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Eigenvector of gravity gradient tensor for
estimating fault dips considering fault type
Shigekazu Kusumoto

Abstract

The dips of boundaries in faults and caldera walls play an important role in understanding their formation mechanisms.
The fault dip is a particularly important parameter in numerical simulations for hazard map creation as the fault dip
affects estimations of the area of disaster occurrence. In this study, I introduce a technique for estimating the fault dip
using the eigenvector of the observed or calculated gravity gradient tensor on a profile and investigating its properties
through numerical simulations. From numerical simulations, it was found that the maximum eigenvector of the tensor
points to the high-density causative body, and the dip of the maximum eigenvector closely follows the dip of the
normal fault. It was also found that the minimum eigenvector of the tensor points to the low-density causative body
and that the dip of the minimum eigenvector closely follows the dip of the reverse fault. It was shown that the
eigenvector of the gravity gradient tensor for estimating fault dips is determined by fault type. As an application
of this technique, I estimated the dip of the Kurehayama Fault located in Toyama, Japan, and obtained a result
that corresponded to conventional fault dip estimations by geology and geomorphology. Because the gravity
gradient tensor is required for this analysis, I present a technique that estimates the gravity gradient tensor from
the gravity anomaly on a profile.
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Introduction
In recent years, gravity gradiometry surveys have been
widely conducted to obtain detailed subsurface structure
data (e.g., Jekeli 1988; Dransfield 2010; Chowdhury and
Cevallos 2013; Braga et al. 2014). Data collected by these
surveys is the gravity gradient tensor defined by second
derivatives of the gravity potential, and its response to
subsurface structures is more sensitive than the gravity
anomaly. At present, gravity gradiometry surveys have
mainly been performed using a helicopter. Consequently,
their observation interval is about 3 m on the flight pro-
file, and the observation density is very high. The gravity
gradiometry surveys allowed for high observation den-
sity, high resolution, and high sensitivity to the subsur-
face structures; therefore, these surveys contribute
greatly to the earth science and resource engineering
fields in terms of being useful and powerful tools for the
estimation of subsurface structures.

Various analysis techniques using gravity gradient ten-
sors have been suggested and discussed (e.g., Zhang
et al. 2000; Beiki 2010; Martinez et al. 2013; Cevallos
2014; Li 2015). These are considered to be so-called in-
version techniques. A semi-automatic interpretation
method that can extract subsurface structure characte-
ristics without geological and geophysical data input has
also been developed and applied to field data (e.g.,
Cooper 2012; Ma 2013; Ferreira et al. 2013).
A typical semi-automatic interpretation method is an

edge emphasis technique that uses extraction techniques
to find locations (namely, edge) where the potential field
changes abruptly due to density variations. The horizon-
tal gravity gradient method and vertical gravity gradient
method (e.g., Evjen 1936; Elkins 1951; Tsuboi and Kato
1952; Blakely and Simpson 1986) are classic edge em-
phasis techniques. In recent years, higher and keener ex-
traction techniques have been suggested (e.g., Miller and
Singh 1994; Cooper and Cowan 2006; Sertcelik and
Kafadar 2012; Zhang et al. 2014). In addition, attention
has been paid to techniques that evaluate the shape ofCorrespondence: kusu@sci.u-toyama.ac.jp
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the potential field (e.g., Koenderink and van Doorn
1992; Robert 2001; Zhou et al. 2013; Cevallos 2014).
Among these methodologies, a technique for estima-

ting the dip of geological boundary using the gradient
tensor of the potential fields has been developed (e.g.,
Beiki 2013). Beiki and Pedersen (2010) showed that the
maximum eigenvector of the gravity gradient tensor
points to the causative body (Fig. 1a). Since this property
is common in the potential fields, Beiki (2013) applied it
to a magnetic anomaly in the Åsele area (Sweden) and
obtained useful information on the dip of the dike
swarms. Kusumoto (2015), considering that the base-
ment consists of an aggregate of high-density prisms
(Fig. 1b), applied Beiki’s technique (Beiki and Pedersen
2010; Beiki 2013) to the estimation of fault dips. This
method provided results wherein the fault dip estimated
by the gravity gradient tensor harmonized with the dip
observed from seismic surveys (Kusumoto 2015, 2016a).
In addition, the dip of an earthquake source fault of the
Kumamoto Earthquake that occurred in April 2016 esti-
mated from the gravity gradient tensor also corre-
sponded with the dip of the fault model (normal fault of
60°), thus explaining the crustal movement observed by
GNSS (Global Navigation Satellite System) (Kusumoto
2016b). The range for which this method is applicable is
wide from low dip to high dip (e.g., Beiki 2013; Kusumoto
2015, 2016a, 2016b), although it has some numerical in-
stability to the vertical fault (e.g., Kusumoto 2015).
Although analyses using the gravity gradient tensor

have yielded excellent results in subsurface structure es-
timations and edge detections, gravity gradiometry sur-
veys have been conducted in only a few areas, limiting
the tensor data available. If we were to carry out these
analyses in areas where gravity gradiometry surveys have
not been conducted yet, we would have to use the tensor
estimated from existing gravity anomaly data.
The procedure for estimating the gravity gradient tensor

from gravity anomaly data has already been suggested by
Mickus and Hinojosa (2001). This technique estimates the

gravity gradient tensor from spatial distribution of gravity
anomalies by the Fourier transform. Since the database of
gravity anomalies has been prepared, studies using the
gravity gradient tensor estimated by Mickus and Hinojosa’s
method will progress in the future. On the other hand, it
is difficult to apply this method directly to gravity anoma-
lies obtained by gravity surveys conducted on a profile
employed frequently in active fault research.
In dense gravity surveys researching fault structures in

detail, profiles were set perpendicular to the fault and
short-spaced gravity observations were taken along the
profiles (e.g., Iwano et al. 2001; Inoue et al. 2004). It is
important to find the fault shape, especially its dip, in
these studies because the fault dip affects the area of
disaster occurrence (e.g., Abrahamson and Somerville
1996; Takemura et al. 1998) and is an important para-
meter in numerical simulations for hazard map creation
(e.g., Irikura and Miyake 2011). Consequently, in two-
dimensional gravity surveys for faults, a fault dip esti-
mated from the eigenvectors of the gravity gradient
tensor calculated from the gravity anomaly would be of
additional value. In addition, since this analysis tech-
nique does not require vast calculation times, I expect
it will be an effective new technique for analyzing high-
resolution data obtained densely, i.e., through dense
gravity surveys for fault research and also airborne
gravity gradiometry surveys.
In this study, I first introduce the technique for the es-

timation of the gravity gradient tensor from a gravity
anomaly on the profile. After that, I discuss the relation-
ship between fault dips and eigenvectors of the gravity
gradient tensor and apply its result to gravity anomaly
data obtained on the profile crossing the Kurehayama
Fault in Toyama, Japan.

Methods/Experimental
Gravity gradient tensor on the profile
Gravity gradient tensor Γ on the profile is defined as fol-
lows (e.g., Beiki and Pedersen 2011)

Fig. 1 Schematic illustration of the maximum eigenvectors for two-dimensional (2D) structures such as dykes and faults. a Basic model. In this
figure, v1 is the maximum eigenvector of the gravity gradient tensor and points to the causative body. The angle α between the surface and
the maximum eigenvector is the dip of the causative body. b Fault model. A basement consists of an aggregate of high-density prisms, and
the angle, α, indicates the fault dip
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Γ ¼ gxx gxz
gzx gzz

� �
ð1Þ

Here, gxx, gxz, gzx, and gzz are each component of the
tensor and are defined as the first derivative of gravity
vector components gx and gz for each direction. In
addition, gravity vectors gx and gz are given by the first
derivative of gravity potential, W, namely, gx = ∂W/∂x
and gz = ∂W/∂z. As the gravity potential satisfies the La-
place equation, ∂2W/∂x2 + ∂2W/∂z2 = gxx + gzz = 0, we find
the relationship gzz = −gxx. Also, the relationship is
known to be gxz = gzx because the gravity gradient tensor
is a symmetric tensor (e.g., Torge 1989).

Relationship between subsurface structure and gravity
anomaly
In the two-dimensional analyses, a structure in one di-
rection is assumed to be infinite. Although this assump-
tion is not realistic, it is a good approximation in fault
structure analyses and gives us some practical analysis
techniques. In calculations of the gravity gradient tensor
from the gravity anomaly, we need gravity anomaly
values at different heights. Consequently, I will show
the relationship between two-dimensional subsurface
structures and gravity anomalies in this subsection
before estimating the gravity gradient tensor from the
gravity anomaly.
As the simplest subsurface model, I set a two-

dimensional double layer model consisting of a sedi-
mentary layer and a basement (Fig. 2). Horizontal
positions are given by x, and vertical positions are
given by z. Depth is zero (z = 0) on the surface, and z
increases with depth. As shown in Fig. 2, an average

boundary depth between the sedimentary layer and
basement is defined as z =D (>0). When the boun-
dary surface at point Q(x’) deviates by h(x’) from the
average boundary depth (Fig. 2), gravity anomaly gz(x) at
the point P(x) on the surface caused by this deviation is
given by the following equation (e.g., Blakely 1996).

gz xð Þ ¼ 2γΔρ
Z
−∞

∞Z Dþh x0ð Þ

D

z0

x−x′ð Þ2 þ z02
dx′dz′ ð2Þ

where γ is the gravitational constant and Δρ is the den-
sity contrast between the sedimentary layer and base-
ment. The integration on z in Eq. (2) is solved as:

Z Dþh x0ð Þ

D

z0

x−x′ð Þ2 þ z02
dz′ ¼ 1

2
log

x−x′ð Þ2 þ Dþ h x′ð Þð Þ2
x−x′ð Þ2 þ D2

" #

ð3Þ
here, if h(x’) is much smaller than D, namely, h(x’) <<D,
(D + h)2 is {D[1 + (h/D)]}2 ≈D2(1 + 2 h/D) =D2 + 2Dh,
Eq. (3) would be rewritten as follows:

Z Dþh x0ð Þ

D

z0

x−x′ð Þ2 þ z02
dz′≈

1
2
log

x−x′ð Þ2 þ D2 þ 2Dh x′ð Þ
x−x′ð Þ2 þ D2

" #

¼ 1
2
log 1þ 2Dh x′ð Þ

x−x′ð Þ2 þ D2

" #

ð4Þ
In general, if −1 < ξ ≤ 1 in log(1 + ξ), we have the follow-

ing approximation (e.g., Gradshteyn and Ryzhik 2007)

log 1þ ξð Þ ¼ ξ−
1
2
ξ2 þ 1

3
ξ3−

1
4
ξ4 þ⋯

¼
X∞
p¼1

−1ð Þpþ1 ξ
p

p
ð5Þ

The second term, 2Dh/[(x − x’)2 +D2], in Eq. (4) is
small because D > > h. We can use Eq. (5) to derive a
linear approximate equation of Eq. (4). By neglecting
higher terms of ξ, Eq. (3) or (4) is rewritten as follows:

Z Dþh x0ð Þ

D

z0

x−x′ð Þ2 þ z02
dz′≈

Dh x′ð Þ
x−x′ð Þ2 þ D2

ð6Þ

Consequently, we obtained the following equation.

gz xð Þ≈2γDΔρ
Z ∞

−∞

h x′ð Þ
x−x′ð Þ2 þ D2

dx′ ð7Þ

Here, I introduce a new function, ϕ, defined by:

φ xð Þ ¼ 1

x2 þ D2 ð8Þ

and Eq. (7) is rewritten as follows:

Fig. 2 Model of subsurface structure. A double-layer model consisting
of a sedimentary layer and a basement is assumed here. D is the
average depth of the stratum boundary, and h(x’) is the deviation
of the boundary from the average. Here, the deviation is assumed
to be very small, i.e., h(x’) << D
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gz xð Þ ¼ 2γDΔρ
Z ∞

−∞
φ x−x′
� �

h x′
� �

dx′ ð9Þ

This form is convoluted, and we obtain Eq. (10) by
applying the Fourier transformation to Eq. (9)

Gz ¼ 2γDΔρΦH ð10Þ
where, Gz, Φ, and H are Fourier transforms of gz(x),
ϕ(x), and h(x), respectively. As is well known, the
Fourier transform of Eq. (8) is (e.g., Blakely 1996;
Gradshteyn and Ryzhik 2007)

Φ ¼ π

D
e−D kj j ð11Þ

Here, |k| = ikz = |kx| (e.g., Blakely 1996) and kx is the
wave number in the x direction. Here, I employed the
Fourier transform, F, of a function f(x) defined as follows
(e.g., Blakely 1996):

F ¼
Z ∞

−∞
f xð Þe−ikxdx ð12Þ

By Eq. (11), Eq. (10) is rewritten as:

Gz ¼ 2πγΔρHe−D kj j ð13Þ
This is the relationship between gravity anomaly on

the profile and two-dimensional subsurface structure.

Relationship between gravity anomaly and gravity
gradient tensor
As shown in the previous section, the gravity gradient
tensor is given by the second derivative of the gravity
potential. The relationship between gravity anomaly gz
and gravity potential W is

W ¼ −
Z
gzdz ð14Þ

From Eq. (13), the equation giving the gravity anomaly
at point P’(x) of an arbitrary height z from the surface
(Fig. 2) is obtained in the Fourier domain as follows:

Gz ¼ 2πγΔρHe− Dþzð Þ kj j ð15Þ
By integrating this equation to z and substituting z = 0,

we obtain the gravity potential at the surface. If the Fou-
rier transform of the gravitational potential is repre-
sented by U, from these calculations, the U would be
given by Gz as follows:

U ¼ 1
kj jGz ð16Þ

As the x direction component of gravity anomaly is
given by the first derivative in the x direction of the
gravity potential W, the gx in the Fourier domain, Gx,
would be given by a differential formula in the Fourier
domain (e.g., Blakely 1996) as follows:

Gx ¼ ikxU ð17Þ
From Eq. (16), we obtained

Gx ¼ ikx
kj j Gz ð18Þ

gxx in the Fourier domain is given by

Gxx ¼ −k2x
kj j Gz ð19Þ

We can obtain gxx by applying the inverse Fourier
transform to Gxx, and gzz would be obtained from the re-
lationship of gzz = −gxx. The other component gzx (=gxz)
would be given by:

Gzx ¼ Gxz ¼ ikxGz ð20Þ
where Gzx and Gxz are the Fourier transform of gzx
and gxz.
Here, although I showed a technique to calculate the

gravity gradient tensor in the Fourier domain, there is
another technique to calculate the tensor by a simple
finite-difference method (e.g., Blakely 1996) of gravity
vectors gx and gz in the space domain.

Relationship between subsurface structures and
eigenvectors
As indicated by Beiki and Pedersen (2010), the ma-
ximum eigenvector of the gravity gradient tensor points
to the causative body of the gravity anomaly (Fig. 1a).
They also pointed out that the minimum eigenvector of
the tensor indicates the strike direction of structures
such as dikes in three-dimensional analyses. Since there
are two perpendicular eigenvectors of the gravity gradi-
ent tensor in the two-dimensional analyses, it is ex-
pected that the minimum eigenvector of the tensor will
point to the low-density causative body or medium if the
maximum eigenvector of the tensor points out high-
density causative bodies such as a dike in a low-density
layer such as a sedimentary layer.
To clear this inference, I calculated the gravity gradi-

ent tensor on the profile caused by the model shown in
Fig. 3 and investigated the dips of the maximum and
minimum eigenvectors of the tensor. The model shown
in Fig. 3 has a width and height of 0.25 and 2.0 km,
respectively.
Each component of the gravity gradient tensor caused

by two-dimensional structures such as the dike shown in
Fig. 3 is given by Telford et al. (1990). The relationship
between eigenvectors and structural boundaries will be
discussed widely in this study; I therefore employed cal-
culation formulas given by Talwani et al. (1959). Talwani
et al. (1959) show well-known calculation formulas gi-
ving gx and gz for two-dimensional arbitrary structures
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closed by a polygon. In this study, I obtained gzx (=gxz)
and gxx components by the numerical differentiation of
gz and gx, and the gzz component was given by gzz = −gxx.
A simple finite-difference method (e.g., Blakely 1996) was
employed for these numerical differentiations. In addition,
the dip of each eigenvector (α) was calculated by

α ¼ arctan
vz
vx

� �
ð21Þ

where vx and vz are x and z components of each
eigenvector.

Results and discussion
Density structures and eigenvectors
Figure 4a shows distributions of the maximum (red) and
minimum (blue) eigenvectors of the gravity gradient ten-
sor caused by the model structure (Fig. 3) whose density
contrast (Δρ = ρ1 − ρ2) is 200 kg/m3. Figure 4b shows dis-
tributions of the maximum (red) and minimum (blue)
eigenvectors of the tensor caused by the model structure
(Fig. 3) whose density contrast (Δρ) is −200 kg/m3. In each
figure, the lengths of all the eigenvectors are the same.
From Fig. 4a, it is found that the maximum eigenvector

of the gravity gradient tensor points to a high-density
causative body if the body is embedded in the low-density
medium. In this case, the minimum eigenvector of the
tensor points to the low-density medium around the
high-density body. On the other hand, the minimum

eigenvector of the gravity gradient tensor points to a
low-density causative body if the body is embedded in
the high-density medium. In this case, the maximum
eigenvector of the tensor points to the high-density
medium around the low-density body. From these
results, in the two-dimensional analyses, it was shown
that the maximum eigenvector points to a high-
density causative body and the minimum eigenvectors
points to a low-density causative body.
In Fig. 4, there are vectors pointing to the area z < 0.

This indicates that α is negative. Structures exist under-
ground, and the negative α is not realistic. Consequently,
I will add π to α if α is negative.

Fault types and eigenvectors
In calderas and/or sedimentary basins, high-density and
low-density materials are in contact with each other via
normal faults and/or reverse faults. In gravity anomalies
and gravity gradient tensors, differences in fault type are

Fig. 3 Model of subsurface structures. Here, rectangular causative
body of width and height of 0.25 and 2.0 km, respectively, is
assumed. Densities of a medium and a causative body are ρ2
and ρ1, respectively

Fig. 4 Eigenvectors of the gravity gradient tensor caused by the
subsurface model shown in Fig. 3. The maximum eigenvector and
minimum eigenvector are shown by red and blue, respectively. a
Eigenvectors on the high-density causative body (light green). When
the high-density causative body was given in the low-density medium,
the maximum eigenvector of the gravity gradient tensor points to the
causative body and the minimum eigenvector points to the low-
density medium. b Eigenvectors on the low-density causative body
(light yellow). When the low-density causative body was given in
the high-density medium, the minimum eigenvector of the tensor
points to the causative body and the maximum eigenvector points
to the high-density medium
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defined as differences in density structure. As it was
shown that the behavior of each eigenvector is dependent
on the density structure in the previous subsection, I in-
vestigated the relationship between eigenvectors and fault
type by the simplified sedimentary basin models.
Figure 5a is a simplified sedimentary basin model in

which the sedimentary layer is in contact with the base-
ment by normal faults, and Fig. 5b is a simplified sedi-
mentary basin model in which the sedimentary layer is
in contact with the basement by reverse faults. Density
contrast between sedimentary layer and basement is as-
sumed to be −200 kg/m3.
In Fig. 6, I showed distributions of the maximum (red)

and minimum (blue) eigenvectors of the gravity gradient
tensor caused by these models. In each figure, the
lengths of all the eigenvectors are the same, because we
are interested in the fault dip and only angle information
is necessary for this study.
From Fig. 6a, it is found that the dip of the maximum

eigenvector of the gravity gradient tensor closely follows
the dip of the normal fault. When the basement distri-
butes near the surface, the maximum eigenvector points
in the vertical direction to the high-density basement.
The effect of the high-density basement is weak in the
sedimentary layer area, while the effect of the low-
density sedimentary layer is strong; therefore, the mini-
mum eigenvector points in the vertical direction to the
low-density sediment and the maximum eigenvector
points in the horizontal direction.
When the boundary is a reverse fault, from Fig. 6b, it

is found that the dip of the minimum eigenvector of the
gravity gradient tensor indicates the dip of the fault well.

The maximum eigenvector on the basement points in
the vertical direction to the high-density basement, and
the minimum eigenvector points in the horizontal direc-
tion. Since the low-density sediment distributes near the
surface in the sedimentary layer area, the minimum
eigenvector points vertically.
From these results, it was concluded that if the struc-

tural boundary is a normal fault, its dip can be estimated
from the dip of the maximum eigenvector of the gravity
gradient tensor, and if the boundary is a reverse fault, its
dip can be estimated from the dip of the minimum
eigenvector of the tensor. In addition, in the area away
from the boundary, it was found that the maximum
eigenvector on the basement and the minimum eigen-
vector on the sediment point in the vertical direction,
and the maximum eigenvector on the sediment and the
minimum eigenvector on the basement point in the
horizontal direction, regardless of whether the boundary
is a normal fault or reverse fault.

Subsurface structures and eigenvectors
By simple numerical simulations, it was found that the
maximum eigenvector of the gravity gradient tensor
points to a high-density causative body and that the
minimum eigenvector points to a low-density causative
body. In addition, it was found that the dip of the max-
imum eigenvector of the tensor closely follows the dip of
the normal fault and that the dip of the minimum eigen-
vector closely follows the dip of the reverse fault.

Fig. 5 Simplified sedimentary basin model. Light yellow and white
areas indicate sedimentary layer and basement, respectively. a
Sedimentary basin model where sedimentary layer is in contact
with the basement by normal faults of 45° dip. b Sedimentary
basin model where the sedimentary layer is in contact with the
basement by reverse faults of 45° dip

Fig. 6 Eigenvectors of the gravity gradient tensor caused by the
simplified sedimentary basin models shown in Fig. 5. The maximum
eigenvector and minimum eigenvector are indicated by red and
blue, respectively. a Eigenvectors on the sedimentary basin formed
by normal faults. When the sedimentary layer is in contact with the
basement by normal fault, the dip of the maximum eigenvector
follows the dip of the normal fault. b Eigenvectors on the sedimentary
basin are formed by reverse faults. When the sedimentary layer is in
contact with the basement by reverse fault, the dip of the minimum
eigenvector follows the dip of the reverse fault
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As mentioned above, Beiki and Pedersen (2010) have
already pointed out that the maximum eigenvector of
the gravity gradient tensor points to the high-density
causative body. The result in Fig. 4a confirms that their
results are true for the two-dimensional analyses as well.
When the basement distributes near the surface, the
maximum eigenvector points in the vertical direction.
This property also shows that Beiki and Pedersen (2010)
are correct, and the idea of the basement as an aggregate
of high-density prisms (Fig. 1b), suggested by Kusumoto
(2015, 2016b), would not be incorrect.
As to why the dip of normal fault was given by the dip

of the maximum eigenvector of the gravity gradient ten-
sor, I considered that the lower part of the boundary
structure (fault) exists inside the low-density area more
than its upper part. Therefore, because the gravity gra-
dient tensor is most sensitive to the subsurface struc-
tures near the surface, the structure shown in Fig. 5a
was considered a high-density body that intruded into
the low-density layer, and the dip of the normal fault
was given by the dip of the maximum eigenvector. I be-
lieve Kusumoto (2015, 2016a, 2016b) was able to obtain
results that coincided with seismic surveys since he esti-
mated the fault dip in normal fault regions by the ma-
ximum eigenvector of the tensor.
On the other hand, when the maximum eigenvector

points to high-density causative bodies embedded in
low-density medium or low-density causative bodies em-
bedded in a high-density medium, the minimum eigen-
vector points to the low-density mediums or to the
causative bodies. Beiki and Pedersen (2010) have not ex-
plicitly referred to analyses of low-density causative bo-
dies using eigenvectors. Since it is necessary to analyze
anomalies caused by low-density bodies in the field, it
seems that the result, in which the minimum eigen-
vector points to the low-density bodies, would play an
important role in subsurface structure estimation, al-
though this is the result of two-dimensional analysis.
In addition, it was found that the dip of the minimum

eigenvector of the gravity gradient tensor gave the dip of
the reverse fault. As to the reason why the dip of reverse
fault was given by the minimum eigenvector of the gra-
vity gradient tensor, I considered that the lower part of
the boundary structure (fault) exists inside the high-
density area more than its upper part. Namely, because
this structure was considered a low-density body that in-
truded into the high-density layer, the dip of the reverse
fault was given by the dip of the minimum eigenvector
of the gravity gradient tensor.
As is understood from the results and discussions ob-

tained in this study, selecting a suitable eigenvector for
estimating the fault dip is important. If the study area is
not too wide and prior geological information is avai-
lable, the eigenvector that should be employed for

estimating the fault dip correctly would be selected
based on the information. If the study area was a fault
area where normal faults were mainly distributed, the
maximum eigenvector of the gravity gradient tensor
would be employed for estimating the fault dip. If the
study area was a fault area where reverse faults were
mainly distributed, the minimum eigenvector would be
employed.
In the three-dimensional study for high-density causa-

tive bodies, it is pointed out that the minimum eigen-
vector is parallel to the strike direction of the structure
(Beiki and Pedersen 2010; Beiki 2013). However, in the
two-dimensional analyses, the strike direction of the
structure is perpendicular to x- and z-axes and does not
appear in the analyses. As it is difficult to directly com-
pare the properties of the minimum eigenvector ob-
tained in different dimensions, in the future, it would be
necessary to discuss detailed properties of the minimum
eigenvector.

Application to field data
As an application of the techniques, I estimated the dip
of the Kurehayama Fault located in Toyama, Japan. The
Kurehayama Fault is a reverse fault located at the center
of the Toyama basin, and it strikes in the NNE-SSW di-
rection (Fig. 7). The length of the fault is about 22 km,
and the fault dip is about 45° (e.g., The Headquarters for
Earthquake Research Promotion 2008; Toyama City
2013). The Toyama City has carried out seismic surveys
and dense gravity surveys crossing this fault (Toyama
City 2013). Toyama City (2013) set three profiles cros-
sing the Kurehayama Fault, and the dense gravity sur-
veys of 50 m spaced measurements have been conducted
on these profiles, although spacing of several hundred
meters has been usually employed for these surveys.
Here, I used gravity anomaly data on the profile lo-
cated at the shoreline. Figure 8 shows the Bouguer
anomaly in which the Bouguer density of 2260 kg/m3

was assumed (Toyama City 2013). The indication
“Kurehayama Fault” shown in this figure indicates a
rough fault location.
I applied the techniques to the Bouguer anomaly and

obtained the gravity gradient tensor shown in Fig. 9.
Figure 10 shows distributions of the maximum eigen-
vector (red) and the minimum eigenvector (blue) of
the gravity gradient tensor. Since the Kurehayama
Fault is a reverse fault, I focus on the dip of the
minimum eigenvector. From Fig. 10, it is found that
the dip (α) of the Kurehayama Fault was about 138°.
Since the angle α is measured clockwise from the sur-
face (x-axis), it seems that the obtained dip indicates
the dip of the reverse fault of 42°. This fault dip is
consistent with conventional data.
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The estimated fault dip would be the dip near the
surface because the method employs the gravity gra-
dient tensor, which is sensitive to subsurface structures
near the surface. Since it is important to know quanti-
tatively which depth the estimated fault dip is, in the
future, it would be necessary to develop a technique

estimating the depth of the estimated dip or the dip in
the arbitrary depth.

Conclusions
In this study, I showed techniques for estimating the
gravity gradient tensor from gravity anomalies on the
profile and for estimating the fault dip by eigenvector of

Fig. 7 Location map of the study area. Kurehayama Fault is a
reverse fault located in the center of the Toyama Basin, Toyama
Prefecture, Japan. Its location has been estimated by topographic,
geological, and geophysical data. The red line and brown lines denote
the estimated location of the Kurehayama Fault, Toyama City (Toyama
City 2013), and The Headquarters for Earthquake Research Promotion
(The Headquarters for Earthquake Research Promotion 2008),
respectively. Blue line a - b indicates the dense gravity survey profile,
which has gravity observation points at about 50 m intervals

Fig. 8 Bouguer anomalies on the profiles (after Toyama City 2013).
The Bouguer density of 2260 kg/m3 is assumed. The “Kurehayama
Fault” shown in this figure indicates a rough fault location by Toyama
City (Toyama City 2013). The unit of the gravity anomaly is given in
milligal, and mGal = 10−5 m/s2

Fig. 9 Gravity gradient tensor (gxx, gxz (=gzx), gzz) on the profile.
These are estimated from the Bouguer anomalies on the profile
shown in Fig. 8. The component of gxx and gxz is calculated by
a finite-difference method of gravity vectors gx and gz in the space
domain. The “Kurehayama Fault” shown in this figure indicates a rough
fault location by Toyama City (Toyama City 2013). The unit of the gravity
gradient tensor is given in E (Eötvös), and 1 E = 0.1 mGal/km

Fig. 10 Eigenvectors of the gravity gradient tensor on the profile
shown in Fig. 7. The maximum eigenvector and minimum
eigenvector are indicated by red and blue, respectively. The dips
of eigenvectors are given clockwise from x-axis to z-axis. Since it
is known that the Kurehayama Fault is a reverse fault, we focus on the
minimum eigenvector of the tensor. The “Kurehayama Fault” shown in
this figure indicates a tentative fault location in Toyama City (Toyama
City 2013). The average dip of the minimum eigenvector in the
Kurehayama Fault zone shown by a rectangle with dashed lines
is about 138°, and this angle indicates that the Kurehayama
Fault would be a reverse fault of 42°. In addition, the maximum
eigenvectors on the right side of the “Kurehayama Fault” shown
in this figure point to the vertical direction, and the minimum
eigenvectors in the left side of the “Kurehayama Fault” point to
the vertical direction
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the observed or calculated gravity gradient tensor on the
profile. I also investigated its properties by numerical
simulations.
From numerical simulations, it was found that the

maximum eigenvector of the tensor points to a high-
density causative body and that the dip of the maximum
eigenvector closely follows the dip of the normal fault.
In addition, if the basement distributes near the surface,
the maximum eigenvector points to the vertical direc-
tion. They have been pointed out already in previous
studies, and the results shown in here confirmed that
their results are true for the two-dimensional analyses as
well. On the other hand, it was found that the minimum
eigenvector of the tensor points to a low-density causa-
tive body and that the dip of the minimum eigenvector
closely follows the dip of the reverse fault. Since eigen-
vector analyses of the anomalies caused by the low-
density causative body have not been discussed explicitly
in previous studies, these results would play an impor-
tant role in estimations of subsurface structures in the
future. From these results, it was found that the eigen-
vector of the gravity gradient tensor for estimating fault
dips is determined by fault type, and we would estimate
the fault dip correctly if we were to employ suitable ei-
genvectors based on prior information.
As an application of suggestions, I estimated the dip of

the Kurehayama Fault located in Toyama, Japan, and ob-
tained the fault dip of about 42° as the dip of the mini-
mum eigenvector of the gravity gradient tensor because
the fault is the reverse fault. This dip harmonized with
conventional geological information.
Since the analysis technique shown in this study does

not require complex calculations and vast calculation
times, it will be an effective technique for analyzing
high-resolution data obtained densely by not only dense
gravity surveys for fault research but also airborne gra-
vity or gravity gradiometry surveys.
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