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Abstract

The goal of any nonlinear dynamical analysis of a data series is to extract features of the dynamics of the underlying
physical and chemical processes that produce that spatial pattern or time series; a by-product is to characterise the
signal in terms of quantitative measures. In this paper, we briefly review the methodology involved in nonlinear
analysis and explore time series for GNSS crustal displacements with a view to constraining the dynamics of the
underlying tectonic processes responsible for the kinematics. We use recurrence plots and their quantification to
extract the invariant measures of the tectonic system including the embedding dimension, the maximum Lyapunov
exponent and the entropy and characterise the system using recurrence quantification analysis (RQA). These measures
are used to develop a data model for some GNSS data sets in New Zealand. The resulting dynamical model is tested
using nonlinear prediction algorithms. The behaviours of some RQA measures are shown to act as precursors to major
jumps in crustal displacement rate. We explore synchronisation using cross- and joint-recurrence analyses between
stations and show that generalised synchronisation occurs between GNSS time series separated by up to 600 km.
Synchronisation between stations begins up to 250 to 400 days before a large displacement event and decreases
immediately before the event. The results are used to speculate on the coupled processes that may be responsible for
the tectonics of the observed crustal deformations and that are compatible with the results of nonlinear analysis. The
overall aim is to place constraints on the nature of the global attractor that describes plate motions on the Earth.

Keywords: GNSS time series, Nonlinear analysis, Dynamical systems, Recurrence plots, Recurrence quantification
analysis (RQA), Cross and joint recurrence plots, Crustal deformation, Precursors, Synchronisation

Introduction
The general nature of the dynamics of the mantle of the
Earth along with the interaction of the mantle with the
lithosphere is thought to be well known; broadly, con-
vective motion in the mantle with coupled thermal and
mass transport results in tractions on the bases of the
lithospheric plates. These tractions together with other
tractions generated by instabilities, such as subducting
slabs along with forces generated by spreading from
mid-ocean ridges, lead to plate motions expressed as
plate deformations observed at the surface of the Earth
in the form of GNSS (Global Navigation Satellite

System) measurements. Fundamental questions are do
the displacements we observe synchronise in some way
from one place to another? And if so, on what spatial
and time scales does synchronisation occur? Can the pat-
tern of synchronisation be used to define precursors to
major and commonly destructive displacement events?
The global array of GNSS measurements and their time
series should, on principle, give enough information to
construct the dynamics of the underlying processes and
answer such questions. However, in order to be more
specific, one needs to better express the partial differen-
tial equations that describe the processes responsible for
the dynamics and the ways in which these processes are
coupled and evolve with time. With the present uncer-
tainties regarding constitutive relations and properties
and the temperature distribution within the Earth, it is
difficult to constrain possible geometric and kinematic
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models for plate development and evolution with com-
puter models based on current knowledge of these issues
and with the available computing power. The results of
any such models should at least be compatible with the
results of detailed analysis of observed crustal displace-
ment data which is the purpose of this paper.
The main data sets we have at present that are useful

in developing such constraints are geophysical data sets
(gravity, magnetics and seismic), heat flow measure-
ments, the distribution of topography on the surface of
the Earth and GNSS data on crustal displacements.
These latter data sets are now well distributed over the
Earth, and in some instances, continuous time series go
back at least a decade. We concentrate on GNSS data in
this paper with the aim of establishing how much of the
dynamics of the plate tectonic processes is reflected in
such data. Future papers attempt to integrate these data
sets. Just as the global weather system is an expression
of the Navier-Stokes equations for a viscous fluid with
coupled heat and mass transport and which result in
highly nonlinear behaviour, we expect the dynamics
underlying plate tectonics to be highly nonlinear. The
aim is to characterise and quantify this behaviour and, as
far as is possible, move towards identifying the mathem-
atical expression of the coupled processes that operate
to produce crustal deformation driven by plate motions.

Nonlinear time series analysis and dynamical
systems
The nature of nonlinear time series analysis
The aim of time series analysis is to classify and quantify
the nature of a particular time series of interest and, if
possible, understand the dynamics of the processes that
operated to produce the time series. Most approaches to
such a task in the geosciences consider linear stochastic
models commonly with an assumed Gaussian or
log-normal distribution for the data. This essentially
means that one assumes the data to be stochastic, that
is, the result of uncorrelated linear processes. The linear
assumption implies that the law of superposition (Hobbs
and Ord 2015, pp. 10–15) is valid so that if f(x) and g(x)
describe the dynamics of a system, then linear combina-
tions of f(x) and g(x) also define the dynamics. Such an
assumption implies that Fourier methods are useful in
characterising the data (Stoica and Moss 2005). The sto-
chastic assumption assumes no long-range correlations
in the data. Analysis is difficult if the data are
non-stationary (the mean and/or the standard deviation
vary with time), there is considerable noise in the data
and “outliers” (departures from Gaussian or log-normal
distributions) are common. Nevertheless, the data are
often forced to fit stationary, Gaussian distributions with
no long-range correlations and methods such as kriging,
co-kriging, autoregressive and moving average methods

and power spectra together with filtering/smoothing
procedures are employed. Such methods are parametric
(a statistical distribution is assumed for the data) and
have no conceptual link to the underlying processes that
produced the data. The stationary stochastic Gaussian
time series, consisting of the terms {x1, x2, ….., xN},
where N is the total number of terms, is commonly
characterised using Fourier transform methods and by
the autocorrelation function, c(τ):

c τð Þ ¼ xi−xiþτð Þ2� �
x2i
� � ð1Þ

where τ is called the lag and the 〈
∗
〉 brackets denote the

mean of the quantities involved (Box et al. 2008). Noise
reduction is commonly thought of as a smoothing oper-
ation, the premise being that smooth data are better in
some unspecified way than irregular data, and is com-
monly undertaken using recursive Bayesian procedures
such as in the Kalman filter and its variants (Judd and
Stemler 2009).
The outcome of any time or spatial series analysis is a

data model which enables one to characterise the statis-
tical measures (mean, standard deviation, autocorrel-
ation function, power spectrum and so on) of the data
and if possible undertake forecasts, interpolations and
extrapolations of the data. We distinguish two classes of
data models; one is a parametric stochastic data model
that assumes an underlying statistical distribution and
has no relation to the underlying processes that pro-
duced the data. The other is a non-parametric determin-
istic data model that makes no assumptions about the
underlying statistics and directly reflects the dynamics of
the system. The linear, stochastic procedures of kriging,
co-kriging, autoregressive and moving average methods
work well for linear systems where the law of superpos-
ition holds and Fourier methods clearly delineate
discrete periodicities in the data. These are methods of
constructing a stochastic, parametric data model. How-
ever, in nonlinear systems, especially those that are cha-
otic, these methods fail; the assumptions of Gaussian or
log-normal distributions with no long-range correlations
break down. Nonlinear signal processing methods (Small
2005) become not only essential but are capable of de-
lineating the nature of the processes that operated or of
testing models of processes that might be proposed
(Judd and Stemler 2009; Small 2005). We paraphrase
Judd and Stemler (2010): Understanding: it is not about
the statistics, it is about the dynamics.
Part of the reason why linear parametric procedures

fail for nonlinear systems that arise from a number of
coupled processes is that in nonlinear systems the data
for a particular quantity are a projection of processes
from a higher dimensional state space on to that single
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quantity. Thus, for a sliding frictional surface where the
only processes might be velocity-dependent frictional soft-
ening, accompanied by heat production and chemical
healing of damage, the behaviour is described in a
four-dimensional state space with coordinates comprising
the state variables, velocity, temperature, friction coeffi-
cient and degree of chemical healing. A time series for
temperature is a projection from the four-dimensional
state space on to a one-dimensional time series. Quantities
that appear close together in the time series may in fact be
widely separated in state space. With respect to the GNSS
time series from New Zealand that we examine in this
paper, the deforming crustal system operates in a state
space where at least the state variables velocity, stress,
strain-rate, temperature, damage-rate, healing-rate and
fluid pressure are needed to define the system; there prob-
ably are others involving the ways in which one part of the
system is coupled to other parts. The GNSS displacement
signal we observe is the projection from a space defined
by these state variables on to a single displacement record
that we observe at a particular station as a one dimen-
sional time series.
As opposed to stochastic data models based on Gauss-

ian statistics, lack of long-range correlations and the
principle of superposition, the nonlinear systems we are
interested in studying in the geosciences result from
clearly defined physical and chemical processes. Al-
though we may have considerable trouble in discovering
and characterising these processes, the system is deter-
ministic rather than stochastic. Hence, in principle, we
should be able to define for a system of interest the in-
variant measures that characterise the system. An invari-
ant measure remains the same independently of the way
in which the system is observed and so remains the
same independently of the dimensions of the state space
in which we observe the system. Such measures include
the Rényi generalised dimensions (including the fractal
support dimension and the correlation dimension for
the system) that characterise the geometry and are de-
fined from a multifractal spectrum for the system (Beck
and Schlögl 1995; Arneodo et al. 1995; Ord et al., 2016),
the Lyapunov exponents that are related to the dynamics
of the system and define the stability of the system and
how far prediction is possible (Small 2005) and the Kol-
mogorov-Sinai entropy, related to information theory,
that tells us how much information exists in the signal
and is also related to predictability (Beck and Schlögl
1995; Small 2005). We will estimate these invariant mea-
sures for GNSS time series together with a number of
other quantitative measures but not dwell too heavily on
the mathematics behind the theory. Readers who require
in-depth treatments should consult (Abarbanel 1996;
Beck and Schlögl 1995; Sprott 2003; Kantz and Schreiber
2004; Small 2005; Judd and Stemler 2010). This paper is

a brief review of nonlinear analysis with an emphasis on
recurrence methods (Marwan et al. 2007a). The princi-
ples are illustrated using specific examples from the Lo-
rentz system (Sprott 2003, p. 205) and several GNSS
time series from New Zealand.

The invariant measures
The basis of nonlinear analysis lies in powerful proposals
put forward by Crutchfield (1979) and Packard et al.
(1980) and proved rigorously by Takens (1981). What is
commonly referred to as Takens’ theorem states that the
complete dynamics of a system can be derived from a
time series for a single state variable from that system.
The reason for this (as expressed in the friction example
above) is that in systems where all the state variables are
coupled, the behaviour of one depends on the behaviours
of all the others and so the time series for one variable has
the behaviours of all the other variables encoded within it.
Thus, if we have a time series {x1, x2, ….., xN}, then
we can construct M-dimensional reconstruction space
vectors, M(t), from M time delayed samples so that
the vector M is:

M tð Þ ¼ x tð Þ; x t þ τð Þ; x t þ 2τð Þ; ::……; x t þ M−1ð Þτð Þ½ �
ð2Þ

In this process, every point in the signal is compared
with a point distant τ away. These vectors define the
attractor for the system; this is the manifold that all pos-
sible states of the system can occupy independently of
the initial conditions. If in this construction, the delay, τ,
is small, the coordinates comprising M are strongly cor-
related and so the reconstructed attractor lies close to
the diagonal of the reconstruction space. It is something
of an art form to select τ such that the dynamics unfold
off that diagonal. The attractor describing the complete
dynamics of the system is embedded in a space which
has a dimension that reflects the number of state vari-
ables in the system dynamics. The state space in which
the attractor “lives” has dimensions, D. If M exceeds D,
the attractor does not change and D is called the embed-
ding dimension. For very large dimension systems, it
may prove very difficult to construct an attractor that
looks interesting or meaningful. This is simply because
we are projecting a D -dimensional object into two or
three dimensions. If we explore the system in a space
that has dimensions less than D then evolutionary trajec-
tories of the system appear to cross one another because
of the problems in projecting the trajectories from a
higher dimensional space. Points on trajectories that ap-
pear close in the observational space but in fact are far
apart in D—space are called false neighbours. Algorithms
for calculating the number of false neighbours in a given
data set are given by Sprott (2003) and Small (2005). If
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one can identify a dimension where the number of false
neighbours is zero then one has a good estimate of the
embedding dimension. For white noise, the percentage
of false neighbours remains at 50% independent of the
dimension of the space in which the signal is observed.
One can also identify another dimension that we call

the dynamical or state dimension, D. This is the dimen-
sion, it may or may not be an integer, that is the true di-
mension of the attractor. Generally, D is difficult to
measure because of noise and D is attenuated because of
non-stationary behaviour or local variability in attractor
density of states so that D ≥D. D can be estimated dir-
ectly from the time series whereas D can only be mea-
sured if we have access to a well-defined attractor
(Packard et al. 1980; Ord 1994).
The embedding dimension can be estimated by plot-

ting the number of false neighbours against the embed-
ding dimension (this is done for the Lorentz attractor in
Fig. 7c and for GNSS data in Fig. 13). This plot ideally
has a minimum at the embedding dimension (Small
2005). In addition, if one defines the correlation dimen-
sion, C2, for a time series with N data points:

C2 D; εð Þ ¼ 1
2N N−Tð Þ

X
i

X
j<i−T

Θ ε− xi−x j

�� ��� � ð3Þ

where Θ(*) is the Heaviside function, and T is a param-
eter large enough that it ensures the distances between
points are distributed so that no biases exist towards
small numbers, then C2(D, ε) represents the fraction, in
embedding space, of pairs of points separated by Euclid-
ian distances smaller than ε. A plot of C2 against embed-
ding dimension (see Fig. 7b) ideally has an initial slope
of 45° and reaches a plateau at the embedding dimen-
sion. Details of methods of estimating the embedding di-
mension are spelt out by Small (2005) together with the
pitfalls involved.

Recurrence plots and recurrence quantification
Recurrence plots
Although nonlinear signal processing is at least 30 years
old (Abarbanel 1996; Beck and Schlögl 1995; Sprott
2003; Kantz and Schreiber 2004; Small 2005; Judd and
Stemler 2010), most approaches are fairly opaque to po-
tential users. Hence, particularly in the geosciences, the
inertia involved in using such developments is very large.
However, a step in overcoming the inertia was made by
Eckmann et al. (1987) who introduced the concept of re-
currence plots which are generalised autocorrelation
functions based on Takens’ theorem and derived from
the conclusion reached by Poincaré (1890) for nonlinear
systems that ….., neglecting some exceptional trajectories,
the occurrence of which is infinitely improbable, it can be
shown, that the system recurs infinitely many times as

close as one wishes to its initial state. Since Eckmann’s
classical paper, the subject has expanded dramatically
with important contributions from Casdagli (1997),
Webber and Zbilut (2005) and Marwan et al. (2007a).
The literature is now very large especially in climate
studies, biology and medicine; applications to seismic
studies are Chelidze and Matcharashvili (2015) and Gar-
cia et al. (2013) but other applications in the geosciences
are rare. Generalised recurrence plots for n-dimensional
spatial data sets are discussed in Marwan et al. (2007b).
If the dimensions of the system are n then the general-
ised recurrence plot is in 2n-space. Thus, a recurrence
plot for three-dimensional data exists in 6-space. We
only consider one-dimensional data sets in this paper.
A recurrence plot is a symmetrical matrix, Rij,

expressed as a two-dimensional visualisation and defined
by

Rij ¼ Θ ε− xi−x j

�� ��� �
for i; j ¼ 1;N ð4Þ

where ε is an arbitrary threshold distance (commonly
called the radius) that measures the tolerance within
which recurrence is identified and ‖∗‖ denotes a norm,
commonly taken as the Euclidean norm. (4) says that we
measure the distance between a given point, xi, on the
signal and every other point, j = 1 to N on the signal and
give that measure the value 1 if the distance is within
the tolerance, ε, or zero if not. This is repeated for all
values of i = 1 to N to form the recurrence matrix. The
caveat is that the distances are measured in the embed-
ding space. A recurrence plot is then a plot of Rij for a
given radius, ε. If ‖xi − xj‖ ≈ ε then Rij = 1 and a dot is
added to the plot; otherwise, Rij = 0 and the plot are left
blank. The plot may be contoured by setting ‖xi − xj‖ ≈
0.8ε, 0.6ε, ...0.2ε and so on. In some software (VRA), the
contour interval is prescribed within the software; for
others, a number, c, can be set which defines the number
of contours with equal spacing, (ε /c). We repeat, a re-
currence plot is a generalised autocorrelation function.
If the signal represents white noise then the embed-

ding dimension is infinite and recurrences occur ran-
domly with any patterning in the recurrences occurring
by chance. Multiple recurrence plots of the data will not
be reproducible; the lack of any diagonal lines indicates
that the signal is completely stochastic. An example is
shown in Fig. 1a. If the signal is a sine-wave then recur-
rences occur with a period equal to that of the signal;
the recurrence plot comprises continuous diagonal lines
as shown in Fig. 1b with the vertical (or horizontal) dis-
tance between diagonals equal to the period. The con-
tinuity of the diagonal lines indicates that the signal is
completely deterministic. The addition of white noise to
a sine-wave signal results in blurring of the recurrence
plot but the basic pattern and determinism are well
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preserved (Fig. 1c). Recurrence plots are applicable to
stationary and nonstationary data sets and are reason-
ably insensitive to noise. Pitfalls associated with recur-
rence analysis are discussed by Marwan (2011).

Recurrence quantification
Although recurrence plots make “pretty pictures” (espe-
cially if ε is large and c is small) and are useful for com-
paring and visually classifying different data sets, the real
power lies in the quantitative measures, including the in-
variant measures, that can be derived from them. In
principle, because of Takens’ theorem, all of the dynam-
ics of the system are encoded in the recurrence plot and
the quantitative measures are designed to expose the dy-
namics. Recurrence quantification analysis (RQA) is
based on deriving quantitative information from the dis-
tribution of lines on the recurrence plot. For a detailed
discussion of these measures, see Webber and Zbilut
(2005) and Marwan et al. (2007a); in Table 1, we present
a summary of many of these measures. Figure 2 shows a
summary of many of the steps involved in, and outputs

from, an RQA and we will elaborate upon this diagram
later in the paper with respect to GNSS data sets.
The recurrence plots shown in Fig. 1 are relatively

simple and represent completely stochastic systems
(Fig. 1a) or completely deterministic systems (Fig. 1b).
Most natural systems lie somewhere between these two
extremes. An example is given in Fig. 3 which is the re-
currence plot for one of the time series from the Lorentz
system (Sprott 2003) examined in greater detail later in
the paper. The recurrence plot, which here has been
constructed to emphasise the main features in typical re-
currence plots, consists of many vertical and horizontal
lines as well as diagonal lines. Below, we consider the
significance of these lines; they are the basis for RQA.
Note that two invariant measures may be derived

from the recurrence plot. The entropy is given by
ENT: for periodic signals, ENT = 0 bits/bin, and for
the Hénon attractor (Sprott 2003, p. 421), ENT =
2.557 bits/bin (Webber and Zbilut 2005). The first
positive Lyapunov exponent is proportional to (1/
DMAX). The smaller DMAX, the more chaotic is the

Fig. 1 Examples of recurrence plots. a White noise. Any patterning occurs by chance. b A sine-wave with no noise. The vertical (or horizontal)
distance between red lines is the period of the signal. c A sine-wave with noise. The signal is blurred and there is a faint underlying patterning of
horizontal and vertical lines but the overall pattern of diagonal lines is preserved

Table 1 Summary of quantities used in recurrence quantification analysis. Modified after Webber and Zbilut (2005): https://
www.nsf.gov/pubs/2005/nsf05057/nmbs/nmbs.pdf

%recurrence, %REC Percentage of recurrent points falling within the specified radius, ε. %REC ¼ 100number of points in triangle

εðε−1Þ=2
%determinism,
%DET

Percentage of recurrent points forming diagonal line structures.
This is a measure of determinism in the signal.

%DET ¼ 100number of points in diagonal lines

number of recurrent points

Linemax, DMAX The length of the longest diagonal line in the plot
(except main diagonal).

DMAX = length of longest diagonal line in the recurrence
plot

Entropy, ENT The Shannon information entropy of all diagonal line lengths
over integer bins in a histogram. This is a measure of signal
complexity with units bits/bin.

ENT = − ∑ (Pbin)log2(Pbin)

Trend. TND A measure of system stationarity.
TND ¼ 1000

slope of%local recurrence
vs:displacement

� �

%laminarity, %LAM The percentage of recurrent points forming vertical line
structures.

%LAM ¼ 100number of points in vertical lines

number of recurrent points

VMAX The length of the longest vertical line in the plot. VMAX = length of longest vertical line in the recurrence plot

Trapping time, TT The average length of vertical line structures. TT = Average length of vertical lines ≥ parameter line
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signal. For the Hénon attractor, DMAX = 12 points
(Webber and Zbilut 2005).
In addition to the diagonal lines in Fig. 3 which

are related to recurrence and determinism, vertical
(and horizontal) lines appear on many recurrence
plots. These mark transitions in the behaviour of the
system. Such transitions may be periodic → periodic

(with a change in frequency), periodic → chaotic or
chaotic → chaotic. A vertical line represents an
interval where the state does not change or changes
relatively slowly but the state of the system changes
across the line. A summary of the significance of
various patterns on recurrence plots is given in
Table 2.

Fig. 2 Recurrence quantification analysis (RQA). This diagram shows the steps typically taken in a recurrence nonlinear analysis of a time series
together with many of the outputs from the RQA. Modified from Aks (2011)

Fig. 3 A recurrence plot for the Lorentz attractor showing the significance of some of the RQA measures and of other features of the plot
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Recurrence plots and their quantification in this paper
have been prepared using the software VRA: http://
visual-recurrence-analysis.software.informer.com/4.9/ and
RQA software: http://cwebber.sites.luc.edu/. Other soft-
ware is available at http://tocsy.pik-potsdam.de/, http://
tocsy.pik-potsdam.de/CRPtoolbox/, http://tocsy.pik-pots-
dam.de/pyunicorn.php and https://www.pks.mpg.de/
~tisean/.

Prediction and noise reduction
Most signals, especially those from natural systems, contain
some form of noise which consists of the addition of a sto-
chastic (originates from uncorrelated processes) signal. It is
generally considered as an adulteration to the signal and
needs to be removed or reduced as far as possible. This no-
tion arises from a linear view of the world where the solu-
tions to linear differential equations are smoothly varying
functions and any irregularity must be the result of exter-
nally imposed random input. However, irregular behaviour
including non-periodicity and intermittency can arise from
nonlinear systems with no externally imposed noise. The
problem that arises in nonlinear systems is to understand if
some of the noise results from deterministic processes of
interest and hence should be retained.
Noise is generally classified as white noise with no

long-range correlations and coloured noise with some
internal structure and long-range correlations (Moss and
McClintock 1989). In addition, two different sources of
noise can be identified (Grassberger et al. 1993; Kantz
1994; Judd and Stemler 2009). If the behaviour of the
system can be expressed at discrete intervals (as in a
GNSS lithospheric deformation system) then the se-
quence of states, zt, at times, t, can be written

ztþ1 ¼ f ztð Þ þ νt

where the function f defines the dynamics of the system

(generally written as set of coupled partial differential
equations) and expresses the way in which the system
evolves due to deterministic processes and νt are a series
of independent random variables arising from some
process operating in the system. This is referred to as
dynamical noise.
Dynamical noise might be generated in a system where

different processes dominate at different time and/or
length scales so that some frequencies and/or parts of
the system evolve in different ways and rates to others.
This results in probability distributions for some time/
length scales diffusing (broadening) and drifting (shifting
the mean) with different diffusivities as described by
Fokker-Planck equations (Moss and McClintock 1989).
Such processes add a stochastic but dynamic noise to
the system behaviour but such noise is a fundamental
part of the processes operating in the system and should
be preserved in any noise reduction algorithm. This kind
of noise is generally, but not always, coloured noise
(Moss and McClintock 1989).
If we make observations, st, at discrete intervals (as in

GNSS time series) then

stþ1 ¼ g stð Þ þ εt

where g expresses the state of the system at time t and εt
are independent random variables arising from processes
external to the system and comprise observational noise.
Such noise may be white or coloured. Any noise reduc-
tion process should attempt to reduce the contribution
from observational noise whilst preserving as much as
possible of the dynamical noise. Later in the paper, we
give examples of noise reduction for GNSS data and
show that some methods preserve the RQA measures of
the signal whereas others degrade some deterministic as-
pects of the signal.

Table 2 Significance of patterns in recurrence plots (after Marwan et al. 2007a)

Pattern Significance

Homogeneous The process is stationary

Fading pattern to upper right or lower
left

Non-stationary data; the process contains a trend or drift

Disruptions (horizontal or vertical) Non-stationary data; some states are far from the normal; transitions may have occurred

Periodic or quasi-periodic patterns The process is cyclic. The vertical (or horizontal) distance between periodic lines corresponds to the period.
Variations in the distance mean quasi-periodicity in the process.

Single isolated points Strong fluctuations in the process. The process may be uncorrelated or anti-correlated.

Diagonal lines (parallel to the LOI) The evolution of the system is similar over the length of the line. If lines appear next to single isolated
points the process may be chaotic.

Diagonal lines (orthogonal to the LOI) The evolution of states at different times is similar but with reverse timing.

Vertical and horizontal lines or clusters States do not change with time or change slowly

Lines not parallel to the LOI-sometimes
curved.

The evolution of states is similar at different times but the rate of evolution changes with time. The
dynamics of the system is changing with time.
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To a large extent, the process of nonlinear noise reduc-
tion is the inverse of the nonlinear prediction (or forecast-
ing) problem. For nonlinear noise reduction, one can
determine the dynamics of the system given the whole sig-
nal up to its current state and then search for parts of the
signal in the past that are not part of the dynamics. These
parts are removed as noise. This means we take the whole
signal and work backwards. For prediction, we take one
part of the signal, determine the dynamics and then see if
we can find a part of the dynamics that fits the way in
which the signal is evolving into the future and use that to
make a forward prediction or forecast. Nonlinear predic-
tion is particularly useful if one needs to “fill in” short gaps
in data sets in a manner that honours the deterministic
dynamics of the system.
An approach to prediction in chaotic systems is spelt

out here based on Casdagli and Eubank (1992), Weigend
and Gershenfeld (1994), Fan and Gijbels (1996) and
Abarbanel (1996). To predict a point xn + 1, we determine
the last known state of the system as represented by the
vector X¼½xn; xn−τ; xn−2τ; :……; xn−ðD−1Þτ �, where D is the
embedding dimension and τ is the delay. We then search
the series to find k similar states that have occurred in
the past, where “similarity” is determined by evaluating
the distance between the vector X and its neighbour
vector X’ in the D-dimensional state space. The concept
is that if the observable signal was generated by some
deterministic map, M : ð:…ððxn; xn−τÞ; xn−2τÞ;…; xn−ðD−1Þτ
Þ ¼ xnþ1 ; that map can be reconstructed from the data
by looking at the signal behaviour in the neighbourhood
of X. We find the approximation of M by fitting a
low-order polynomial (Fan and Gijbels 1996) which
maps k nearest neighbours (similar states) of X onto
their next immediate values. Now, we can use this map
to predict xn + 1. In other words, we make an assumption
that M is fairly smooth around X, and so if a state X0¼½
x0n; x

0
n−τ ; x

0
n−2τ;…; x0n−ðD−1Þτ � in the neighbourhood of X

resulted in the observation, x’n + 1, in the past, then the
point xn + 1 which we want to predict must be some-
where near x’n + 1. In any chaotic system, we expect the
error in prediction to increase exponentially (as mea-
sured by the Lyapunov exponent) as we move away from
known data.
The above approach is based on intensive work on

prediction in chaotic systems largely carried out in the
1990s and relies on finding local states in the past that
resemble current states of the system. A relatively recent
approach to nonlinear filtering is the shadowing filter
(Stemler and Judd 2009). A shadowing filter (Davies
1993; Bröcker et al. 2002; Judd 2003; Judd 2008a, 2008b)
searches in state space for a trajectory (defined by a se-
quence of zt for the system), rather than local states, that
remains close to (that is, the trajectory shadows) a

sequence of observations, st, on the system. The algorithm
is discussed by Judd and Stemler (2009). We do not use a
shadowing filter in this paper, but its use in future work
promises to give better results than reported here.

Synchronisation
Of particular interest in systems where many coupled
episodic sub-systems are operating, such as in GNSS
and seismic systems, is to see if the sub-systems influ-
ence each other so that some form of spatial or temporal
synchronisation occurs. Such synchronisation can be of
five forms (Romano Blasco 2004; Marwan et al. 2007a):

� Phase synchronisation: the two signals are phase
locked but amplitudes are not identical.

� Frequency synchronisation: the two signals are
frequency locked.

� Lag synchronisation: there is a time or space lag
between similar or identical states.

� Generalised synchronisation: the synchronisation
comprises nonlinear locking between similar or
identical states.

� Chaotic transition synchronisation: similar behaviour
in the signal is locked into chaotic transitions in the
respective recurrence plots that occur at similar times
in two or more time series.

In many systems, synchronisation switches from one
of these five types to another as the system evolves and
the coupling between parts of the system changes
strength (Romano Blasco 2004). We will see that cross
recurrence plots and particularly joint recurrence plots
are powerful ways of investigating such synchronisation
(Marwan et al. 2007a). Just as a recurrence plot identifies
recurrences at different parts of the same signal, cross
recurrence plots identify recurrences at identical times
on two different signals. In other words, a cross recur-
rence plot identifies those times when a state in one sys-
tem recurs in the other. Joint recurrence plots identify
recurrences in the recurrence histograms of two signals;
they are somewhat similar to identifying simultaneously
occurring maxima in power spectra from two different
signals in linear systems. Clearly, the plots only reflect
something of the dynamics if both signals originate from
similar processes and belong to state spaces with similar
or identical attractors.
By analogue with (4) a cross recurrence matrix for two

time series xi and yj is defined as

CRij ¼ Θ ε− xi−y j
��� ���	 


for i ¼ 1;N and j ¼ 1;M

A cross recurrence plot is a generalisation of a linear
cross correlation function. Additionally, we define a joint
recurrence matrix as
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JRij ¼ Θ εx− xi−x j

�� ��� �
Θ εy− yi−y j

��� ���	 

for i; j ¼ 1;N

where εx and εy are tolerances for the individual time
series. For joint recurrence, JRij = 1 if ‖xi − xj‖ < ε

xand
‖yi − yj‖ < εy otherwise JRij = 0. Joint recurrence mea-
sures the probability that both the xi and yj systems
revisit simultaneously the neighbourhood of a point
in their respective phase spaces previously revisited
The equivalent of an RQA analysis can be conducted
for each of these matrices, CRQA and JRQA respectively
but in some instances the measures may have limited use
(Romano Blasco 2004). For instance in a cross recurrence
plot for two signals with different frequencies (see Fig. 4b
below), there may be no diagonal lines so that measures
such as %DET and DMAX have little meaning. Romano
Blasco (2004) shows that the entropy in particular is a use-
ful measure for studying synchronisation in joint recur-
rence plots. In general, cross recurrence is not a useful
way of analysing synchronicity between two systems
(Romano Blasco 2004) but we use aspects of cross recur-
rence plots below as a useful way of portraying synchron-
isation between signals from two GNSS stations.
In Fig. 4, we show several different cross and joint re-

currence plots so that the reader might obtain some
insight into how to read such plots. In Fig. 4a recur-
rences between the signals y = sin(x) and y = cos(x) are
plotted. The recurrences plot on straight diagonal lines
and the vertical distance between these lines is the (iden-
tical) period of both signals. The straight diagonal lines
are referred to (Marwan et al. 2007a) as lines of identity
(LOI). In a more general recurrence plot for a dynamical
system, the LOIs represent segments of the trajectories
of both systems that run parallel for some time. The fre-
quency and lengths of these lines are measures of the
similarity and nonlinear interactions between the two
systems.
Figure 4b is a cross recurrence plot between the two

signals y = sin(x) and y = sin(2x). The LOIs are now in-
clined at β = tan−1(1/2) = 26.6° to the horizontal axis.
The slope, β, is given by Marwan et al. (2007a)

β ¼ tan−1
∂
∂t

T 1

T 2

� �� �
ð5Þ

where T1 and T2 are the time scale characteristic of the
two systems.
In Fig. 4c, recurrences between y = sin(x) and y =

sin(x) + sin(5x2) are plotted. The straight LOIs of Fig. 4a,
b are now curved and are referred to as lines of syn-
chronisation (LOSs). Thus, the details of the cross recur-
rence plot can give information on whether the signals
that are compared are linear or nonlinear and also give
an indication of both the absolute and the relative time
scales associated with the two systems. Figure 4d is a

cross recurrence plot between the two quasi-periodic
signals: y ¼ sinðxÞ þ sinð ffiffiffi

2
p

xÞ and y = sin(x) + sin(πx).
Figure 4e is a cross recurrence plot between two logistic
signals given by xn + 1 = αxn(1 + xn) with α = 3.7 and 3.8
and Fig. 4f is a joint recurrence plot between the signals:
y = sin(x) and y = sin(20x).
Plotting the changes in slopes of LOSs is a powerful

way of tracking the evolution of two synchronised sys-
tems and of observing the ways in which time scales that
characterise each system change with time.
Examples of joint recurrence plots are given in Fig. 4g,

h, i for the same signals in the cross recurrence plots of
Fig. 4a, b, c. In contrast to the cross recurrence plots (a
to c) which express the ways in which two signals oc-
cupy similar states synchronously, a joint recurrence plot
expresses (in the form of blue lines or dots in g to i) the
ways in which recurrences on two different signals occur
synchronously.

An example: the Lorentz attractor—quantification and
prediction
As an example of the principles involved in nonlinear
analysis and prediction, we present a discussion centred
on the relatively simple, low-dimensional Lorentz at-
tractor (Sprott 2003, pp. 90–92) which forms the basis
for modern weather forecasts (Yoden 2007). This system
is described by the set of differential equations:

dx1
dt

¼ −
3
2
Px1 þ 2

3
aPx2

dx2
dt

¼ ax1x3−
3
2
x2 þ aRx1 ð6Þ

dx3
dt

¼ −
1
2
ax1x2−4x3

where x1, x2 and x3 are variables of interest, t is time
and a, P and R are parameters of the system. The signal
that results for x1 from these equations with a = 2.25, P
= 20/3 and R = − 4/9 is given in Fig. 5a with the multi-
fractal spectrum in Fig. 5b. The well-defined multifractal
spectrum arises because the Lorentz system is chaotic
and, in principle, its attractor consists of an indefinite
number of singularities with variable densities of occur-
rence, α, on the attractor (Beck and Schlögl (1995). The
multifractal spectrum expresses the density distribution,
f (α), of these singularities as a function of their strength,
α (Arneodo et al. 1995).
The attractor formed by plotting one variable against

another is shown in Fig. 6 in two dimensions. The recur-
rence plot is shown in Fig. 7a for 3500 points in the time
series. The dimensions of the space in which the at-
tractor lives (the embedding dimension) is estimated
from the two plots: the correlation dimension against
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embedding dimension (Fig. 7b) and the percentage of
false neighbours against embedding dimension (Fig. 7c).
The estimated dynamical dimension for the Lorentz at-
tractor is 2.1736 whereas Fig. 7b, c would suggest an
embedding dimension of ≈ 2. Thus, it is not necessary
for the attractor to be known for a system, its embed-
ding dimension and its topology can be estimated from

the recurrence plot. This dimension is important for
constraining any data model that is constructed.
Although we will not explore recurrence networks in

this paper we mention, for completeness, that a network
with the topology of the attractor can be calculated from
the recurrence plot (Donner et al. 2010; McCullough et
al. 2017) as shown in Fig. 8. The adjunct matrix, Aij, for

Fig. 4 Cross and joint recurrence plots. a Cross recurrence plot between sin(x) (upper trace) and cos(x) (lower trace). High recurrence is represented by
the dark blue (straight) lines of synchronisation at 45o to the horizontal axis. b Cross recurrence plot between sin(x) (upper trace) and sin(2x) (lower
trace). High recurrence is represented by the dark blue (straight) lines of synchronisation at tan−1(1/2) = 26.6° to the horizontal axis. The ratio ½ is the
ratio of the frequencies of the two signals. c Cross recurrence plot between sin(x) (upper trace) and sin(x) + sin(5x2) (lower trace). High recurrence is
represented by the (curved) dark blue lines of synchronisation. The local slope of the line of synchronisation is the arctangent of the ratios of the local

frequencies of the signals. d Cross recurrence between two quasi-periodic signals: y ¼ sinðxÞ þ sinð ffiffiffi
2

p
xÞ (upper frame), y = sin(x) + sin(πx)(lower

frame). e Cross recurrence plot between signals from two logistic equations, xn + 1 = αxn(1− xn), with α = 3.7 (upper frame) and α = 3.8 (lower frame).
The cross recurrence plot is dominated by chaotic transitions (vertical and horizontal lines) but regions of periodic behaviour occur characterised by
equally spaced diagonal lines. f Cross recurrence plot for y = sin(x) (upper frame) and y = sin(20x) (lower frame). The large frequency difference
between the two signals means that the LOSs are almost vertical. g Joint recurrence plot between sin(x) (upper trace) and cos(x) (lower trace). High
synchronisation of recurrences is represented by the dark blue regions of synchronisation. h Joint recurrence plot between sin(x) (upper trace) and
sin(2x) (lower trace). Lines of high synchronisation between recurrences are represented by the dark blue lines. i Joint recurrence plot between sin(x)
(upper trace) and sin(x) + sin(5x2) (lower trace). Again high synchronisation of recurrences is represented by the dark blue lines
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the network is related to the recurrence matrix in (4) by
Aij = Rij − δij where δij is the Kronecker delta. Recurrence
network software is available at http://tocsy.pik-pots-
dam.de/pyunicorn.php and needs to be used in
conjunction with a graphical network code such as
Gephi https://gephi.org/. Recurrence networks have
been applied to seismic time series by Lin et al. (2016).
We revisit the concept of nonlinear networks in the
“Discussion” section as a basis for monitoring the behav-
iour of GNSS data networks.
The application of nonlinear noise reduction to the

Lorentz system is shown in Fig. 9 where one can see that
the prediction is still very good 450 steps away from a
3000-step training set but is rising exponentially by the
end of the prediction. In plots such as these, the

normalised error is that relative to that which would be
expected from a linear prediction of the mean expressed
as the normalised mean squared error, NMSE, discussed
in Weigend and Gershenfeld (1994) and defined as

NMSE ¼ 1
σ2N

XN
i¼1

xi−x̂ið Þ2 ð7Þ

where xi is the observed value of the ith point in a
series of length N, x̂i is the predicted value and σ is
the standard deviation of the observed time series
over the length, N. NMSE is the ratio of the mean
squared errors of the prediction method used to a
method that predicts the mean at every step. In Fig. 9,
this ratio is a maximum of ≈ 0.0065.

Fig. 5 Features of the Lorentz system. a x1 signal from Lorentz signal with parameters given in the text. b Multifractal spectrum from
Lorentz system

Fig. 6 Attractor for the Lorentz system, x2 plotted against x3
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Significance of a linear trend in the data
An issue that arises in the nonlinear analysis of GNSS
data is the significance of any linear trend that com-
monly exists in the data and of the effect of removing
this trend. Consider a pair of time series, xi and yj, with
i = 1, N and j = 1, M and a pair of derived time series, x̂i;ŷ j,

where x̂i ¼ xi þ at and ŷi ¼ yi þ bt where a and b are
constants and t is time. Then, xi, yj are time series derived

from x̂i;ŷ j by removal of a linear trend. For the cross re-

currence plots of these pairs of time series to be identical,

Θ ε− xi−y j
��� ���	 


¼ Θ ε− x̂i−ŷ j
��� ���	 


for i ¼ 1;N and j ¼ 1;M

This condition can be satisfied if ðkxi−y jkÞ ¼ ðkx̂i−ŷ jkÞ
for all i ¼ 1;N and j ¼ 1;M but in general this will be a
difficult condition to satisfy. Similarly joint recurrence

Fig. 7 Recurrence plot and embedding dimension for the Lorentz system. a Recurrence plot. The colour code to the side of a indicates that ε/c
varies from 0 to 76. b Correlation dimension plotted against embedding dimension. The plot departs from a slope of 45o (equivalent to white
noise) at an embedding dimension of 2 giving an estimate for the true embedding dimension of the attractor. c Percentage of false nearest
neighbours plotted against embedding dimension. The minimum is at 2 indicating again that this is close to true embedding dimension for the
system. The theoretical value of the dynamical dimension is 2.17

Fig. 8 Recurrence network for the Lorentz system. The recurrence network has the same topology as the attractor (Fig. 6)
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plots for the time series x̂i;ŷ j will be identical for that of

the pair x̂i;ŷ j if

Θ εx− xi−x j

�� ��� �
Θ εy− yi−y j

��� ���	 


¼ Θ εx− x̂i−x̂ j

�� ��� �
Θ εy− ŷi−ŷ j

��� ���	 

for i; j ¼ 1;N

Again, in general this condition will be difficult to
satisfy. As an indication of the differences that may
arise, Fig. 10 presents cross recurrence plots for
two quasi-periodic signals. Figure 10a is for these
two signals with no linear trend whilst Fig. 10b is
for the same two signals with a linear trend added
to the first. One can see that the two plots are
quite different. In some instances, however, the re-
moval of a linear trend makes quite small differ-
ences as we will see for the KAIK_e signal later in
the paper.

Analysis of GNSS data
Nature of the data
Time series for crustal displacements using satellite ac-
quired data are collected by the GeoNet organisation in

New Zealand, a collaboration between the NZ Earth-
quake Commission and GNS Science, using GNSS
(popularly known as GPS) receivers and antennae. In
order to explore the application of nonlinear time ana-
lysis to GNSS data, we have selected five of the operat-
ing GNSS stations shown as yellow triangles in Fig. 11a.
At each station, three output files are available contain-
ing displacement records relative to a reference datum
(Hofmann-Wellenhof et al. 2008) defined by the Inter-
national Terrestrial Reference Frame (ITRF2008) for
East, North and vertical displacements evaluated on a
daily basis from data collected every second. The 1 s
data contain noise from known and unknown sources
and may be influenced by both deterministic and
observational noise produced by the processes of data
collection (Hofmann-Wellenhof et al. 2008). In these
procedures, linear combinations of various signal fre-
quencies are combined as a method of smoothing the
1 s data (Hofmann-Wellenhof et al. 2008). In addition,
the 1 s data are aggregated from 1 s to 1 day time series.
We have retained the raw supplied data, expressed as
daily displacements with no further processing, since in
any nonlinear analysis, it is never clear initially what is
noise from measurement or other external sources (ob-
servational noise) and how much of the signal is

Fig. 9 Prediction in the Lorentz system. The top panel is the signal from the Lorentz system calculated from the differential equations that describe
the system. We use the first 3000 steps as a training set for a nonparametric prediction over the next 500 steps in the range 3001 to 3500 steps
shown in the lower panel. One can see that the prediction (in red) hugs the real signal (in black) fairly well over the first 250 steps of the prediction
(normalised error < 0.0008). The error is normalised relative to the prediction obtained from a linear prediction or random walk model. From then on
the error begins to rise exponentially (as is to be expected from a chaotic series) and is 0.0064 (or very close to 100% of the variance in the data) at
500 steps. If one wanted to improve the accuracy of the prediction past this range then the collection of data within those last 250 steps is necessary.
One sees that the predictions for this simple chaotic model are very good
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intrinsic to the nonlinearity of the dynamics (dynamical
noise). It would be interesting to begin with the 1 s data
in future work. An initial exploration, as this study is,
should retain as much of the data as possible with a view
to identifying externally induced (non-deterministic)
noise at a later stage. A brief look at noise in these sig-
nals is given later in the paper. Some of the possible lin-
ear methods of noise reduction are considered in
Goudarzi et al. (2012). At each station, data are collected
for the easterly (suffix: _e), northerly (suffix: _n) and
vertical (suffix: _u) displacements. In Fig. 11, we show
only the easterly component data except for the sta-
tions CNST and PAWA where we explore the vertical
component data. We also explore possible synchron-
isation between nearby stations using cross- and
joint-recurrence plots. Since there is some interest in
understanding synchronisation between two stations
on the North Island of New Zealand with an event
(marked as a red triangle in Fig. 11a) on the South
Island (Wallace et al. 2017), we also explore syn-
chronisation between two distant stations.
The raw data used here and reported at 1 day inter-

vals contains relatively small gaps (about 6 days at
most in the signals we investigated) that presumably
arise from station down-time. We have retained these
gaps for most analyses but have explored the effect of
removing them. Such a process seems to make little
difference to the details of both recurrence and cross
recurrence plots but clearly is important if one wants
to match events in cross and joint recurrence plots.
Future work should explore nonlinear prediction
methods in filling these gaps.
The emphasis in the use of GNSS time series for geo-

tectonic purposes in most published literature is to es-
tablish the velocity imposed on the crust by plate
tectonic processes. As such the data are processed

(Beavan and Haines 2001; Wallace et al. 2004) in order
to arrive at a velocity field that is smooth and continu-
ous over substantial parts of the surface of the Earth.
From such studies, important constraints can be placed
on that part of the deformation of the crust that is com-
monly referred to as the rigid body motions (Wallace et
al. 2004, 2010). Many studies propose that the crust is
made of microplates that may have slightly different
rigid body motions (Thatcher 1995, 2007; Chen et al.
2004; Wallace et al. 2004, 2010) and although some may
offer more continuous models (Zhang et al. 2004) the
case for such micro-plates existing in New Zealand
seems to be well established (Wallace et al. 2004, 2010).
The deformation within such microplates is commonly
thought of as elastic (McCaffrey 2002; Wallace et al.
2010) and such an assumption is reasonable if one is
seeking a smooth, continuous distribution of velocities
on the scale of the microplate. However, in this paper,
we seek to understand something of the system dynam-
ics of crustal deformation processes by examining the
history of deformation, continuous and discontinuous,
within these microplates together with the coupling be-
tween these microplates over time. As such, the rigid
plate tectonic motions are, in a sense, noise as far as the
signal is concerned whereas for geotectonic purposes the
details of the signal, which are our interest, are noise
that is commonly removed by intensive processing
(Wallace et al. 2010).
The rigid body motions of the crust arising from plate

tectonic motions constitute a vector field on the surface
of the Earth whereas the history of displacements within
a microplate can be represented as an attractor that de-
scribes the dynamics in phase space. In principle, the
characteristics of the attractor should not be altered by
the subtraction of rigid body velocities but there is an
issue in defining how much of an observed trend in a

Fig. 10 The influence of a linear trend on a cross recurrence plot. a Cross recurrence plot for y = sin(x) + sin (11x/9) (top frame) against y = cos(x)
+ sin (5x/3) (bottom frame). b Cross recurrence plot of y = sin(x) + sin (11x/9) − 0.1x (top frame) against y = cos(x) + sin (5x/3) (bottom frame)
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Fig. 11 Raw daily data for components of displacement from five GNSS stations on the North Island of New Zealand. a Locality map. The five stations
are shown as yellow stars. The red star is station KAIK on the South Island that is examined for synchronicity with stations CNST and PAWA on the
North Island later in the paper. b CNST_e. c CNST_u. d PARI_e. e MAHI_e. f KAHU_e. g PAWA_e. h PAWA_u
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GNSS signal arises from a rigid body motion is a contri-
bution from regional plate tectonic motions and how
much arises from elastic deformation or even from other
internal permanent plastic/viscous deformation of the
microplate. This is particularly the case if the overall
trend is not linear.
For the recurrence plots presented here, we have elected

not to remove the overall trend since the RQA measures
for such plots are influenced by the trend although the
trend, if pronounced, is clear in the plot. This is particu-
larly true for KAHU_e and PAWA_e (Fig. 11e, f, but for
other plots, the influence of the trend is minimal. We have
removed the trend from the KAIK_e plot when we exam-
ine synchronisation between stations but recognise that
such removal may have an influence on the apparent dy-
namics of the system; we examine the influence of such
trend removal later in the paper.
It would seem from a cursory examination of many of

the GNSS records from the North and South Islands of
New Zealand that New Zealand is composed of an
inter-locking mosaic of blocks and within each block the
history of GNSS displacements have a similar history. It
appears that each block moves whilst maintaining de-
formation compatibility at the boundaries of these
blocks by combinations of boundary slip, block rotation
and internal elastic, brittle and plastic deformation.
There is evidence (Wallace et al. 2017 and this paper)
that the motions of individual blocks are synchronised
with others over quite large distances. The question
arises therefore: How much of the average trend is to be
attributed to the overall plate tectonic motions and how
much is to be attributed to the nonlinear dynamics of
the microplate? Although such a question is fundamen-
tal and is in need of detailed examination we elect to
side-step the issue and unless indicated otherwise treat
the raw data as an input to analyses.

Recurrence analysis of GNSS data
We begin by analysing the data from one station
(CNST) in some detail to illustrate the procedures spelt
out in Fig. 2 and then proceed to examine the other four
other stations shown as yellow triangles in Fig. 11a in
less detail. We then proceed to examine nonlinear syn-
chronisation of displacement histories between stations
CNST and PAWA, a distance of ≈ 220 km, and between
stations CNST, PAWA and KAIK, a distance of ≈ 440 to
650 km.
In all the recurrence/cross-recurrence/joint-recurrence

plots for GNSS data, the embedding dimension is 10
and the time delay is 5. The scaling is maximum dis-
tance, and the radius is 20% (Webber and Zbilut 2005).
The parameter c is 5 so that four levels of contours ap-
pear in each plot. The signal for the raw data together
with the time scale is shown at the base of each

recurrence plot at the same linear scale as the plot.
Cross reference to Fig. 11 gives finer detail of the abso-
lute time scale for each plot.
Figure 12a, b shows the recurrence plots and associated

signals for the raw daily data for CNST_e and CNST_u.
We have not analysed CNST_n data. The contrast in ap-
pearance between Fig. 12a, b reflects the nature of the two
signals. The CNST_e data comprise a number of discon-
tinuities with downward non-stationary trends between
discontinuities. This is represented on the recurrence plot
by abrupt gaps in recurrence (black areas) with fading to
the upper right patterns between gaps. The large black
areas (up to ≈ 300 days wide) where no recurrences occur
are particularly evident immediately prior to large discon-
tinuities in the displacement record.
The recurrence plot for CNST_u (Fig. 12b) is much

more highly populated with recurrences. Regions of no
recurrence (black) tend to occur immediately prior to
changes in the patterns in the raw data but these gaps
are ≈ 50 days wide as opposed to up to a year in the
CNST_e recurrence plot.
The essential attributes of the CNST_e recurrence plot

are expressed in the RQA analysis of Table 3. The rela-
tively low level of %REC is expressed by the high propor-
tion of black areas in Fig. 12a. The signal is highly
deterministic as indicated by the high values of %DET.
DMAX is large which indicates a small value for the first
Lyapunov exponent; this in turn indicates the potential
for good predictability. The entropy (ENT = 4.4 bits/bin)
is larger than that of the Hénon system (ENT = 2.56
bits/bin) and so suggests predictability may be more dif-
ficult for CNST signals than for the Hénon system.
These values of RQA measures for CNST_e are to be

contrasted with those for CNST_u which reflects the
more diffuse nature of the latter signal. In particular, the
first Lyapunov exponent indicates that predictability may
be difficult.
Similar observations to the above hold for the other sig-

nals examined: large gaps (black areas) in recurrence tend
to occur prior to large discontinuities in displacement, de-
terminism is high and the first Lyapunov exponent is
small. Obvious differences in *_e recurrence plots exist for
data sets that show significant non-stationarity: recurrence
tends to be restricted to a relatively narrow zone either
side of the main diagonal LOI but again discontinuities in
the signal are preceded on the recurrence plots by gaps in
recurrence.
As a final way of analysing recurrence plots, we show

in Fig. 12h a series of windows along the main identity
diagonal. Within each window, a different pattern of re-
currence exists that reflects the details of the signal.
One can undertake an RQA within each window and
map the way in which the RQA measures evolve with
time. This is done in Figs. 16 and 19. The procedure
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Fig. 12 (See legend on next page.)
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is known as a sliding window analysis (Webber and
Zbilut 2005).

Embedding dimension and the nature of the attractor
In Fig. 13, we show plots of the correlation dimension,
given by (3), and the percentage of false nearest neigh-
bours against embedding dimension for CNST_e
(Fig. 13a, b) and CNST_u (Fig. 13c, d). The correlation
dimension plot tends to deviate from a straight line
somewhere in the range 8 to 10 indicating a relatively
high value for the embedding dimension. This indicates
that the underlying dynamics of the system involve 8 to
10 state variables; certainly more state variables are in-
volved than in the Lorentz system (5). The percentage of
false nearest neighbours gives little useful information as
far as the embedding dimension is concerned and
continues to decrease as the embedding dimension
increases. This again indicates that the attractor is
complicated and that it is difficult to view the attractor
in its true embedding dimension with the data available.
More data are needed to cover the attractor and sample
all possible states.
In Fig. 14, we show a projection of the attractor for

the CNST_e data set shown in Fig. 11b. As indicated
earlier, the embedding dimension for this attractor is
probably about 10 so Fig. 14 is a projection from this

10-dimensional state space into three dimensions. The
fact that many trajectories cross each other in this pro-
jection is an indication of the large number of false
neighbours in three dimensions. Also note the presence
of knot-like “outliers” in the system that are visited
rarely but have a complicated shape with false neigh-
bours in three dimensions. This indicates that the local
estimates of the embedding dimension can be quite vari-
able (Small 2005) and we tentatively assume that these
complications in the attractor are responsible for any
difficulties involved in using false nearest neighbours as
a means of estimating the embedding dimension.

Noise reduction
As an example of the differences between nonlinear and
linear noise reduction procedures, we first present in
Fig. 15 two examples of the nonlinear noise reduction
procedure discussed earlier in the paper. Here, the
embedding dimension is taken as 10 and the delay, 5.
Figure 15a shows approximately 76% noise reduction
and the corresponding plot of correlation dimension
against embedding dimension is shown in Fig. 15b. This
shows a reduction in the possible embedding dimension
to about 5. In Fig. 15c, 80% noise reduction is shown for
CNST_u and the corresponding plot of correlation di-
mension against embedding dimension is shown in
Fig. 15d with a slight reduction in the indicated

(See figure on previous page.)
Fig. 12 Recurrence plots for stations marked as yellow stars in Fig. 11a. In all figures the embedding dimension is 10 and the time delay is 5. The
scaling is maximum distance and the radius is 20% (Webber and Zbilut 2005). The parameter c is 5 so that 4 levels of contors appear in each plot.
The signal for the raw data is shown at the base of each recurrence plot at the same linear scale as the plot. Details of these signals together with the
time scale are shown in Fig. 11. a CNST_e. b CNST_u. c PARI_e. d MAHI_e. e KAHU_e. f PAWA_e. g PAWA_u. h PAWA_u with sliding windows marked
in red. Within each window a different pattern of recurrence occurs. The zero for the time scale in each of these plots and in subsequent plots in this
paper is the zero for the relevant time scale in Fig. 11

Table 3 RQA measures for selected GNSS data sets on the North Island of New Zealand

Station Data set %REC %DET DMAX ENT TREND %LAM VMAX TTIME

CNST e 39.49 97.88 3588 4.4 − 6 98.5 837 51.56

CNST* e_trunc 38.44 97.48 2687 4.28 − 7.05 98.21 411 40.1

CNST** e_trunc_n 36.44 97.48 2688 4.28 − 7.02 98.21 411 40.11

CNST*** e_reg_n 36.48 97.31 2676 3.8 − 10.02 97.99 446 31.85

CNST u 6.9 29.13 45 0.89 − 1.92 45.88 42 2.59

CNST**** u_n 27.77 65.81 114 1.6 − 6.95 76.54 154 3.58

PARI e 39.26 98.73 3380 4.5 − 13.77 99.07 898 70.36

MAHI e 42.38 98.26 3685 4.38 − 9.77 98.79 841 60.7

KAHU e 37.47 99.47 4183 4.51 − 27.64 99.62 1315 181.64

PAWA e 38.16 99.50 4526 5.14 − 25.24 99.65 1326 200.18

PAWA u 56.32 95.54 1796 2.92 − 15.05 96.76 1027 18.05

*CNST_e data truncated from 3650 days to 3300 days
**Truncated CNST_e data with nonlinear noise removal
***Truncated CNST_e data with regional filter method noise removal (Beavan et al. 2004)
****CNST_u data with nonlinear noise removal
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embedding dimension compared to Fig. 13c. An attempt
was made to optimise the noise reduction in these two
cases by exploring different embedding dimensions and
delays.
In Table 4, the RQA data are shown for CNST_e (raw

data, column 1), CNST_e with nonlinear noise reduction
(column 2) and CNST_e with noise removed by the lin-
ear regional filter described by Beavan et al. (2004); this
latter method of noise removal has now been discontin-
ued by GeoNet. The nonlinear noise removal process
leads to no or insignificant changes in the RQA mea-
sures whereas the regional filter method produces 5% in-
crease in %recurrence, an 11% increase in entropy, a
42% decrease in trend and a 21% increase in trapping
time. Thus, although the data may appear “smoother”,
the basic measures of the dynamics of the system have
been significantly altered by the linear filtering method.
A basic premise is that any data reduction method
should preserve dynamic noise and it seems that the
linear method has removed some such noise in this
example.

Sliding window analysis of CNST_e data
A useful way of analysing recurrence plots is called the
sliding window method (Marwan et al. 2007a) whereby
the recurrence plot is divided into small windows along
the main diagonal LOI which may or may not overlap as
desired (Fig. 12h). RQA measures are produced in
each window enabling plots of these measures to be
made through the history of the time series. In Fig. 16,

Fig. 13 Correlation dimensions (left hand frames) and false nearest neighbour (right hand frames) plotted against embedding dimension. a, b
Data set: CNST_e. c, d Data set: CNST_u

Fig. 14 Projection of the attractor for CNST_e data from a higher
dimension (perhaps an embedding dimension of 10) into three
dimensions. The attractor has been constructed using a time delay
of 30 days according to the method discussed in the “The invariant
measures” section. See Hobbs and Ord (2015), pp. 227–228 for
details of the construction method
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such an analysis is shown for CNST_e data. This enables
the RQA data to be compared directly with local patterns
in the raw data. In particular, we are interested in RQA
measures that may serve as precursors to the main dis-
continuities in the displacement record.
In this analysis, the window size is 100 days and there

is a 50 day overlap between windows so that each win-
dow can “see” 100 days ahead; this represents two black
dots on the RQA signals shown in Fig. 16. Each dot is
plotted at the beginning of the 100 day window so each
dot represents the RQA measure of the signal 100 days
ahead. Here, we concentrate on the main displacement
discontinuity that begins about day 3307 and continues
until about day 3320. One can see that the mean and

standard deviation track the signal precisely and so are
of little use as precursors. However, the %LAM and
DMAX measures both behave anomalously 100 days be-
fore the displacement discontinuity at ~ 3307 days and
so are candidates as precursors for this event although it
is appreciated that this event is not sharp and extends in
a compound manner starting at ≈ 3200 days; others are
possible but higher resolution (say 0.1 day binning) is
necessary before one can be definitive.

Nonlinear prediction of CNST_e data
A test of whether one has a reasonable data model is to
attempt some form of nonlinear prediction. We have
attempted this for the CNST_e data set using the first

Fig. 15 Nonlinear noise reduction for CNST data sets. In left hand panels blue is original signal and red is the signal after noise reduction. a Noise
reduction for CNST_e; 76% noise reduction. b Plot of correlation dimension against embeddding dimension for CNST_e after noise reduction.
This should be compared to Fig. 13a. c Noise reduction for CNSTE_u; 80% noise reduction. d Plot of correlation dimension against embeddding
dimension for CNST_u after noise reduction. This should be compared to Fig. 13c

Table 4 Comparison of RQA measures for data set CNST_e, as raw data (column 1), with nonlinear noise reduction (column 2) and
with noise reduction using the regional filter method (column 3; Beavan et al. 2004)

Data set 1. CNST_e
Raw one-day data

2. CNST_e
Nonlinear noise removal

3. CNST_e
Regional filter

% change of # 2 with respect to 1 % change of # 3 with respect to 1

%REC 38.44 38.44 36.48 0 5.10

%DET 97.48 97.48 97.31 0 0.17

LMAX 2687 2688 2676 − 0.04 0.41

ENT 4.28 4.28 3.8 0 11.21

TREND − 7.05 − 7.02 − 10.02 − 0.43 − 42.13

%LAM 98.21 98.21 97.99 0 0.22

VMAX 411 411 446 0 − 8.52

TTIME 40.1 40.1 31.85 0 20.57
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Fig. 16 RQA measures for a sliding window of width 100 days and an overlap beween windows of 50 days for the data set CNST_e shown at
the top of each frame. a Mean. b Standard deviation. c %REC. d %DET. e DMAX. f ENT. g TREND. h %LAM. i VMAX. j TTIME
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3200 days of the signal as a training set and an
attempted prediction for the period 3201 to 3501 days.
The results are shown in Fig. 17 which represents the
300 days starting at day 3201 and ending at day 3500 for
an embedding dimension of 10, a delay of 10, a local lin-
ear weight predictor and a Gaussian kernel. The actual
values are plotted in blue and the prediction in red. The
normalised error (in green) starts high at ≈ 1.4 remains
high and drops to below 1 at the main jump in displace-
ment. The final normalised error is ~ 0.98 but is still
marginally better than linear predictors based on (7).
The predicted signal hugs the details of the observed
data quite nicely including the large displacement at
about 105 days. This analysis again confirms that the
embedding dimension of the attractor is relatively large.
Reducing the embedding dimension below 10 or increas-
ing the embedding dimension to 12 give normalised er-
rors far greater than 1.

Synchronisation of data sets
It is clear that some of the large displacement events in
New Zealand occur at near to the same time. Thus the
same large displacement events can be observed syn-
chronously at several stations (Wallace et al. 2017, Fig. 2).
This represents synchronisation of large displacements
over distances of at least 220 km. Recently, Wallace et
al. (2017) have proposed that the magnitude 7.8 seismic
Kaikōura event triggered large displacement events 250
to 600 km away on the North Island for 1 to 2 weeks
after the South Island event. Whilst such synchronisa-
tion is clear, it is of interest to see if more subtle forms
of synchronisation exist and, if so, over what length and
time scales does synchronisation occur? Also an under-
standing of where such synchronisation sits in the classi-
fication of synchronisation types described earlier in the
paper and details of the frequencies at which synchron-
isation occurs would shed light on the dynamics of
crustal deformation. In what follows, we employ
cross-recurrence and joint recurrence plots to detect

synchronisation between stations, to clarify details of
the synchronisation and to classify the mode of
synchronisation.

Synchronisation between stations on the North Island
In Fig. 18, we show synchronisation between signals for
CNST_e and PAWA_e. Figure 18a is a cross recurrence
plot and shows that gaps in synchronisation between the
two signals (black areas on the cross recurrence plot
marked by white arrows) begin months before major dis-
placement events at both CNST and PAWA, and syn-
chronisation begins again immediately after an event.
The ratio of recurrence time scales for the two stations,
TCNST/TPAWA, is ≈ 3:5 as shown by the slope of the
LOSs and using (5). There are places in Fig. 18a just be-
fore large displacement events where the LOS is almost
horizontal indicating that TCNST/TPAWA switches from
≈ 3:5 to a large number (β in (5) approaches 0o as
TCNST/TPAWA → ∞). These places (marked with red ar-
rows) of low TCNST/TPAWA correspond to discontinuities
in the CNST_e displacement plot. Discontinuities in the
PAWA_e displacement plot correspond to discontinu-
ities in the LOSs with no change in TCNST/TPAWA.
The joint recurrence plot is shown in Fig. 18b and

shows a high degree of joint recurrence along a single
LOS for the early part of the history and widens out to
have a higher proportion of joint recurrences as the
major event is approached. After the major event, the
joint recurrences are still strongly synchronised but the
pattern of joint recurrences has broadened even further.
Figure 18c, d shows the probability of a recurrence ver-

sus frequency (1/lag in days) for CNST_e and PAWA_e
respectively. Both signals have fractal distributions with
respect to time lag for low frequencies but are more or
less independent of frequency at high frequencies which is
where the majority of recurrences occur and where the
power in the signal exists. The details of the distributions
are quite different for the two stations indicating that no
simple phase or frequency locking exists between these

Fig. 17 Nonlinear prediction of CNST_e signal. The blue curve is the observed signal, the red is predicted and the green curve is the normalised
error which is less that one and so marginally better than a linear prediction model given by (7). The prediction lags behind the observed signal
by 1 day so is not ideal for practical predictive purposes but is a good test of the data model
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Fig. 18 Synchronisation between stations CNST and PAWA (see Fig. 11a). a Cross recurrence plot between CNST_e (bottom trace) and PAWA_e
(top trace). The plot shows lines of synchronisation (LOS) in darkest blue. The red arrows indicate some areas where the ratio of the frequencies
of the two signals increases to a large number. The white arrows mark black areas corresponding to no synchronisation. b Joint recurrence plot
between CNST_e (bottom trace) and PAWA_e (top trace). The plot shows strong synchronisation of recurrences in the two signals especially
along the main diagonal. c, d Plots of log(percent cross recurrences) versus log(1/lag) for CNST_e and PAWA_e respectively. e Logarithm
of normalised joint recurrence against logarithm of frequency for CNST_e and PAWA_e
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two stations. Figure 18e shows the scaling on a log-log
plot of the probability of a joint recurrence against fre-
quency (both normalised). The relation indicated by the
dotted line is:

normalised recurrence probability is proportional to
(normalised frequency)11.6

indicating that all of the power in the signal is parti-
tioned into the highest frequencies. Since almost all
(99%) of the joint recurrences occur in the four or five
highest frequencies in Fig. 18e, the partitioning of power
into the highest frequencies is far more pronounced (as
indicated by the dotted red line) than indicated by the
above scaling relation. These observations indicate that
the synchronisation between CNST and PAWA is a form
of generalised synchronisation.

Synchronisation between stations on the North Island
and KAIK on the South Island
The spectacular observations of Wallace et al. (2017)
that the magnitude 7.8 Kaikōura seismic event in the
South Island of New Zealand is followed for a few weeks
by slow displacement events 250–600 km distant on the
North Island indicates clear lag synchronisation over
large distances. The questions we want to address are
the following: do other forms of synchronisation exist
over these large distances and, if so, what form do
they take and is there information in the form of pre-
cursors in the synchronisation patterns? We first char-
acterise the KAIK displacement history using a sliding
window with RQA and then investigate cross recur-
rence plots between CNST and KAIK and between
PAWA and KAIK.
Figure 19 shows the results of a sliding window ana-

lysis for the KAIK_e signal over a time period identical
for signals from CNST and PAWA. The Kaikōura event
occurs at day 3317 and so this event in Fig. 18 is in the
50 day window following the red star in each RQA plot.
The window is 100 days wide and the overlap between
windows is 50 days. This means that each black dot in
Fig. 19 can “see” two black dots ahead. The RQA mea-
sures for the 100 day wide window are plotted at the day
corresponding to the beginning of the window. Any
precursors for KAIK_e events must therefore be evi-
dent two dots or more before the red star. A measure
is deemed useful as a precursor to an event if the
measure rises to more than twice the mean of the
total signal for that measure for the period of 100 days
before the event.
We see that the following RQA measures are not suit-

able as precursors to the Kaikōura event: mean, standard
deviation, TTIME and TREND. The other RQA mea-
sures %REC, %DET, DMAX, ENT, %LAM and VMAX

seem to be useful precursors and increase to well over
the mean of the measure 100 days before the Kaikōura
event. These measures are connected to the determinism
and the organisation of recurrence states and indicate
that the processes operating in the system are becoming
more organised for about 3 months at least before the
Kaikōura event. The question then arises: do stations in
the North Island “know” about this organisation process?
Figure 20 shows cross and joint recurrence plots for

*_e time series between PAWA and KAIK. Figure 20a
indicates strong synchronisation between PAWA and
KAIK at punctuated intervals for a decade before the
Kaikōura event. The ratio of time scales, TPAWA/TKAIK,
as indicated by the dark blue LOSs in Fig. 20a and from
(5) is approximately 1:1 over large portions of the history
but locally as in Fig. 20d the ratio increases to large
values possibly > 20 at places indicated by the red arrow.
Figure 20c shows that the ratio has increased to 3–5
before the main Kaikōura event. These relations presum-
ably reflect a form of generalised synchronisation.
Figure 20b shows synchronisation of joint recurrences
over a narrow range of recurrences for the same period
as is shown in Fig. 20a.
Figure 21 shows strong synchronisation between

CNST and KAIK at punctuated intervals over a period
of ~ 3000 days with TCNST/TKAIK large but not easily
quantified. If the ratio of the time scales is ≥ 11 then the
slope of the LOSs is ≥ 85° so that the LOSs in Fig. 21 in-
dicate that (TCNST/TKAIK) ≥ 11 and probably closer to
20. Figure 21a stops the displacement time series
772 days before the Kaikōura event and shows that syn-
chronisation is well established with relatively strong
synchronisation beginning about 270 to 350 days before
any large slow event and ending as that individual event
ends. These same relations regarding the relations of
synchronisation to the displacement history hold in
Fig. 21b, c, d that extend the plot first to 72 days and
then 2 days and 1 day before the Kaikōura event. Strong
synchronisation is already apparent 72 days before the
Kaikōura event and begins to drop off as the Kaikōura
event approaches. These relations are clear when the
plot is extended to just after the event (Fig. 21e) where
the degree of synchronisation just before the Kaikōura
event swamps the degree of synchronisation associated
with displacement events earlier in the history.
We conclude that there is strong nonlinear generalised

synchronisation between stations CNST and PAWA on
the North Island with station KAIK on the South Island
in a punctuated manner for a period of at least 9 months
before the magnitude 7.8 Kaikōura event. For ≈ 270 days
before the Kaikōura event, the degree of synchronisation
between CNST and KAIK intensifies dramatically and
ceases at the Kaikōura event. However, similar patterns
of synchronisation occur associated with every
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Fig. 19 (See legend on next page.)

Hobbs and Ord Progress in Earth and Planetary Science  (2018) 5:36 Page 25 of 35



displacement event at CNST for the previous 3 years.
These synchronisation events act as powerful precursors
to both minor and major displacement events.
We attribute changes in β in cross recurrence plots

between two signals to changes in the frequency content
of one or both signals. For instance, consider a situation

where β changes for 45° to 90° as occurs in Fig. 18a, c.
This can result from a change where the frequency con-
tents of both signals are equal to a situation where the
frequency content of one signal does not change but all
the power in the other signal is partitioned into the
highest frequency as occurs in Fig. 18e.

(See figure on previous page.)
Fig. 19 Sliding windows RQA for station KAIK. The sliding window is 100 days wide with an overlap between windows of 50 days. The main
displacement event occcurs in the 50 day window following the red star. For an RQA measure to be a useful precursor it should depart by a
factor of two or more from the mean of that measure 100 days (two black dots) before the main event. a Mean. b Standard deviation. c %REC.
d %DET. e DMAX. f ENT. g TREND. h %LAM. i VMAX. j TTIME

Fig. 20 Synchronisation between signals from station PAWA on the the North Island with KAIK signals on the South Island (see Fig. 11a). a Cross
recurrence plot between PAWA_e and KAIK_e. PAWA_ upper frame, KAIK_e signal lower frame (b) Joint recurrence plot between PAWA_e and
KAIK_e. KAIK_e signal upper frame, PAWA_e signal lower frame. c Cross recurrence plot between signals PAWA_e (top frame) and KAIK_e (lower
frame) coving the period of the Kaikōura event. d Zoom into early part of Fig. 20a showing the steep LOS (red arrow) accompanying a major
displacement jump
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Fig. 21 (See legend on next page.)
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We show sliding window joint recurrence quantifi-
cation for CNST_e and KAIK_e (linear trend re-
moved) in Fig. 22. Only %REC (a), DMAX (b),
VMAX (c) and TTIME (d) are shown since they give
the most unambiguous precursors to the Kaikōura
event, which occurs in the 50 day window following
the yellow star in each plot. As in previous sliding
window analyses in this paper, the window is 100 days
wide and there is an overlap of 50 days for successive
windows. The result for each window is plotted at
the start of the window. These measures show signifi-
cant departures from the mean for each measure
100 days before the window containing the Kaikōura
event indicating that these measures act as precursors
over this time period.
The influence of including the linear trend for KAIK_e

in the analysis is shown in Fig. 23 where cross and joint
recurrence plots are shown for CNST_e and KAIK_e

(with trend). The same features are displayed as in the
plots for the signal with no trend. The cross recurrence
plot (Fig. 23a) shows attenuation of the cross recur-
rences away from the horizontal axis (as in Fig. 20c)
whereas the joint recurrence plot (Fig. 23b) is essentially
the same as Fig. 21f.

Discussion
Linear time series analysis concerns the manipulation of
time series in order to characterise the statistics of the sig-
nal (mean, standard deviation, Fourier components of
power spectrum) and/or remove noise (make the signal
smoother, remove inliers) and/or make predictions or
forecasts. Usually, techniques such as the Kalman filter or
other forms of sequential Bayesian filters are employed
(Jazwinski 1970; Young 2011). These methods do not al-
ways assume Gaussian distributions for the original data

(See figure on previous page.)
Fig. 21 Cross recurrence plots and joint recurrence plot for CNST_e (top frame) and KAIK_e (bottom frame: with downward trend removed)
signals, (a) 772 days before the Kaikōura event. b 72 days before the Kaikōura event. c 2 days before the Kaikōura event (d) 1 day before the
Kaikōura event, (e) 3 days after the Kaikōura event. The ratios of the characteristic frequencies for CNST_e and KAIK_e signals are large so that
the LOSs are straight vertical lines. Figures b, c and d appear almost identical but show the gradual increase in the presence of a low recurrence
region on the right hand side of the plot as the Kaikōura event is approached. f Joint recurrence plot

Fig. 22 Joint quantitative measures for CNST_e and KAIK_e. a %REC. b DMAX. c VMAX. d TTIME. Red dots are 50 days apart and mark the beginning
of a 100 day sliding window. The yellow star indicates the window (beginning at day 3301) containing the Kaikōura event (at day 3317)
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and associated noise but commonly work best when the
underlying statistics are Gaussian and the system is linear.
Nonlinear time series analysis, in contrast, is con-

cerned with defining the dynamics of the processes that
produced the signal rather than emphasising the statis-
tics of the data. The dynamics are embodied in the at-
tractor for the system which is the manifold that defines
all possible states the system can occupy as it evolves no
matter what the initial conditions are. The precise form
of the attractor may be difficult to discern especially if
the embedding dimension is large or has many “outliers”
but some indications and/or constraints on its nature
can be investigated using the ways in which the correl-
ation dimension and false nearest neighbours scale with
the embedding dimension. The output from a nonlinear
signal analysis comprises estimates of the dimensions of
the space in which the attractor exists (the embedding
dimension) and other invariants such as the Rényi gen-
eralised dimensions, the entropy and Lyapunov expo-
nent. If the embedding dimensions are small and the
attractor is not too complicated, in the sense that state
space is not too heterogeneous with respect to the
density of states, then existing methods of nonlinear
analysis work quite well. For high dimensional sys-
tems and complicated attractors it may be difficult to
reach precise conclusions unless the data set is large
enough to have completely sampled the attractor.
Many of the pitfalls and problems are discussed by
Small (2005) and McSharry (2011).
In this paper, we have reviewed, in a condensed man-

ner, many aspects of nonlinear time series analysis with
a view to focussing on a specific application, namely,
GNSS data from New Zealand. The motivation for such

studies is to characterise the dynamics of the processes
that underlie the GNSS time series so that we learn
more about the mechanisms that drive plate tectonics.
GNSS data from five stations on the North Island of
New Zealand have been analysed using recurrence plots
and recurrence quantification analysis (RQA). The re-
sults of this analysis are shown in Table 3. We have also
compared signals from two North Island stations with a
station on the South Island that recorded displacements
associated with the November 2016, magnitude 7.8 Kai-
kōura earthquake (Wallace et al. 2017) using cross and
joint recurrence analysis.
For the five stations on the North Island, the embed-

ding dimension (estimated as the dimension where the
correlation dimension reaches a plateau when plotted
against the embedding dimension) is approximately 10.
This value is comparable to that of many biological sys-
tems (Webber and Zbilut 2005). Although the embed-
ding dimension is commonly inflated over the attractor
dimension because of noise and non-stationary effects,
this constrains the number of variables involved in the
processes responsible for the underlying dynamics to ≤
10. We consider such processes later in the “Discussion”
section. The high dimensions of the attractor and its
complexity are indicated by a delay construction of the
attractor in three dimensions (Fig. 14). The attractor
seems to have a number of knot-like outliers that may
be visited only rarely so that it is necessary to have a
very long time series to ensure all parts of the attractor
have been sampled. The high dimensions of the attractor
are confirmed by nonlinear prediction that gives reason-
able results only if an embedding dimension of about 15
is used.

Fig. 23 Cross recurrence plot (a) and joint recurrence plot (b) for the raw CNST_e signal and the KAIK_e signal with the linear trend included.
These plots are to be compared with Fig. 21e, f
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A second invariant of importance is the first positive
Lyapunov exponent which is a measure of how fast adja-
cent trajectories diverge as the system evolves; the larger
this (positive) Lyapunov exponent the more chaotic the
system (that is, the faster adjacent trajectories diverge).
The RQA measure, DMAX, is inversely proportional to
the largest positive Lyapunov exponent (Eckmann et al.
1987; Trulla et al. 1996) and so Table 2 shows that the
signals from all five stations are chaotic from this point
of view.
The entropy is the third invariant of importance and is

a measure of the amount of information in the signal or
of signal complexity or of how rapidly the information
encoded in the current state of the system becomes ir-
relevant. The range for ENT in Table 2 is 4–5 bits/bin.
By comparison, the entropy for the classical Hénon at-
tractor (Sprott 2003) is 2.557 bits/bin. These invariants
enable us to define a chaotic system (or at least the cha-
otic systems we are interested in as geoscientists) as a
bounded (does not grow without limits) system with de-
terministic dynamics (defined by an underlying set of
physical and chemical processes) with a positive first Lya-
punov exponent (neighbouring trajectories diverge expo-
nentially with time).
The RQA measures for the five stations confirm that

these data sets arise from chaotic dynamics. Generally
the determinism is high and the systems are charac-
terised by a large number of chaotic transitions (charac-
terised by high percentage laminarity) which correspond
to jumps in displacement at all scales.

Synchronisation
In most nonlinear systems, where sub-systems exist that
are coupled together by the transfer of energy or mass,
some form of synchronisation develops if the coupling
strength is large enough (Romano Blasco 2004; Marwan
et al. 2007a). Synchronisation in seismic systems has
been discussed by Perez et al. (1996), Sammis and Smith
(2013), Scholz (2010) and Bendick and Bilham (2017).
Synchronisation develops because the coupling inhibits
some frequencies and enhances others so that a particu-
lar range of frequencies survives in the system as a
whole. Phase and/or frequency synchronisation are the
commonly envisaged forms of synchronisation but these
are actually relatively rare and the more common form
is generalised synchronisation where the behaviour of
one sub-system is a (generally nonlinear) function of the
behaviour of other sub-systems. Generalised synchron-
isation is difficult to detect but cross and joint recur-
rence plots offer fast and efficient means of detection
and investigation. In cross recurrent plots lines of syn-
chronisation (LOSs) develop and the slope of these lines
is tan−1(T1/T2) where T1 and T2 are the characteristic

times of processes operating in two synchronised
sub-systems.
Analysis (Fig. 18) shows that generalised synchronisa-

tion exists between CNST_e and PAWA_e signals in the
North Island of New Zealand. The value of (TCNST/
TPAWA) varies with time for these two sub-systems but
averages about 3:5 (Fig. 18a). The synchronisation is well
developed throughout the recorded displacement histor-
ies of the two stations. There are large gaps in synchron-
isation before PAWA events. Similar less defined gaps
exist before major events for CNST_e. These gaps act as
precursors to the main displacement events.
Generalised synchronisation also occurs between

CNST and PAWA stations on the North Island and
KAIK station on the South Island. For PAWA_e and
KAIK_e synchronisation, a single LOS is developed with
the ratio, TPAWA/TKAIK, varying from 1:1 to > 20:1 over
the time records that are available. For CNST_e/KAIK_e
synchronisation, the situation is a little more compli-
cated. The ratio, TCNST/TKAIK, remains large (≥ 20)
throughout the recorded history of displacements but
synchronisation occurs in bursts with each burst begin-
ning about 100 days before a major displacement event
at CNST and ending as the event begins. The Kaikōura
event is preceded by 9 months of intense synchronisa-
tion and the synchronisation ceases as the Kaikōura
event occurs.
The synchronisation between CNST and KAIK is

made even more evident by a joint recurrence plot
(Fig. 21f ) and joint RQA (Fig. 22) where the system
shows clear evidence of synchronisation beginning at
least 100 days before the Kaikōura event.

Precursors, predictions and forecasting
Nonlinear forecasting or prediction, particularly with re-
spect to process control, is now widely used in industrial
applications ranging from control of lathe tool chatter
(Abarbanel 1996), brake squeal (Oberst and Lai 2015)
and chemical reactions (Petrov and Showalter 1997) to
weather forecasting (Yoden 2007). With the develop-
ment of new forecasting procedures such as shadowing
algorithms (Stemler and Judd 2009), one can only expect
forecasting to improve. The accuracy of such methods
depends on how well the observed time series for the
system has sampled the underlying attractor that de-
scribes the dynamics of that particular system. For
attractors that are characterised by large embedding di-
mensions or that are topologically complicated, forecast-
ing may be difficult. Moreover, we do not yet know if
the attractors for GNSS systems evolve with time. There
is a fundamental restriction that the trajectory of any
chaotic system will diverge exponentially with time from
any observed trajectory. The rate of divergence is mea-
sured by the magnitudes of the (positive) Lyapunov
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exponents. Thus, there is always an “horizon of predict-
ability” for any chaotic system. At present, we do not
know how far this “horizon” extends for GNSS time
series but the single result reported in this paper shows
promise; much more work is needed.
Despite the limitations mentioned above, the time his-

tories of RQA measures for individual stations show that
some act as precursors for main displacement events up
to 100 days before an event. These results need to be stud-
ied and confirmed using time series with greater time
resolution. Since data is collected at 1 s intervals a reason-
able refinement of the data would to be to bin results at
0.1 day intervals rather than the present 1 day binning
procedure. In doing so, it is important to pay attention to
the binning procedure and ensure that dynamical noise is
retained during the aggregation procedure. The definition
of RQA for single stations that precede a major displace-
ment event by considerable time periods is clearly an im-
portant goal for nonlinear time series analysis.
With respect to the overall strategy for forecasting of

GNSS time series, the application of nonlinear analysis to
data from one station can only aim to forecast future
events for that particular station. A far more promising
approach, motivated by the cross and joint recurrence re-
sults for CNST_e and KAIK_e and for PAWa_e and
KAIK_e is to monitor cross and joint recurrence histories
for a network of stations. This regional network approach
has the promise to track the spatial evolution of synchron-
icity across the network and detect sites where abnormal
synchronicity is evolving. The results of this paper (Figs. 21
and 22) show the intensity of synchronicity growing dra-
matically (such that the intensity of previous synchronous
recurrences in the network are relatively small) for ap-
proximately 9 months before the Kaikōura event. The pre-
cise time of the Kaikōura event cannot be defined by the
analysis but the risk could be quantified well ahead of the
event. An extension of this cross/joint recurrence study to
the whole of the GNSS network in New Zealand, so that
patterns of synchronisation developed in historical time
series over the past decade could be understood, would be
a fundamental next step.
The advantage of a networked cross and joint recur-

rence system of monitoring is that the site of an imminent
event can be pinpointed whereas the use of only two sta-
tions results in ambiguity regarding which of the two sta-
tions will host the event. Ambiguity can be further
reduced if reliable RQA precursors for events at individual
stations by sliding window analysis are integrated with re-
sults from synchronisation in the GNSS network.

Underlying processes
The processes that have been proposed to produce
the spectrum of behaviours observed in the New
Zealand tectonic system ranging from slow continuous

displacement histories with small but distinct variability
(PAWA prior to the 14 November, 2016, M7.8 Kaikōura
earthquake), to repeated slow discontinuous events
(CNST over a 10 year period), to major seismic events
(the M7.8 Kaikōura earthquake) have been discussed by
many authors (see papers referred to in Wallace et al.
2017). We break these processes into the following high
level categories.
Deformation processes involving elastic-brittle-viscous

behaviour of rocks in the upper crust with fluids present.
The brittle behaviour seems to be associated with rate
dependent weakening of the constitutive parameters
(commonly expressed as velocity dependent frictional
state variables) and some form of chemical healing of
damage that has resulted from the brittle behaviour. The
deformation process is exothermic (in the extreme case
producing pseudotachylite melts) and involves the gen-
eration of dilatancy. The heat generated during deform-
ation together with dilatancy influences the fluid pore
pressure in the deforming rock mass.
Chemical processes involving the devolatilisation of hy-

drous and carbonate minerals including calcite, clays,
micas and, in particular, serpentinite. These reactions
are commonly endothermic and involve a positive ΔV of
reaction. Another chemical process is melting to pro-
duce pseudotachylites, also an endothermic process.
Such processes compete in the heat budget with deform-
ation. Another fundamental chemical process is the
healing of damage which may involve hydrolysis and
hence is exothermic and competes with the devolatilisa-
tion and melting processes for heat.
Hydraulic processes involving fluid flow within the

deforming rock mass and especially away from chemical
devolatilisation sites.
Thermal processes involving heat transport by both

conduction and advection of heat in moving fluids. Heat
is generated during deformation and hydrolysing reac-
tions and removed from a deforming site by simultan-
eous endothermic reactions and heat transport.
These deformation-chemical-hydraulic-thermal pro-

cesses are strongly coupled through the heat and
mass budgets so that the behaviour of the system is
nonlinear and expected to be chaotic. In such sys-
tems, it is common to explore any complexity that
might arise in terms of dimensionless groups which
parameterise the processes that occur and define the
state hyperspace within which the system evolves
(Aris 1999). In this case, we can identify the following
dimensionless groups:

� The Damköhler number, Da, that is a measure of
the importance of the time scale of fluid flow
relative to that for chemical reaction. In many
systems with coupled chemical reactions and fluid/
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heat transport changes in Da result in episodic
behaviour of the chemical reaction and temperature
(Gray and Scott 1990; Aris 1999).

� The Newtonian cooling time that measures the
importance of the thermal cooling time scale relative
to the chemical time scale. This is also important in
controlling chemical reaction rates (Aris 1999). It is
influenced strongly by the shape of the system and
by the thermal conductivity of the wall rocks and so
is important in studies of specific tectonic systems;
we expect systems with different geometries to
behave in different manners.

� The Arrhenius number, Ar, that measures the
importance of the thermal energy relative to the
activation energy for chemical reactions and for
rate sensitive deformation processes. Ar defines
the spectrum of chemical reactions that occur in
a particular system (Law 2006, pp. 60–62) and
hence is fundamental in defining the order in
which chemical reactions occur in a particular
system. Ar is also fundamental in defining the
deformation behaviour of the system (Veveakis et
al. 2010).

� The Gruntfest number, Gr, that measures the
importance of the heat generated by deformation
to that absorbed or generated by chemical reactions.
Gr is important in defining the magnitude of the
temperature increase possible for coupled
deformation/chemical reactions and hence
influences the deformation rate in systems where
rate dependent constitutive behaviour is included
(Veveakis et al. 2010, 2014; Alevizos et al. 2014;
Poulet et al. 2014).

� The Lewis number, Le, that is a measure of
the importance of heat transport by diffusion to
mass transport. Le is important in defining the
magnitude of the pore pressure increase possible
for a particular temperature increase as fluid
diffuses from the site of the temperature increase
(Veveakis et al. 2014, 2017; Alevizos et al. 2014;
Poulet et al. 2014). In tectonic systems, the
permeability of the wall rocks for the system
controls whether pore pressure leaks away as
devolatilisation proceeds and the temperature
increases. If the wall rocks are relatively
impermeable, the Lewis number is small and
the pore pressure increases would be large thus
promoting brittle failure.

� In addition, other evolutionary processes need to be
parameterised including rates of damage generation
and of chemical healing, the temperature
dependence of deformation and chemical
reaction rates, and the influence of temperature
changes and dilatancy on fluid pressure.

We propose that these dimensionless groups and asso-
ciated evolution equations define the state space for
crustal systems such as that examined for New Zealand
so that the dimensions of the state space are relatively
large as indicated by the recurrence analysis. Any com-
puter models need to be constrained by the magnitude
of the dimensions of state space indicated by the dis-
placement histories. Some beginnings of coupled model-
ling are presented by Veveakis et al. (2010, 2014);
Alevizos et al. (2014); Poulet et al. (2014) where close to
periodic behaviour is modelled and such studies need to
be extended to include the complete parameter space.

Future directions
This paper has highlighted the need for future work to
be directed towards four objectives:

� Better definition of the attractor for the system.
� Better definition of precursors to major

discontinuities in the displacement history.
� Better definition and understanding of the

synchronisation system and dynamics of
synchronisation, particularly the distribution of
coupling strength between sites.

� Multi-dimensional recurrence network analysis
aimed at establishing the underlying dynamics for
the regional system.

These objectives can be addressed by a combination of
longer time series (in order to ensure all parts of the at-
tractor are sampled by the data) and better resolution
within existing data sets in order to better resolve pre-
cursors and synchronisation frequencies. The former
clearly will occur with continued data collection and the
second requires binning the data in sizes smaller than
1 day (say 0.1 day intervals). Binning to small sizes re-
quires attention to the process of aggregating data from
the 1 s collection frequency to the 0.1 day time scale so
that dynamical noise is preserved whilst observational
noise is discarded.
Understanding the synchronisation dynamics requires

nonlinear analysis of the complete networked New
Zealand GeoNet GNSS measurement array. The synthesis
of such a regional analysis might best be undertaken with
some form of fusion between the concepts of recurrence
networks (Small et al. 2009; Donner et al. 2010, 2011;
Donges et al. 2012, 2015) and spatial network theory
(Barthélemy 2011). This means that the regional GNSS
array is to be regarded as a nonlinear dynamical network
in which each node is coupled to every other node with
variable coupling strengths between nodes. At each node,
there is a nonlinear time series of displacements. Such a
synthesis would better define the attractor for the inte-
grated system as well as providing an understanding of
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the detailed dynamics of the system and of how the
dynamics leads to synchronisation. An undertaking
such as this is a major software development project
and parts are being addressed at present. Some im-
portant developments for seismic spatial patterns are
in Banish and Conrad (2014).
We conclude by speculating on a tectonic model

that duplicates the synchronisation patterns revealed
by the recurrence analysis in this paper. We propose,
following Ben Zion (2008), that the crust of the Earth
in the New Zealand region is close to a phase transi-
tion but is dominantly sub-critical so that there are
no long-range correlations with respect to distortion
of the plate. The plate as a whole continuously
undergoes rigid body translations driven by plate tec-
tonics and revealed by the calculations of Wallace et
al. (2004). Internally, the plate undergoes a heteroge-
neous deformation with local shear strain rates vary-
ing from zero to ≈ 10−14 s−1 in places along the Great
Alpine Fault (Beavan and Haines 2001). The plate is
composed of microplates that undergo a spatially co-
ordinated pattern of rotation, translation and internal
deformation that maintains compatibility of the de-
formation gradient tensor.
The heterogeneous velocity field imposed on the crust

by plate tectonic motions drives parts of the plate to-
wards critical behaviour and this is expressed as increas-
ing length scales for the correlation of distortions
together with increasing length scales of synchronisation
across the plate until criticality is reached at one or
more places in the plate. The synchronisation stops and
the plate becomes subcritical; the process then repeats
itself. A test of such a model would be to show that
some RQA measures scale as a power law with time
before a large event as is the case for many systems
as criticality is approached (Sethna 2011). Unfortu-
nately, the data used here is not sufficiently closely
spaced as to give the resolution for such a test. Per-
haps, sampling at 0.1 day intervals would be sufficient
to carry out such a study.
Finally, prediction within the system may be signifi-

cantly enhanced by the use of new forecasting proce-
dures such as the use of shadowing algorithms
(Stemler and Judd 2009) coupled with ensemble mod-
elling (Yoden 2007). In addition, other data sets, in
particular, seismic data sets, need to be integrated
with the GNSS data sets using cross- and joint-recur-
rence procedures.

Conclusions
The fundamental aim of the nonlinear analysis of time
series is to reveal the dynamics of the processes that pro-
duced the signal. We have briefly reviewed the procedures
involved in the nonlinear analysis of time series with

particular emphasis on the notion of recurrence in nonlin-
ear dynamical systems and indicated its application to
some examples of GNSS time series from New Zealand
sampled at 1 day intervals over ≈ 10 years. This form of
analysis is a powerful means of quantifying nonlinear as-
pects of the data, in discovering relationships that are not
obvious in the raw data, in establishing precursors to sin-
gular events such as rapid jumps in displacements and for
exploring synchronicity between displacement histories at
adjacent and distant sites. The overall conclusions regard-
ing the GNSS data sets examined are:

� The data are chaotic in the sense that they express
the behaviour of a large bounded system, with a
positive first Lyapunov exponent and result from
deterministic dynamics.

� The embedding dimension for the attractor for this
system is relatively large (≈ 10) which is comparable
with many biological systems and is to be expected
for a system where coupled deformation-chemical-
hydraulic-thermal processes are responsible for the
dynamics.

� The entropy of these systems is moderate and
comparable with that of many classical, relatively
simple systems such as the Lorentz attractor. This
means that predictive procedures have considerable
potential.

� Precursors to strong discontinuities in the signal
exist and in some cases precede the event by
100 days. Finer time resolution in the data sets (say
binning at 0.1 days) would refine the precursors.

� Synchronisation between stations is common even
over distances of 600 km. The synchronisation is
generalised synchronisation and the analysis reveals
details of how the absolute and relative frequencies
of recurrence vary both spatially and in time during
synchronisation.

� Synchronisation between CNST and KAIK begins
approximately 9 months before the Kaikōura
magnitude 7.8 event. Such synchronisation (as
revealed by cross-recurrence plots) provides a
powerful means of forecasting this major seismic
event and should be explored for other events.

� The displacement signals from the regional array
are the response of a networked dynamical system
where each node interacts with every other node
with variable and evolving relations between the
strength of coupling between nodes. Thus the
behaviour of a specific site can only be understood
and forecasted if the evolution of the whole system
is monitored.

This paper shows that there is enough information
in this regional nonlinear synchronised network to
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extract details of the underlying dynamics of the
crustal deformation system and to provide precursors
for major displacement events many months prior to
an event. Investigations involving higher time-reso-
lution and spatial recurrence network analysis should
be pursued with vigour.
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