
on the basis of the cross-validation test, which was con-
ducted to evaluate the performance of the CNN using a
random part of the training data. We examined the val-
idation accuracy of 216 combinations of architecture
settings: the number of convolutional (1-5) and pooling
layers (1-5), the number of parameters in the fully con-
nected layer (128, 256, 512, 1024, 2048), drop out ratio
(0.2, 0.3, 0.4, 0.5), size of the convolutional filter (3 x 3,
5x5, 7x7), and number of feature maps (16, 32, 64,
128). Accordingly, the architecture with the highest
level of performance was adopted, as shown in Table 2.
The Adam optimizer (Kingma and Ba 2015) was ap-
plied to the CNN to update the network parameter to
minimize the loss function called binary cross entropy.
Batch normalization (loffe and Szegedy, 2015) was also
applied to the CNN to minimize the initial-value de-
pendence of the parameters.

The source code for deep learning was implemented
in Python 3.6.3 with Keras (TensorFlow backend)
(Chollet 2015), running on an NVIDIA Tesla P100 (1
node). Training 100,000 data over one epoch consumed
approximately 3 min.

The accuracy of ten CNN classifiers using 100,000 data
(50,000 for each of the two classes) for training and 5000
data for cross-validation is shown in Table 3. The max-
imum, minimum, and average values were 90.99%, 89.58%,
and 90.30%, respectively (the number of epochs ranged
over 19-46). The metric “Accuracy” is defined as follows:

A TP + TN
ccuracy =
Y = TP+ TN+ FP + EN

(1)

Here, TP (true positive), TN (true negative), FP (false
positive), and FN (false negative) correspond to “correctly

Table 3 Accuracy values (also used as weights) of the ten classifiers

Model number: i Accuracy (weight: w;)

Classifier 1 0.9099
Classifier 2 0.9050
Classifier 3 0.9013
Classifier 4 09014
Classifier 5 0.8958
Classifier 6 0.9085
Classifier 7 0.8987
Classifier 8 0.9065
Classifier 9 0.9025
Classifier 10 0.9007
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predicted positive example as positive,” “correctly pre-
dicted negative examples as negative,” “incorrectly pre-
dicted negative example as positive,” and “incorrectly
predicted positive examples as negative,” respectively.
Compared with the average accuracy of ten classifiers
in Matsuoka et al. (2017), which was 86.60%, the aver-
age accuracy increased by 3.7 percentage point. Note
that, although simulation data and the TC tracking al-
gorithm were the same as in Matsuoka et al. 2017, in
this study, the target range of cloud cover was ex-
panded from 30.0-80.0% to 30.0—95.0%.

In the present study, in order to effectively train im-
balanced data (positive 50,000, negative 1000,000), ten
classifiers (Classifier 1, 2, ..., 10) were generated by
training ten sets of 100,000 data on the same neural
network, as shown in Fig. 3a. Each classifier was trained
with the same 50,000 positive data and randomly se-
lected 50,000 negative data. In this manner, our CNNs
could train 50,000 positive examples and 500,000 nega-
tive examples simultaneously.

To verify the model’s performance, classifiers trained
using the 20 year data were applied to the test data (un-
trained 10 year simulation data). Candidate regions in the
test data to be predicted by applying trained classifiers
were clipped with a sliding window, which is widely used
for object detection (Kumar 2013). We slid a rectangular
area (approximately 1000 x 1000 km) with a 125km
(eight-grid) stride and continued sliding the window over
the whole data within latitudes of 30° N to 30° S because
three pooling layers of our CNN assumed eight grids of
horizontal shift. Furthermore, in order to reduce the num-
ber of candidate regions, we set a limit to the cloud cover
in the range of 30.0 to 95.0% and 50% or more over sea
areas. In this manner, 97.0% of precursors of TCs in the
simulation data could be covered.

Our ensemble CNNs output the ensemble average
using the weight value of each trained classifier, as
shown in Fig. 3b. The weight value given by the ac-
curacy of the ten classifiers is listed in Table 3. The
final probability p for detecting the presence of devel-
oping TCs and precursors in an arbitrary region is
defined as follows:

10
1 WiXi
p = —

10 =1 wi

(2)

where w; is the weight value of classifier i, and x; is the
output value obtained by Classifier i (0: non-TCs, 1:
TC). When the threshold value py, is given, arbitrary
candidate areas that satisfy p = p,, are regarded as posi-
tive. Although we adopt binary classification to facilitate
the evaluation of prediction results, we can also output
detection results as probabilistic information using p.
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Fig. 3 The flow charts of the proposed ensemble CNNs: a training and cross-validation phase and b prediction phase. Hyper parameters of the

Evaluation metrics of prediction results

The false alarm ratio (FAR) and the probability of de-
tection (POD) are often used as evaluation metrics of
prediction results in weather forecasting (Jolliffe and
Stephenson, 2003; Wilks 2006; Barnes et al. 2007). FAR,
incorrectness of positive prediction, is defined using
“correctly predicted positive examples as positive (75
true positive)” and “incorrectly predicted negative
examples as positive (FP false positive)” as follows:

Fp

FAR = ——
TP + FP

(3)

As shown in Fig. 4a, when a positive predicted area
captures the ground truth, the area is TP. Similarly,
when a positive predicted area does not capture the
ground truth, the area is FP. In the example of Fig. 4a,

TP is 3, FP is 1, and FAR is 25.0%. Although FAR is
closely related to Precision=TP/(TP + FP), which is
widely used in computer vision and pattern recognition
(Forsyth 2011), Precision is one minus FAR and means
correctness of positive prediction.

POD is another important metric in prediction; it in-
dicates the amount of ground truth that can be cor-
rectly predicted. POD is conceptually the same as
Recall = TP/(TP + FN) used in computer vision except
for cases in which multiple positive predicted areas
overlap, as shown in Fig. 4b. This is because the de-
nominator of POD is the value of the ground truth,
whereas the denominator of Recall is the number of
predicted areas corresponding to the ground truth.
Therefore, TP is given to TCs instead of prediction
area, and we define the POD at multiple areas with the
same detected ground truth as follows:
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Results and discussion

Detection results

This section first introduces one of the best cases of
detection results under the condition that the number
of TCs and precursors is larger than eight and POD is
larger than 80.0%. Similarly, one of the worst cases
under the condition that the number of TCs and pre-
cursors is larger than five is also introduced.

Figure 5 shows the best case of detection results dur-
ing the 10year period (October 21, 2003, 18:00:00
UTC) for (a) pg, = 1.0 and (b) py, = 0.6. Red and white
boxes represent positive predicted areas (TCs) and
negative predicted areas (non-TCs), respectively. Fur-
thermore, blue and red dots represent the central
points of actual TCs and precursors (as ground truth)
calculated by the TC tracking algorithm, respectively.
In Fig. 5a, five developing TCs and three precursors of
nine ground truths can be correctly predicted; hence
POD is 88.9% (=8/9). Furthermore, 74 of 82 positive
prediction areas could be correctly predicted; hence, FAR
is 9.8% (= 1-74/82). Figure 5b shows the prediction results

after decreasing the threshold py, to 0.6. In this case,
the correctly predicted area (true positive) increases
(POD is 100.0%) because the positive predicted area is
expanded. However, the false alarm rate also increases
(FAR is 34.1%).

Representing the worst case, prediction results of Au-
gust 17, 2006 18:00:00 UTC are shown in Fig. 6, in
which many TCs and precursors with less cloud cover
were missed and there are numerous false alarms.
While the PODs range from 20 to 60%, the FARs were
high (72.7 to 78.3%).

Detectability for each basin

The performance for various py, was evaluated on each
basin. Figure 8 shows the relationship between POD and
FAR when py, was varied from 10 to 100% in 10% incre-
ments. It represents the average value over 10 years
(1999-2008) for each basin. The South Atlantic was not
considered in this study because the number of TCs that
occur in that area is extremely small. Although there are
differences in values of detection performance depend-
ing on the basin, POD and FAR exhibited a trade-off re-
lationship for all cases. When py, is increased, the
positive prediction area is narrowed down, and both
FAR and POD decrease. In contrast, if py, is decreased,
the positive predicted area becomes wider, and both FAR
and POD increase because dropout is reduced.
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There are several reasons for the variation in detec-
tion performance for different basins. First, it is known
that the pattern of TC genesis is different for each basin
(Holland 2008), and the detectability for each pattern
may differ (as will be described in the “Conclusion” sec-
tion, investigation of the detectability for each gener-
ation pattern will be undertaken in future studies).

Second, in general, the performance of supervised ma-
chine learning depends on the number of training data
for each pattern. In our results, the correlation coeffi-
cient between POD and the number of training data is
0.749, and that between the FAR and the number of
training data is — 0.756. Lastly, since the cloud pattern
of TCs is broken over time in the dissipation phase,
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Fig. 6 Detection results at 18:00:00 UTC 08/17/2006 with a py, = 1.0 (POD =20.0% and FAR=72.7%) and b py, = 0.6 (POD =60% and FAR = 78.3%).
Numbers next to the blue or red letters indicate the elapsed time of the ground truth of the TC or pre-TC, respectively

18:00:00 08/17/2006 UTC

their detectability should decrease. In other words, the
detectability should be high for TCs with long lifetimes.
The correlation coefficient between POD and average
TC lifetime in each basin is 0.821 and that between
FAR and average lifetime is — 0.802.

For example, as seen in Fig. 7, it was found that the
basin with the best detection performance was the

western North Pacific and that with the worst detec-
tion performance was the North Indian Ocean. In the
western North Pacific, the number of training data
was the largest (TCs 9549, pre-TCs 8023) and the
average lifetime was also the longest (6.8 days). On
the other hand, in the North Indian Ocean, the num-
ber of training data was relatively small (TCs 1422,
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pre-TCs 1184) and the average lifetime was also
relatively short (4.6 days).

Spatial detectability
This section first shows the spatial distribution of de-
tection performance for a threshold value of py, = 1.0.
Figure 8a, b shows the spatial distributions of POD and
FAR, respectively. Here, the spatial distributions of
POD and FAR are calculated as their 10 year means at
each grid point and are defined in a 64 x 64 rectangular
area centered on the ground truth. Figure 8c shows the
count of ground truths for both TCs and pre-TCs in
the training data at each grid point. Figure 8d shows
the count of positive prediction areas at each grid
point. Areas with many TCs and pre-TCs are repre-
sented by a gray and white dotted line in Fig. 8a, b, d.
In most basins, both POD and FAR appeared to be
roughly associated with the ground truth count in the
training data. Especially in the Indian Ocean and the
Pacific, POD was higher and FAR was lower in regions
that had higher ground truth counts. As an exception,
POD also exceeds 80% and FAR falls to 60% in a part of
the North Atlantic, despite limited training data. Previ-
ous studies reported that there is a pattern of TC

genesis unique to the basin (Ritchie and Holland 1999;
Yoshida and Ishikawa 2013; Fudeyasu and Yoshida,
2018). For example, Russell et al. (2017) reported that
72% of TCs in the North Atlantic are caused by African
Easterly Waves (AEW). Accordingly, our results may
indicate that TCs and pre-TCs caused by the AEW are
easy to detect using CNNS.

Next, the detection performance of the TC area and
pre-TC area are compared. In each basin, pre-TC areas
are located at lower latitudes than the TC area. As
shown in Fig. 8b, the FAR of the pre-TC area was
higher than that of the TC area. Although there was no
significant difference in POD between the TC and
pre-TC areas, the count of positive predictions was lar-
ger in the pre-TC area than in the TC area. That is, the
count of misdetection is larger in the pre-TC area than
in the TC area. Intuitively, the pattern of developed
TCs is simpler than that before formation, and there-
fore, it is reasonable that the detectability of TCs is
higher than that of pre-TCs.

In the western South Pacific and South Atlantic, al-
though the FAR was close to 100%, there were few posi-
tive prediction areas. In other words, the number of
misdetections (false positives) was small. In contrast,
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near the equator of the Indian Ocean and the eastern
Pacific, although the FAR was also close to 100%, the
number of positive prediction areas was large. That is,
the number of misdetections was large in these areas.

Seasonal detectability

Seasonal detectability, monthly mean of POD, and FAR
from 1999 to 2008 in each basin are shown in Fig. 9.
Monthly variability of the number of training data
(positive) and ground truth in each month and each
basin are also shown in the same figure. In each basin,
monthly changes in POD and FAR almost correspond
to the number of training data. In other words, seasonal
TCs can be detected without generating numerous false
alarms. In particular, seasonal TCs in the western North
Pacific (from July to November) could be detected
with a POD of 79.0-89.1% and a FAR of 32.8-53.4%
(pwn = 1.0). Similarly, seasonal TCs in the South Indian
Ocean (from December to March) could be detected
with a POD of 76.7-78.0% and a FAR of 31.1-40.3%.
Furthermore, seasonal TCs in the North Atlantic
(from August to November) could be detected with a
POD of 75.0-78.2% and a FAR of 36.7-51.0%.

In contrast, numerous false alarms were generated
during seasons with a low frequency of TCs. In the west-
ern North Pacific, although POD was not very low
(65.7-83.0%) during January to May, the FAR was

remarkably high (75.4-95.3%). It is noteworthy that
POD in the North Pacific is unlikely to decrease even
during seasons with a low frequency of TCs, except for
months with extremely small numbers of positive
ground truth. In the western North Pacific in December,
the POD was 78.7% and the FAR was 65.9% (py, = 1.0).
Similarly, in the eastern North Pacific in November, the
POD was 72.6% and the FAR was 68.4% (py, = 1.0).

Long-term detectability

Detectability (POD), the number of training data (posi-
tive), and ground truth of each elapsed time frame in
different basins are shown in Fig. 10. In each basin, the
day with the highest POD is the day TCs formed
(elapsed time = 0-2 days). One of the reasons for this is
that this period is the transition period from the devel-
oping phase to the dissipation phase for most TCs, as
shown in Fig. 2a. Obviously, fully developed TCs are
easy to recognize. Another reason is that the training of
the CNNs tends to focus on large samples near this
period to reduce errors.

The POD decreases as lead time is increased because
it is difficult to detect the precursors many days in ad-
vance. For example, 91.2%, 77.8%, and 74.8% of precur-
sors 2, 5, and 7 days before their formation can be
detected in the western North Pacific, respectively
(Fig. 10b). Similarly, 91.7%, 76.2%, and 70.1% of



Matsuoka et al. Progress in Earth and Planetary Science

(2018) 5:80

Page 13 of 16

A North Indian Ocean

Y =10

A Dy = 0.6

0.5
4

POD

0.0
JFMAMIJIJAS OND

JFMAMIJJ AS OND

1200
N D

1.0

0.5

FAR

o Training data (positive)
mmm Test data (positive)
800

400

Number of data

JJFMAMIJJ A SO
d North Atlantic

0

1.0
... /‘/\/\/\
A

0.0

IJFMAMIJIIASOND

1.0
%o.s
R

0.0

JFMAMIIASOND
S 1200
<
~
S
© 800
3
-—
£ 400
z
il il

0
JFMAMIJJAS OND

prediction area is zero, according to Eg. (3)
.

b Western North Pacific C Eastern North Pacific
1.0 1.0
} ) ﬁ%
0.0 0.0
JJFMAM1JJ AS OND JJFMAMUJJ AS OND
1.0 1.0
0.5 0.5
0.0
JJFMAMIJJ AS OND JFMAMIJJAS OND
4000 5000
4000
3000
3000
2000
2000
| T Il ‘ |
oM - I Il II I I 0- e mm I Il .
JFMAMIJ J A O ND JJFMAMIJJ AS OND

f

€ South Indian Ocean

South Pacific

1.0 1.0
03 03 T
0.0 0.0
JFMAMIJJAS OND JFMAMIJIJAS OND
1.0 1.0
0.5 0.5
0.0 0.0
JFMAMIJIIJAS OND JFMAMIJAS OND
2500 2000
2000
1500
1500
1000
1000
0 L. Lk I 0 I | I T II I I

JFMAMIJJAS OND

JFMAMIJIJAS OND

Fig. 9 POD and FAR (py, = 1.0 and py, = 0.6) and the number of data (training and test data) for each month in each basin. Note that the POD
cannot be defined when the number of TCs is zero according to Eg. (2). In the same manner, the FAR cannot be calculated when the positive




Matsuoka et al. Progress in Earth and Planetary Science (2018) 5:80 Page 14 of 16

ANorth Indian Ocean b Western North Pacific C Eastern North Pacific
1.0 1.0 1.0
§ 0.5 0.5 0.5
/ P =1.0 P =10 P =1.0
0'0.14 7 0 +7 0'(-)14 -7 0 +7 0'(-)14 -7 0 +7
1.0 1.0 1.0
§ 0.5 T 0.5 0.5
Pin=0.6 P = 0.6 pi=0.6
0'0.14 -7 0 +7 0 (-)14 -7 0 +7 0'(-)14 -7 0 +7
300 1. T 300
- o Training data (positive)
= mm Test data (positive)
= 200 200 200
)
2
- ) m ) “NW“
=
s Ll ......u|1||||||||||||"|||"||"|||III||||........ 0,_,,_M,...........mlllll"""" m“m
-14 7 -14 -7 0 +7 - 0 +7
dNorth Atlantic e South Indian Ocean f South Pacific
1.0 1.0 1.0
g 0.5 0.5 0.5
N8
0.0 p,h-_-l.O p 10 p,h=1.0
214 -7 0 +7 _14 -7 +7 -14 -7 0 +7
1.0 1.0 1.0
§ 0.5
0.0 P~ 0.6 0.0 P = 0.6 0.0 P = 0.6
-14 -7 0 +7  -14 -7 0 +7 -14 -7 0 +7
300 300 300
<
=
<
4q 200
5]
)
-g 100
I WMNMM [ m [
a1 L.....muIIIIIHI"”“"m"m“”"mIIIIIIIIII\ RERANA ..........m|||||||| ,,,,,,,,,,, I k.....mumilll| |||||Illiun7
- 14 +7 -14 +
Elapsed time [(hy] Elapsed time [daw] Elapsed time [day]
Fig. 10 Average-max-min charts of POD (p, = 1.0 and py, = 0.6) and bar graphs of the number of data (training and test data) for each elapsed
time frame in each basin

\




Matsuoka et al. Progress in Earth and Planetary Science (2018) 5:80

precursors 2, 5, and 7 days ahead can be detected in
the eastern North Pacific, respectively (Fig. 10c). Note
that the FAR could not be calculated in each elapsed
time frame because TP could not be defined in each
elapsed time frame.

In contrast to these basins, long-term detectability
decreases rapidly in basins with less training data, such
as the North Indian Ocean (Fig. 10a) and the North
Atlantic (Fig. 10d). In most basins, the number of
ground truth matches of test data is small from 7 to
14 days before the formation of precursors. Therefore,
this time frame involves large errors and decreased re-
liability of POD. Note that these results are reference
values because the POD and FAR could not be evalu-
ated simultaneously.

Conclusions

In this work, the detectability of TCs and their precur-
sors for each basin, season, and lead time was investi-
gated based on a deep neural network approach using
20 year simulated OLR by the NICAM. From the re-
sults of applying the CNNs to untrained 10 year simu-
lated OLR, the following conclusions can be drawn:

e DParticularly in the western North Pacific, we could
successfully detect TCs and their precursors during
July to November with POD values of 79.0-89.1%
and FAR values of 32.8—-53.4%. Detection results
include 91.2%, 77.8%, and 74.8% of precursors 2, 5,
and 7 days before their formation, respectively.

e Although the detection performance was approximately
consistent with the number of training data and TC
lifetime, the detection performance in the North
Atlantic was not relatively low despite limited
training data and short lifetimes. In particular, the
average POD and FAR values in the North Atlantic
during September to October were 74.8% and
40.9%, respectively.

These results suggest the high potential of the data-
driven approach for studying tropical cyclogenesis.

In contrast, the limitations of our framework are
as follows:

e Since the candidate regions are narrowed down by
the threshold value of cloud cover (30-95%), they
cannot be detected when the cloud cover is
extremely small (< 30%) or extremely large (> 95%).

e Our method considers developing TCs and precursors
as one category. To evaluate the detection
performance of only pre-TCs, it is necessary to
classify them by improving the CNN model.

e Our CNN classifiers may have model-specific biases
arising from training using only NICAM data.
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In areas with less data such as the North Atlantic,
training data from other basins may have a positive in-
fluence on prediction results. However, in areas with
sufficient data, such as the North Western Pacific,
training according to each basin might improve detect-
ability. In order to verify and improve detection per-
formance, it is necessary to analyze the influence of the
data in different basins by training the generation
patterns and environmental factors in each basin.

This paper describes the preliminary results of detect-
ing precursors of tropical cyclones using only simulated
OLR; we plan to use other proxies of convection such
as rain rate and mixing ratio of solid water for improv-
ing the detection performance. Furthermore, we also
plan to apply our ensemble CNNs to reanalysis data
and satellite observation data for practical use. For this
purpose, data of different spatial resolutions and differ-
ent variables or satellite channels must be considered.
Furthermore, time-sequence data as well as compara-
tive analyses with the results of the Early Dvorak
Method are also required.

Abbreviations
CNN: Convolutional neural network; NICAM: Nonhydrostatic ICosahedral
Atmospheric Model
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