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Abstract

We employ direct numerical simulations of the three-dimensional Navier-Stokes equations, based on a continuum
formulation for the sediment concentration, to investigate the physics of turbidity currents in complex situations, such
as when they interact with seafloor topography, submarine engineering infrastructure and stratified ambients. In
order to obtain a more accurate representation of the dynamics of erosion and resuspension, we have furthermore
developed a grain-resolving simulation approach for representing the flow in the high-concentration region near and
within the sediment bed. In these simulations, the Navier-Stokes flow around each particle and within the pore spaces
of the sediment bed is resolved by means of an immersed boundary method, with the particle-particle interactions
being taken into account via a detailed collision model.
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Introduction
Turbidity currents are particle-laden flows in the ocean
that are driven by gravity (Meiburg and Kneller 2010). Par-
ticle concentrations are usually sufficiently low far away
from the sediment bed so that particle-particle interac-
tions play a small or negligible role throughout most of
the body of the current. In this region, the Boussinesq
approximation of the Navier-Stokes equations, in con-
junction with a continuum formulation for the sediment
concentration, is well-suited to capture the dynamics of
the flow. However, near the sediment bed particle concen-
trations can be very high, which can potentially result in
complex non-Newtonian behavior, hindered settling, and
other effects. Here, we describe the above two different
simulation approaches, along with representative results,
which open up a path towards multiscale flow simulations
via the μ(I) rheology (Cassar et al. 2005; Boyer et al. 2011;
Aussillous et al. 2013).

Methods
Continuum approach
Physical model and governing equations
In many situations of interest, compositional gravity cur-
rents and turbidity currents are driven by small density
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differences not exceeding O(1%). Under such conditions,
the Boussinesq approximation can be employed, which
treats the density as constant in the momentum equation
with the exception of the body force terms. When deal-
ing with turbidity currents, we account for the dispersed
particle phase by means of a Eulerian-Eulerian formula-
tion, which means that we employ a continuum equation
for the particle concentration field, rather than tracking
particles individually in a Lagrangian fashion.
In the following, it will be important to carefully distin-

guish between dimensional and dimensionless variables.
Towards this end, we will employ the tilde symbol to indi-
cate a dimensional variable, whereas variables without
the tilde symbol are dimensionless. Under the Boussinesq
approximation, the dimensional governing equations for
compositional gravity currents driven by salinity and/or
temperature gradients can be written as

∂ũj
∂ x̃j

= 0, (1)
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Here, ũi denotes the velocity vector, p̃ the pressure, ρ̃ the
density, g̃ the gravitational acceleration, egi the unit vector
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pointing in the direction of gravity, ν̃ the kinematic vis-
cosity, and α̃ the molecular diffusivity of the density field.
We nondimensionalize the above Eqs. (1)–(3) by a refer-
ence length scale, such as the domain half height ˜H/2 of
a lock-exchange flow (Meiburg et al. 2015; Nasr-Azadani
and Meiburg 2014; Necker et al. 2002, 2005), the current
density ρ̃1, and the buoyancy velocity ũb

ũb =
√

˜g′
˜H/2 . (4)

Here, ˜g′ indicates the reduced gravity

˜g′ = g̃
ρ̃1 − ρ̃2

ρ̃1
. (5)

where ρ̃2 represents the ambient density. After nondimen-
sionalization, we obtain
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Here, the nondimensional pressure p and density ρ are
given by

p = p̃
ρ̃1ũ2b

, ρ = ρ̃ − ρ̃2
ρ̃1 − ρ̃2

. (9)

The nondimensionlization of the governing equations
gives rise to two dimensionless parameters in the form of
the Reynolds number Re and the Schmidt number Sc

Re = ũb˜H
2̃ν

, Sc = ν̃

α̃
. (10)

While the Reynolds number indicates the ratio of iner-
tial to viscous forces, the Schmidt number represents the
ratio of kinematic fluid viscosity to molecular diffusivity
of the density field.
When the driving density difference is due to gradients

in particle loading, rather than salinity or temperature
gradients, the above set of equations no longer provides
a full description of the flow. Particles settle within the
fluid, so that the scalar concentration field no longer
moves with the fluid velocity. In addition, particle-particle
interactions can result in such effects as hindered set-
tling (Ham and Homsy 1988), increased effective viscos-
ity, and non-Newtonian dynamics (Guazzelli and Morris
2011), thereby further complicating the picture. How-
ever, away from the sediment bed, turbidity currents are
often quite dilute, with the volume fraction of the sus-
pended sediment phase being well below O(1%). Under
such conditions, particle-particle interactions can usually
be neglected, so that the particle settling velocity remains

the key difference (along with erosion) that distinguishes
turbidity currents from compositional gravity currents.
Due to the small particle volume fraction of dilute tur-

bidity currents, the volumetric displacement of fluid by
the particulate phase can usually be neglected, allowing
us to consider the fluid velocity field to be divergence-
free. Rather, the particle-fluid interaction occurs primarily
through the exchange of momentum, so that it suffices
to account for the presence of the particles in the fluid
momentum equation. In the following, we assume that the
particle diameter ˜dp is smaller than the smallest length
scale of the flow, such as the Kolmogorov scale in turbu-
lent flow. In addition, we consider only particles whose
aerodynamic response time˜tp is significantly smaller than
the smallest time scale of the flow˜tf , so that the particle
Stokes number St = ˜tp/˜tf � O(1) (Raju and Meiburg
1995). Here, the aerodynamic response time is defined as

˜tp = ρ̃p˜d2p
18μ̃

, (11)

with ρ̃p indicating the particle material density and μ̃

denoting the dynamic viscosity of the fluid. Such particles
can then be assumed to move with a velocity ũp,i that is
obtained by superimposing the local fluid velocity ũi and
the particle settling velocity ũse

g
i

ũp,i = ũi + ũse
g
i , (12)

where ũs follows from balancing the gravitational force
with the Stokes drag force

˜Fi = 3πμ̃˜dp(̃ui − ũp,i) (13)

as

ũs =
˜d2p(ρ̃p − ρ̃)̃g

18μ̃
. (14)

Note that this implies that the particle velocity field is
single-valued and divergence-free, so that monodisperse
particles do not, for example, accumulate near stagna-
tion points or get ejected from vortex centers. Hence, we
can describe the spatio-temporal evolution of the particle
number concentration field c̃ in a Eulerian fashion by the
transport equation

∂̃c
∂˜t

+
∂

(

c̃
(

ũj + ũse
g
j

))

∂ x̃j
= α̃

∂ 2̃c
∂ x̃j∂ x̃j

. (15)

The diffusion term in Eq. (15) represents a model for the
decay of concentration gradients due to the hydrodynamic
diffusion of particles and/or slight variations in particle
size and shape (Davis and Hassen 1988; Ham and Homsy
1988).
The motion of the fluid phase is described by the

incompressible continuity equation and the Navier-Stokes
equation augmented by the force exerted on the fluid by
the particles, which is equal and opposite to the Stokes
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drag force acting on the particles. In a dimensional form,
these equations read

∂ũj
∂ x̃j

= 0, (16)
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As we had done for compositional gravity currents, we
use the domain half height ˜H/2 and buoyancy velocity ũb
for nondimensionalization. The reduced gravity g̃′ appear-
ing in the calculation of ũb can now be calculated as

g̃′ = π(ρ̃p − ρ̃)̃c0˜d3p
6ρ̃

g̃ , (18)

where c̃0 indicates a reference number concentration of
particles in the suspension. After nondimensionalization,
we obtain
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For polydisperse suspensions containing particles of dif-
ferent sizes, the above approach can easily be extended by
solving one concentration equation for each particle size
and corresponding settling velocity (Nasr-Azadani and
Meiburg 2014). Note that the set of governing equations
for turbidity currents (19)–(21) differs from the corre-
sponding set for compositional gravity currents (6)–(8)
only by the additional settling velocity term in the concen-
tration equation. In the following, we employ Eqs. (19)–
(21) for both types of currents, with the tacit assumption
that the settling velocity vanishes for compositional grav-
ity currents.
Direct numerical simulations (DNS) represent the most

accurate computational approach for studying gravity cur-
rents. In DNS, all scales of motion, from the integral
scales dictated by the boundary conditions down to the
dissipative Kolmogorov scale determined by viscosity, are
explicitly resolved. However, for the case of turbidity cur-
rents, when the particle diameter is smaller than the
Kolmogorov scale, the fluidmotion around each particle is
usually not resolved, due to the prohibitive computational
cost. Nevertheless, the drag law accurately captures the
exchange of momentum between the two phases at scales
smaller than the Kolmogorov scale, so that the approach
described above is still referred to as DNS.
Consistent with the above arguments, the grid spacing

required for DNS is of the order of the Kolmogorov scale,
while the time step needs to be of the same order as the

time scales of the smallest eddies. Due to the large dis-
parity between integral and Kolmogorov scales at high
Reynolds numbers, the computational cost of DNS scales
as Re3, so that the DNS approach is effectively limited to
laboratory scale Reynolds numbers. The first DNS simula-
tions of gravity currents in a lock-exchange configuration
were reported by Härtel et al. (2000) for Re = 1225.
Necker et al. (2002) extended this work to turbidity cur-
rents at Re = 2240. More recent simulations of lock-
exchange gravity currents by Cantero et al. (2008) were
able to reach Re = 15, 000, which corresponds to a lab-
oratory scale current of height 0.5 m with a front velocity
of 3 cm/s.
DNS simulations can provide detailed information on

the structure and statistics of the flow, on the various com-
ponents of its energy budget, on the mixing behavior, and
many additional aspects. As a case in point, the simula-
tions by Härtel et al. (2000) explored the detailed flow
topology near the current front and demonstrated that the
stagnation point is located a significant distance behind
the nose of the current. DNS results are furthermore very
useful for testing the accuracy and identifying any defi-
ciencies in larger-scale LES and RANS models (Yeh et al.
2013). Thus, while they are currently limited to labora-
tory scale currents, DNS simulations represent an excel-
lent research tool for exploring the detailed physics of
moderate Reynolds number gravity currents and for con-
structing larger-scale models for higher Reynolds number
applications.

Results and discussion
Continuum approach results
We illustrate the ability of the continuum approach to
reproduce lab-scale experiments by presenting the results
of highly resolved simulations of a turbidity current mov-
ing down a slope into a stratified saline ambient. The
numerical setup directly replicates the experiments con-
ducted by Snow and Sutherland (2014) and is presented
in Fig. 1. The density inside the ambient increases linearly
from ρT at the top to ρB at the bottom such that

ρ2(y) = ρB + (ρT − ρB) · y
H

(22)

The channel has a constant width denoted as W. The
lock region is initially at rest with density ρ1, chosen such
that ρB > ρ1 > ρT . At t = 0, the lock is released and
the particle-laden flow moves down the slope forming a
turbidity current interacting with the ambient fluid. Here,
both the particle concentration c and salinity s contribute
to the Boussinesq term in Eq. (20) such that Eq. (21) has to
be solved for each scalar field, with us = 0 in the case of
the salinity field. When a settling velocity is used, the par-
ticles (concentration field) are allowed to settle through
the lower boundary so that an erodible bed is not formed.
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Fig. 1 Problem setup and configuration. a Particle-laden fluid. b Ambient stratified fluid. c Solid region. H and L denote the height and length of the
ramp, Ld is the horizontal length of the domain, h0 and Ll denote the height and horizontal length of the lock, andm is the slope. ρ1 is the bulk
density of the lock, ρT is the initial density at the top of the ambient, ρB is the initial density at the bottom of the ambient, and ρA is the initial density
in the ambient at half-lock depth

We define a nondimensional buoyancy frequency N to
quantify stratification such that

N =
√

ρ̃0(ρ̃B − ρ̃T )

ρ̃T (ρ̃1 − ρ̃A)

H̃
h̃0

, (23)

where ρ̃0 is a reference density.
A finite difference code is used to solve the equations,

and the MPI library is used for parallelization. A third-
order Runge-Kutta scheme with a three substep method is
used to discretize the equations in time. The wall-normal
viscous and diffusive terms are solved implicitly while the
convective terms and the remaining viscous and diffusive
terms are treated explicitly. To impose incompressibility, a
projectionmethod is used (Spalart et al. 1991) and a direct
solver is used for the resulting Poisson equation. Slip-wall
boundary conditions are used at the top and right walls
and z-periodic boundary conditions are used at the lateral
walls. The domain is assumed to be sufficiently long to
neglect boundary effects in x, and the width of the domain
is chosen so that the periodic boundary condition does
not impact the flow development. Finally, an immersed
boundary method is used to impose the no-slip condition
on the slope (Nasr-Azadani and Meiburg 2011).
In Fig. 2, we present a time series depicting the evolu-

tion of a typical turbidity currentmoving down a slope and
intruding when its density matches that of the stratified
ambient. The spanwise-averaged particle concentration is
represented on a linear gray scale for various times. Upon
release of the lock, the current starts moving down the
slope and a trail of large Kelvin-Helmholtz rollers forms
in the tail. These large instabilities then break into fully
three-dimensional turbulence creating smaller dissipative
vortices (t > 10). The absence of large distinct structures
indicates the presence of fully developed turbulence in the
tail of the current.
The direct impact of stratification is seen at later times

(t ≈ 15) when the current intrudes into the ambient,

i.e. separates from the surface of the slope. The effects of
stratification on intrusion depth are key in understanding
the evolution of the suspended mass, deposition profiles
and energy budgets of turbidity currents. Intrusion only
occurs when the density of the current reaches the density
of the ambient.
Using numerical simulations, we are able to investigate

the fundamental mechanisms that control the propaga-
tion of the turbidity current and monitor all the relevant
dynamic variables. For instance, we can investigate the ini-
tial perturbation that leads to the spanwise breakdown of
the large Kelvin-Helmoltz structures that initially appear
in the tail of the current. Figure 3 is a representation of
the concentration isosurface c = 0.25 at t1 = 10
for a typical turbidity current at Re = 6000. The
flow at that instant is not yet fully turbulent but displays
strong spanwise instabilities characterized at the head by
the lobe-and-cleft instability. This instability is respon-
sible for the breakdown of the large Kelvin-Helmholtz
rollers that only high-resolution 3D simulations are able
to capture.
Quantitative analysis of the velocity of the current as

a function of the buoyancy frequency shows very good
agreement between the numerical simulations and the
experiments. The front velocity was measured by Snow
and Sutherland (2014) in a series of experiments of which
we report three. The margin of error for the experimen-
tal measurements is typically of the order of ±20% while
the relative difference with the numerical simulations was
found to be of 14, −11, and 16% for three widely different
settling velocities, Reynolds numbers, and buoyancy fre-
quencies. The simulation parameters and relative error for
the front velocity are summarized in Table 1. Numerical
results also agree almost perfectly with analytical results
in the limit of no stratification, where the Froude number
is expected to be Fr = 0.5. Numerical results consistently
yielded a Froude number of Fr = 0.496 forN = 0, which
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Fig. 2 Spanwise averaged particle concentration pseudo-color plot for various times (Re = 15000, vs = 0.001, N = 2.11,m = 0.0744). This
represents the case of a turbidity current with non-zero settling velocity moving down a uniformly stratified ambient. The density of the lock is
initially larger than the ambient fluid outside of the lock such that the current starts moving downslope upon release. It then encounters region of
denser and denser saline ambient, until its density reaches that of the ambient and it intrudes horizontally. The flow is 2D at very early stages but
quickly grows unstable under the effect of a spanwise instability at the head. This leads to the breakdown of 2D vorticies into much smaller 3D
mixing structures at the head and all along the body of the current at the interface with the ambient

corresponds to a relative error of 0.8% when compared to
the analytical result.
The depth at which the current intrudes into the ambi-

ent also reveals a good agreement between the two
approaches and validates the ability of numerical sim-
ulations to reproduce the dynamical features of turbid-
ity currents moving into a stratified ambient. While it
is extremely challenging to experimentally measure the
velocity, particle concentration, and salinity fields of such
3D turbulent flows, direct numerical simulations give
access to an entirely new set of data and opens the door
to more accurate prediction tools and a deeper under-
standing of the underlying physics of gravity and turbidity
currents in realistic environments at the scale of the lab.

Methods
Grain-resolving approach
Physical model and governing equations
When the concentration of particles grows large, particle-
particle interactions become important and the aforemen-
tioned continuum approach is no longer applicable. For

such cases, we have to account for the rheology of dense
suspensions. A key element of progress with regard to
the rheology of dense suspensions over the last decade
has been the development of the so-called μ(I) approach,
cf. (Guazzelli and Morris 2011; Boyer et al. 2011). Grain-
resolving simulations of the type to be discussed in the
following are expected to provide a tool for further inves-
tigating the validity of the assumptions underlying the
derivation of the μ(I) rheology. One way to approach the
simulation of dense suspensions is to fully resolve the par-
ticles interacting with the fluid by tracking each individual
particle, evaluating the fluid no-slip condition at the par-
ticle surface and accounting for all the forces acting on
the particle. Such simulations typically use grid resolu-
tions of 10–25 grid cells per particle diameter to resolve
the flow and are thus limited in scope to domains whose
dimensions measure only tens to hundreds of diame-
ters in length (Vowinckel et al. 2017; Kidanemariam
and Uhlmann 2017). Thus, if simulating sand grains
100 μm in diameter, the domain dimensions would range
in length from 1 mm to 1 cm. However, the idea is to
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Fig. 3 Concentration isosurface c = 0.25 at t = 10 (Re = 6000, vs = 0.005, N = 2.09,m = 0.0744). The iso-surface reveals the global structure
of the envelope of a hyperpycnal current upon destibalization. The lobe-and-cleft instability is clearly visible at the head of the current as hills and
crests form in the spanwise direction. This instability propagates in the body of the current and destabilises the large 2D vortical structures initially
present. The largest wavelength corresponds to the initial dominant mode of the instability and dictates the width of the domain necessary to
observe the instability at this given Reynolds number

use grain-resolved simulations to develop bettermodels of
sediment transport to be used in larger-scale simulations.
We employ an immersed boundary method (IBM)

developed by Uhlmann (2005) and Kempe and Fröhlich
(2012) with a modified collision model adjusted for the
present context, as explained below. This method solves
the Navier-Stokes equations everywhere in the domain,
including nearby and within the particles:

∂u
∂t

+ ∇ · (uu) = − 1
ρf

∇p + νf ∇2u + fIBM (24)

where ρf is the fluid density and fIBM is the IBM force,
which acts as a source term to enforce the no-slip condi-
tion at the particle surfaces. This force effectively couples
the particle and fluidmomentum equations. Though there
are many ways to carry out this coupling, the method we
employ for the particles uses regularized Dirac delta func-
tions, which interpolate fluid velocities onto the particle
surface and spread fIBM onto the fluid (Roma et al. 1999).

Table 1 Comparison of numerically and experimentally measured
front velocity

Exp 1 Exp 2 Exp 3

Re 16,850 15,000 35,000

N 3.66 2.39 2.77

vs 0.001 0.0046 0.00046

(Ue − Us)/Ue 14% −11% 16%

Data from Snow and Sutherland (2014). The experimentally measured and
numerically computed front velocities are denoted as Ue and Us respectively

Note that this implementation is different from that used
to create the sloped lower wall in the turbidity current
simulations of the previous section.
The equations of motion for the particles are given by

the momentum equations for the translational velocity
up = (up, vp,wp)T

mp
dup
dt

=
∮

�p
τ · n dA

︸ ︷︷ ︸

=Fh

+Vp (ρp − ρf ) g
︸ ︷︷ ︸

=Fg

+Fl+Fc, (25)

the angular velocity ωp = (ωp,x,ωp,y,ωp,z)T

Ip
dωp
dt

=
∮

�p
r × (τ · n) dA

︸ ︷︷ ︸

=Th

+Tl + Tc, (26)

and the position xp = (xp, yp, zp)T

dxp
dt

= up. (27)

Here,mp is the particle mass, �p the fluid-particle inter-
face, τ the hydrodynamic stress tensor, ρp the particle
density,Vp the particle volume, g the gravitational acceler-
ation, Ip = 8πρpR5

p/15 the moment of inertia, and Rp the
particle radius. Furthermore, the vector n is the outward-
pointing normal on the interface �p, r = x − xp is
the position vector of the surface point with respect to
the center of mass xp of a particle, Fl and Tl are the force
and torque due to lubrication forces, and Fc and Tc are
the force and torque due to particle collisions. We evalu-
ate the IBM force fIBM as well as the hydrodynamic force,
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Fh, and torque, Th, using the approach of Kempe and
Fröhlich (2012), fully resolving the hydrodynamic effects
of the fluid on the particles as well as the particles on
the fluid. The lubrication force, Fl, and contact force, Fc,
model close-range particle-particle interactions. With the
exception of the tangential lubrication force, the methods
used to evaluate these forces are described and validated
in detail by Biegert et al. (2017), but here, we present them
briefly.
The lubrication force

Fl = − 6πρf νf Reff

(

Reff
max(ζn, ζmin)

gn + F∗
t gt

+ F∗
r (Rpωp × n + Rqωq × n)

)

(28)

and torque

Tl = 8πρf νf R2
eff

[

gtT∗
t + T∗

r (Rpωp × n + Rqωq × n)
]×n
(29)

are added to account for short-range hydrodynamic
forces that are unresolved by the fluid grid. Here,
Reff = RpRq/(Rp + Rq) is an effective radius accounting
for size differences between particles p and q, gn and gt are
the relative velocities in the normal and tangential direc-
tions, respectively, between the two particle surfaces at the
point of contact, ζn is the surface distance between the
two particles, and ζn,min = 3 × 10−3Rp is a limiter pre-
venting the lubrication force from reaching its singularity
at ζn → 0. The terms F∗

t , F∗
r , T∗

t , and T∗
r were obtained via

asymptotic expansions by Goldman et al. (1967):

F∗
t ∼ 8

15
ln

(

max(ζn, ζmin)

Reff

)

− 0.9588 (30)

F∗
r ∼ − 2

15
ln

(

max(ζn, ζmin)

Reff

)

− 0.2526 (31)

T∗
t ∼ − 1

10
ln

(

max(ζn, ζmin)

Reff

)

− 0.1895 (32)

T∗
r ∼ 2

5
ln

(

max(ζn, ζmin)

Reff

)

− 0.3817. (33)

As indicated in (25) and (26), we also account for
particle-particle contacts through Fc and Tc. These con-
tact forces are composed of components normal and tan-
gential to the particle surface, represented by Fn and Ft ,
respectively, which act at the point of contact between the
two particles so that the resulting force and torque on the
particle are given by

Fc = Fn + Ft (34)
Tc = Rp n × Ft , (35)

where n is the outward-pointing normal vector from the
contact point. A nonlinear spring-dashpot model is used
for the normal contact force

Fn = −kn|ζn|3/2n − dngn, (36)

where the stiffness and damping coefficients, kn and dn,
respectively, are adaptively calibrated for every collision.
A linear spring-dashpot model is used for the tangential
contact force

Ft = min
(−ktζ t − dtgt , ||μFn||t

)

, (37)

where ζ t is the tangential displacement vector repre-
senting accumulated slip between the two surfaces, μ is
the coefficient of friction between the surfaces, and t is
the unit normal vector in the tangential direction. The
Coulomb friction criterion, represented by ||μFn||, allows
the two surfaces to slip past one another when large
stresses are present. Similar to the normal coefficients, the
tangential coefficients of stiffness and damping, kt and dt ,
are also adaptively calibrated.

Results and discussion
Grain-resolving results
Pressure-driven flow over dense sediment
To address the bulk behavior of a dense granular bed
sheared by a laminar Poiseuille flow, we carried out
numerical simulations to reproduce the experimental
results of Aussillous et al. (2013), who studied pressure-
driven flows over glass spheres with a mean diame-
ter Dp = 1.1 mm and a standard deviation of
σ(Dp) = 0.1 mm as a sediment material. This experi-
mental work provides investigations over a range of sub-
mergences hf /Dp and Reynolds numbers in the laminar
regime, where hf is the height of the clear-water layer
above the sediment bed illustrated in Fig. 4. We define hf
to be the height above which the average particle volume
fraction φ < 0.05, which is the threshold for negligible
impact of particle-particle interaction on the flow (Capart
and Fraccarollo 2011).
We executed several simulations in an attempt to match

the experimental results of Aussillous et al. (2013) at
different flow rates and fluid heights. To this end, we sim-
ulated a monodisperse granular sediment bed sheared by
a pressure-driven Poiseuille flow with periodic conditions
in both the streamwise (x) and spanwise (z) directions,
respectively. A no-slip condition was applied at the top
and bottom wall as well as at the particle surface. A
detailed comparison validating the simulation results has
been presented in great detail in Biegert et al. (2017). Here,
we extend this work to show data from the same physi-
cal setup, but with an increased flow rate, such that the
gross of the particles are set into motion and interact in a
complex network. The physical and numerical parameters
associated with this simulation are listed in Table 2.
Some qualitative inferences can already be drawn from

Fig. 4, where we have nondimensionalized velocities by
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Fig. 4 Pressure-driven flow over a dense sediment bed. The left figure shows an instantaneous slice through the domain, the color scale illustrating
streamwise fluid velocity, and the gray scale illustrating particle velocity. The right figure shows the time-and-space-averaged streamwise velocity of
the fluid and particles

the bulk fluid velocity Ub = 1
Ly

∫ Ly
0 u dy. In the clear-

water layer, a parabolic profile obeying the analytical solu-
tion of the classical Poiseuille flow can be observed. The
lower end of this parabolic region, however, is not a no-
slip wall, but a moving granular bed, which causes the
symmetry axis of the flow profile to shift from hf /2 to
a lower position. Inside the granular bed, a linear shear
flow profile develops and since all particles are moving,
this profile continues all the way to the bottom wall of
the domain. This interesting behavior and the wealth of
data obtained from the grain-resolving simulations opens

Table 2 Simulation parameters of the pressure-driven flow
scenario, where uτ = √

τw/ρf is the friction velocity at the
fluid/particle interface, Ub is the bulk (average) velocity of the
fluid, τw is the shear stress at the fluid/particle interface, νf the
kinematic viscosity, Lx , Ly , and Lz are the spatial extents of the
computational domain in the Cartesian space, and h is the grid
cell size

Re = UbLy/νf 9.9

D+ = uτDp/νf 0.39

Sh = τw/[ (ρp − ρf )gD] 0.97

ρp/ρf 2.1

Lx × Ly × Lz 11.26Dp × 22.52Dp × 11.26Dp

hf /Dp 8.7

Dp/h 22.7

up a wide range of analytical tools in terms of statistical
description as well as physical modeling, which will be our
focus in the future.

Shearing of dense suspensions
To further investigate the rheologic properties of dense
suspensions, we simulated a shear flow of two parallel
walls with a spacing of H moving in opposite directions.
A no-slip condition is applied for the moving walls at the
top and bottom of the domain and at the particle surface.
The walls move with a relative velocity 
Uw = Ut − Ub,
whereUt is the velocity of the top wall andUb is the veloc-
ity of the bottom wall. Periodic conditions are applied
in streamwise (x) and spanwise (z) directions. The fluid
in between the two walls is a dense mixture of spheri-
cal particles, where “dense” indicates a volume fraction
φv = Np Vp/Vf > 0.4. Here, Vp = 4πR3

p/3 is the
volume of a single particle, Np is the number of particles
in the computational domain Vf , and Rp is the parti-
cle radius. The dimension of the computational domain
can be treated as part of the physical problem. We have
considered two computational domains: scenario A with

Table 3 Physical and numerical simulation parameters for
simulations of shear flows with dense suspensions

edry μk μs ν ζmin ρp/ρf H/Dp Dp/h Re

0.97 0.15 0.8 0.22 3 · 10−3Rp 1.011 10 25.6 10
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Table 4 Simulation scenarios

Scenario Lx × Ly × Lz Re φv ts İ taİ

Re10p42 2H × 1H × 1H 10 0.42 85 35

Re10p54 2H × 1H × 1H 10 0.54 150 30

Re40p54 1H × 2H × 1H 40 0.54 20 20

dimensions Lx × Ly × Lz = 2H × 1H × 1H and
scenario B with Lx × Ly × Lz = 1H × 2H × 1H .
Thus, the relative submergence becomes H/Dp = 10
and H/Dp = 20, respectively, where Dp is the parti-
cle diameter. For both scenarios A and B, the shear rate
İ = 
Uw/H was kept constant so that the particle
Reynolds number Rep = İD2

p/νf = 0.1 also stays
constant but the channel Reynolds number for scenario
B is increased by a factor of 4 with respect to scenario
A. This yields channel Reynolds numbers of Re = 10
(scenario A) and Re = 40 (scenario B). The particles
have a density of ρp/ρf = 1.011, which is close to neu-
trally buoyant conditions.We assumematerial parameters
corresponding to glass or silicate materials as thoroughly
validated in Biegert et al. (2017). In particular, we choose
edry = 0.97, μk = 0.15, μs = 0.8, and ν = 0.22,
where edry is the wall-normal restitution coefficient for
dry collisions, μk and μs are the kinetic and static friction
coefficients for oblique collisions, and ν is Poisson’s ratio.
Every particle is discretized by 25.6 grid cells per diam-
eter. The particle parameters are summarized in Table 3.
Three simulations were conducted with varying volume
fractions of the mixture and different relative gap sizes
H/Dp to explore the effects of these two parameters. All

simulations were initialized and run for a start-up time ts
until a true steady steady state had been established. Sub-
sequently, data was collected for the averaging time ta to
reach converged statistics for the profiles presented in the
following. The different scenarios are displayed in Table 4.
An instantaneous snapshot of the particle distribution

colored by the particle velocity is given in Fig. 5. As
desired, particles are dragged along the moving walls
whenever they collide with them. These particles mov-
ing with the wall transfer kinetic energy through collisions
towards the channel center. In addition, the moving walls
establish a background profile for the fluid velocity, which
should be close to the linear shear profile commonly
observed in Couette-type flows. The two mechanisms
from collision and hydrodynamic interactions establish a
shear flow profile within the suspension. Looking at the
wall-normal profiles of the porosity, we can see a distinct
pattern of oscillations (Fig. 6). This crystal-like layering of
the particles reflects the fact that all particles are the same
size. While a strongly layered structure is visible for all
three simulations close to the wall, less pronounced layers
form in the channel center for the two scenarios Re10p42
and Re40p54. For these two scenarios, particles have more
space to rearrange due to the lower volume fraction and
the larger relative gap size, respectively. Horizontal-and-
time-averaged profiles of the streamwise component of
the fluid and particle velocity show that particles move
with almost the same velocity as the fluid flow (Fig. 7).
Slight distortions can be seen, especially for case Re10p54,
illustrating local effects of the particle clustering on the
global velocity profile.

Fig. 5 Shearing of dense suspensions. Color bar indicates streamwise velocity of particles. Shown are instantaneous snapshots for a Re = 10 and
φv = 0.42, b Re = 10 and φv = 0.54, and c Re = 40 and φv = 0.54



Biegert et al. Progress in Earth and Planetary Science  (2017) 4:33 Page 10 of 13

a

c

b

Fig. 6 Porosity profiles averaged in the streamwise and spanwise directions and time for the three simulation scenarios: a Re = 10 and φv = 0.42,
b Re = 10 and φv = 0.54, and c Re = 40 and φv = 0.54

The present study of a Couette-type flow supple-
ments our simulations of pressure-driven flow described
in the previous section to fully understand the rheo-
logic behavior of dense suspensions of particles with
different inertia in flows with different momentum
supply.

Internal waves propagating over fully resolved sediment beds
We also studied the hydrodynamic forces acting on a
fully resolved sediment bed induced by a gravity current.
Here, the key issue is to explore how a jump in the
hydrostatic pressure traveling along the surface of the
sediment bed propagates within the bed. To this end,

a

c

b

Fig. 7 Average streamwise particle velocity profiles for the three simulation scenarios: a Re = 10 and φv = 0.42, b Re = 10 and φv = 0.54, and
c Re = 40 and φv = 0.54
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we solved the advection-diffusion Eq. (8) and supple-
mented (24) with the term stemming from the Boussinesq
approximation. The Peclet number was chosen to be
Pe = ReSc = 104. The initial configuration is sim-
ilar to a lock-exchange, but the particles are submerged
in a layer of high concentration as well. The geometry is
Lx/H × Ly/H × Lz/H = 6 × 1 × 1, where H is
the channel height from the no-slip wall on the bottom
to the free-slip wall on the top, which is equivalent to Ly.
The Reynolds number for the present scenario was cho-
sen to be Re = ubh/νf = 164, where ub = √

g′h is
the buoyancy velocity, h is the lock height, g′ = ρp−ρf

ρf
g is

the specific gravity, and g is the gravitational acceleration.
Free-slip walls were applied to the left, back, and front
wall (Fig. 8a). The right boundary was set to be a con-
vective outflow condition. The relative submergence of a
particle is H/Dp = 10. Every particle is discretized by
Dp/h = 16.

Immediately after being released, the block of heavy
fluid starts to propagate along the rough wall, form-
ing an internal wave at the interface between light and
heavy fluid, which are indicated in Fig. 8 as blue and
red fluid, respectively. Particles in Fig. 8b are colored
by the lift forces acting in a vertical direction. We can
see that particle in front of the wave start to experi-
ence a lift force even though the wave front has not yet
reached it. The grain-resolving simulation approach now
allows us to track the drag and lift on individual par-
ticles as a function of time to elucidate this effect in
more detail. This has been done for the particles col-
ored in red in Fig. 9a. The lift force normalized by
the buoyant weight of the particles Fg = ρf Vpg
is shown in Fig. 9b. Every curve represents a particle
shown in Fig. 9a, and it becomes obvious that the lift
experienced by the particles along the transect appears
to be similar with decaying intensity along the flow
direction.

Fig. 8 Instantaneous snapshots for the internal wave study. Fixed particles are arranged in a hexagonal packing immersed in the heavy (red) fluid.
a Initially, a lock of dense fluid is arranged at one end of the domain, which then b generates a bore propagating to the right at a later time. The
vertical slice shows the concentration profile of the heavy (red) and light (blue) fluids. Particles are colored by the lift force acting on them; red and
blue indicate positive and negative forces, respectively
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Fig. 9 Lift/drag of the internal propagating wave acting on the centerline particles. a shows a top view of the particle bed, where lift forces are
measured at the red-colored centerline particles. b shows the lift force normalized by the gravitational force, FL/FG , versus time for the centerline
particles, each particle represented by a separate curve. c shows the position of the internal wave front versus time, where the position is
determined either from the concentration profile, the drag force acting on the particle bed, or the lift force acting on the particle bed

We can track the front of the current using the location
in the horizontal profile where the interface between light
and heavy fluid starts to increase in height. Alternatively,
we can track the front using the location where particles
start to experience an enhanced lift force. A comparison of
these twomethods is shown in Fig. 9c for the first few time
units simulated. It can be seen that, indeed, during the ini-
tial stage of the simulation, where we can see a steep front
of the internal wave, the force signal propagates quicker
through the sediment bed than the actual propagation
speed of the current would suggest. This effect, however,
levels off over time as the wave continues to travel over
the rough bed, constantly losing energy due to viscous
dissipation.

Conclusions
The modeling of dilute, non-eroding turbidity currents
has reached a mature level, as evidenced by the fact
that high-resolution simulations have been able to repro-
duce many of the observations made in laboratory exper-
iments (e.g., Nasr-Azadani et al. 2013). We are now
able to account for some topographical complexity via
the immersed boundary method. Some of the remain-
ing challenges concern the extension to the very large
Reynolds number values of field-scale flows and the
frequent interaction with ambient phenomena in the
ocean such as internal waves and tides, as well as the
accurate modeling of erosion and resuspension in such
high Reynolds number flows. However, a similar level of

maturity has not yet been achieved with regard to the
modeling of highly concentrated turbidity currents with
significant erosion, resuspension, and bedload transport.
Especially the dynamics of the near-bed region of such
high-concentration currents in the form of dense sus-
pensions is still poorly understood, as it is governed
by intense particle-fluid and particle-particle interac-
tions that give rise to strongly non-Newtonian dynam-
ics and to mass and momentum exchanges between
the current and the sediment bed. As a result, insight
into the erosional and depositional behavior of such
currents and the coupling between the motion of
the current above the sediment bed and the fluid
flow inside the bed is just beginning to emerge. Key
progress has been accomplished with regard to under-
standing the rheology of dense suspensions over the
last decade, through the development of the so-called
μ(I) approach, cf. (Guazzelli and Morris 2011; Boyer
et al. 2011). Grain-resolving simulations based on the
approach outlined here will provide a tool for further
investigating the validity of the assumptions underly-
ing the derivation of the μ(I) rheology. The compu-
tational approach outlined and tested in the present
paper holds great promise, as it is able to capture
the grain-resolved dynamics of thick, mobile sediment
beds and their coupled dynamics with the flow above.
Simulations on this basis provide the opportunity to
understand erosion and dense suspension rheology from
a fundamental perspective, which can lead to better
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models for use at larger scales. This multiscale approach
would thus further enrich our understanding of turbidity
currents.
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