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Reactions between komatiite and CO2-rich
seawater at 250 and 350 °C, 500 bars:
implications for hydrogen generation in the
Hadean seafloor hydrothermal system
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Abstract

To understand the chemical nature of hydrothermal fluids in the komatiite-hosted seafloor hydrothermal system
in the Hadean, we conducted two hydrothermal serpentinization experiments involving synthetic komatiite and
a CO2-rich acidic NaCl fluid at 250 and 350 °C, 500 bars. During the experiments, the komatiites were strongly
carbonated to yield iron-rich dolomite (3–9 wt.% FeO) at 250 °C and calcite (<0.8 wt.% FeO) at 350 °C, respectively. The
carbonation of komatiites suppressed H2 generation in the fluids. The steady-state H2 concentrations in the fluid were
approximately 0.024 and 2.9 mmol/kg at 250 and 350 °C, respectively. This correlation between the Fe content in
carbonate mineral and the H2 concentration in the fluid suggests that the incorporation of ferrous iron into the
carbonate mineral probably limited magnetite formation and consequent generation of hydrogen during the
serpentinization of komatiites. The H2 concentration of the fluid at 350 °C corresponds to that of modern H2-rich
seafloor hydrothermal systems, such as the Kairei hydrothermal field, where hydrogenotrophic methanogens
dominate in the prosperous microbial ecosystem. Accordingly, the high-temperature serpentinization of komatiite
would provide the H2-rich hydrothermal environments that were necessary for the emergence and early evolution of
life in the Hadean ocean. In contrast, H2-rich fluids may not have been generated by serpentinization at temperatures
below 250 °C because carbonate minerals become more stable with decreasing temperature in the komatiite-H2O-CO2

system.
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Introduction
Deep-sea hydrothermal environments have been consid-
ered as a favorable environment for the emergence and
early evolution of life on Earth (e.g., Yanagawa and Kojima
1985; Russell and Hall 1997). In particular, H2-rich hydro-
thermal fluids generated through the serpentinization of
ultramafic rocks would have driven prebiotic chemical
evolution and the development of biotic energy metabo-
lisms (Takai et al. 2006; Amend and McCollom 2009;

Russell et al. 2014; Nakamura and Takai 2014; Shibuya et
al. 2016). Molecular hydrogen (H2) generation during
serpentinization is caused by the reduction of water in
conjunction with the oxidation of ferrous iron in silicates.
This process is written as the following simplified reac-
tion (e.g., Allen and Seyfried 2003; Seyfried et al. 2007;
McCollom and Bach 2009):

2 FeOð Þrock þ H2O→ Fe2O3ð Þrock þ H2;

where the ferric iron-bearing solid phase generally pre-
cipitates as magnetite (Fe3O4). Therefore, H2 generation
is strongly related to magnetite formation during
serpentinization (McCollom and Bach 2009).
Among the various prospects for the seafloor hydrother-

mal systems in the early Earth (e.g., Kump and Seyfried
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2005; Shibuya et al. 2010), two types of serpentinization
are hypothesized to be dominant in the Hadean ocean:
a komatiite-hosted high-temperature type at oceanic
islands/plateaus (Takai et al. 2006; Yoshizaki et al. 2009;
Shibuya et al. 2015) and a low-temperature alkaline
type hosted by komatiites or peridotites at off-ridge
ocean floors (e.g., Russell et al. 2010, 2014; Shibuya et
al. 2016). Based on the geological records, Archean
oceanic crust was likely much thicker than modern
equivalents owing to the higher potential mantle
temperature at that time (Ohta et al. 1996; Komiya et
al. 2002; Komiya 2004; Moores 2002; Shibuya et al.
2012). This thick lid of oceanic crust probably limited
the exposure of mantle peridotites on the seafloor, thus
suggesting that komatiite volcanism would have been
much more abundant than the exposed mantle peridotites
that are frequently observed near modern slow-spreading
ridges without a sufficient magmatic supply (Takai et al.
2006). Therefore, it has been pointed out that H2-rich
seafloor hydrothermal environments would have been
predominantly driven by komatiite volcanism in the
Hadean ocean (Takai et al. 2006). On the other hand,
the low-temperature alkaline type could provide distinct-
ive chemical environments such as large pH gradients in
the seawater-hydrothermal fluid mixing zones, which may
also have been advantageous for the possible development
of proton-motive energy metabolisms (Russell et al. 2014;
Shibuya et al. 2016).
Previously, hydrothermal alteration experiments have

been conducted to understand the potential of H2 gener-
ation during the serpentinization of komatiites under
CO2-free conditions (Yoshizaki et al. 2009; Shibuya et al.
2015; Suzuki et al. 2015). However, as suggested by the-
oretical calculations (Walker 1985; Kasting 1993; Sleep
and Zahnle 2001) and geological records (Lowe and Tice
2004; Ohmoto et al. 2004; Shibuya et al. 2007, 2012,
2013a), the atmospheric CO2 levels in the early Earth
were likely much higher than the modern level. Further-
more, it has been experimentally demonstrated that car-
bonate formation during the serpentinization of olivine
under CO2-rich conditions suppresses H2 generation in
fluids (Jones et al. 2010; Klein and McCollom 2013;
Neubeck et al. 2014). Recently, some experiments have
been conducted in komatiite-CO2-H2O systems (Lazar
et al. 2012; Hao and Li 2015), but H2 generation in
fluids was not the objective in these studies. There-
fore, the potential for hydrogen generation through
the serpentinization of komatiites in the Hadean has
not yet been experimentally evaluated under CO2-rich
conditions.
In this study, we conducted two experiments that

simulate the reactions between komatiite and CO2-rich
seawater at 250 and 350 °C, 500 bars, using a batch-type
(closed system) hydrothermal reactor (Yoshizaki et al.

2009). The experiments revealed the chemical compos-
ition of high-temperature hydrothermal fluids and CO2

absorption ability of komatiite through serpentinization
under CO2-rich conditions. The results demonstrate the
significance of komatiite-hosted hydrothermal systems
for seawater chemistry and provide insight into the H2-
rich hydrothermal environments in the CO2-rich Hadean
ocean.

Methods/Experimental
Synthesis of komatiite
The komatiite used in the experiments was synthesized
from a mixture of 12 reagents (SiO2, TiO2, Al2O3, Fe2O3,
MnO, MgO, CaCO3, Na2CO3, K2CO3, P2O5, NiO, and
Cr2O3). The chemical composition of the mixed reagents
was adjusted to Al-depleted (Barberton-type) komatiite
(Smith et al. 1980; Wei et al. 1990; Yoshizaki et al. 2009)
because the volcanism of Al-depleted komatiite was likely
more predominant than Al-undepleted komatiite in the
Hadean (Shibuya et al. 2015). The mixed powder was
placed in a Pt-Rh crucible at 1000 °C for 1 h in an elec-
tronic furnace to decarbonate the reagents. The mixture
was melted at 1600 °C for 0.5 h at the oxygen fugacity of
quartz-fayalite-magnetite (QFM) buffer regulated by a
H2-CO2 gas mixture (Canil 1997). To create a spinifex
texture of olivine, the temperature was lowered to 1450 °C
over 1.5 h. Next, the crucible was quenched to room
temperature, thus yielding a fresh spinifex-textured
komatiite (Fig. 1). The composition and texture of the
synthetic komatiite and its mineral/glass phases were
analyzed using X-ray diffraction (XRD), X-ray fluorescence
(XRF), and an electron probe microanalyzer (EPMA)
(Table 1). In the interstitial glass, dendritic olivine crystals
configurate a spinifex texture. Broadly depending on size,
these crystals have Mg# values ranging from 89 to 94.
Small amounts of chromian spinels are disseminated in
the vicinity of the olivine crystals. Owing to such a mineral
assemblage, almost all Ca in the komatiite was partitioned
into the interstitial glass (Fig. 1 and Table 1). The synthe-
sized komatiite was crushed in a tungsten mortar and
sieved to obtain a <100 μm powder. To remove any con-
tamination of organic materials during sample prepar-
ation, the powdered komatiite was washed with acetone
and distilled water several times and dried for 12 h in an
oven at 50 °C.

Experimental system
The Inconel alloy autoclave used for the hydrothermal
alteration experiment is based on the study by Seyfried
et al. (1979). It resists corrosion and withstands high-
temperature and high-pressure conditions (up to 600 °C
and 600 bars; Fig. 2). The reaction cell is made of a gold
bag with a titanium head because of the resistance of
these materials to high-temperature fluids. Furthermore,
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gold has sufficient flexibility to allow the fluid inside the
reaction cell to be pressurized by the surrounding water.
In addition, to avoid possible H2 generation via the reac-
tion of metallic titanium with water, the surface of the ti-
tanium was completely oxidized before the experiments.
To eliminate organic contamination, all materials in
contact with the reacting fluid were baked in a muffle
furnace at 450 °C for 5 h.
The initial solution used in the experiments was

controlled at pH 4.9 and 400 mmol/kg of ΣCO2

(=CO2 (aq) + HCO3
− +CO3

2−) by the addition of NaHCO3,
NaCl, and HCl to ultrapure water, according to the previ-
ous studies suggesting that Hadean seawater was acidic
due to the high partial pressure of CO2 in the atmosphere
(e.g., Kasting 1993; Macleod et al. 1994). To avoid the de-
gassing of CO2 by a reaction between NaHCO3 and HCl
prior to the sealing of the reaction cell, these materials
were separately placed in the gold tube and then mixed
after sealing (Shibuya et al. 2013b). The Cl concentration
of the solution was regulated to be approximately
1000 mmol/kg because salinity of seawater in the early
Earth was potentially 1.5–2 times higher than the modern

value (approximately 550 mmol/kg) because of the ab-
sence of continents and the associated salt deposits/saline
water (Knauth 2005). The komatiite powder was reacted
with this hypothetical seawater in the reaction cell at 250
and 350 °C, 500 bars for 1530–2760 h (hereafter abbrevi-
ated as Exp-250 and Exp-350, respectively). At the
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Fig. 1 a Photomicrograph taken in cross-polarized light and b a
backscattered electron (BSE) image of the synthetic komatiite. Ol olivine,
Spl spinel, Gl glass

Table 1 Compositions of the synthetic komatiite, mineral/glass
phases therein, starting materials used in a previous experiment
(wt.%)

Sample Al-depleted komatiite Olivine Glass Spinel Basaltb

SiO2 46.29 41.02 50.74 0.22 49.84

TiO 0.37 0.00 0.68 0.22 0.73

Al2O3 4.30 0.20 7.74 6.43 15.82

Cr2O3 0.21 0.48 0.52 52.22 –

FeOtotal
a 12.52 9.70 14.81 22.03 11.00

MnO 0.13 0.09 0.18 0.14 0.22

MgO 27.47 48.80 12.57 15.49 9.44

CaO 7.20 0.30 11.84 0.22 10.84

Na2O 0.06 0.00 0.23 0.00 1.88

K2O 0.02 0.02 0.05 0.02 0.18

NiO 0.11 0.34 0.01 0.22 –

Total 98.68 100.95 99.37 97.23 99.95

Mg#c 79.64 89.96 60.21 55.62 60.47

–, no mention
aTotal iron as FeO
bSynthetic basalt used in Shibuya et al. (2013b)
cMg# = [Mg / (Mg+Fe)] × 100
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Fig. 2 Schematic illustration of the Inconel alloy autoclave used in
this study (modified after Yoshizaki et al. 2009). The synthesized
komatiite and hypothetical Hadean seawater were sealed in the
gold bag
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beginning of the experiments, the water/rock mass ratios
were adjusted to approximately 5 because water/rock ra-
tios are commonly below 5 in the high-temperature re-
gions of natural subseafloor hydrothermal systems
(Wetzel and Shock 2000). The water/rock mass ratio de-
creased to ~3 at the end of the experiments due to the
multiple fluid samplings during the experiments.

Sampling and analytical methods
During the experiment, approximately 3–4 g of fluid
samples was collected several times through a gold-lined
sampling tube. For CO2 and H2 analyses, 0.5 mL of fluid
sample was directly introduced to each Ar-purged,
sealed vial at room temperature. Especially, for the CO2

analysis, the sampled fluid was acidified (pH <2) by add-
ing HCl to ensure the complete extraction of the dis-
solved bicarbonate and carbonate ions. Quantitative
analysis for gas species was conducted by gas chroma-
tography. The overall detection precision for the ana-
lyses of ΣCO2 and H2 concentrations in the fluid were
both better than 5%. For the analysis of other dissolved
species, 0.2 mL of the fluid was collected in two vials, to
which either HNO3 or NaOH was immediately added to
avoid the precipitation of transition metals (Fe and Mn)
and silicic acid species, respectively. The fluid samples
were analyzed using inductively coupled plasma optical
emission spectrometry and ion chromatography. The
analytical precision (2σ) was approximately 2% for Cl
and Na, and 5% for the other elements.
The pH of the fluid samples was determined using a

pH meter at 25 °C under atmospheric conditions. The
significant digits and precision of the pH measurement
are 2 digits and ±0.1 units. This measurement was per-
formed 1 h after sampling to allow the stabilization of
the pH against CO2 degassing. The pH25 °C of the fluid
cannot be measured directly because it rapidly changes
due to CO2 degassing after the sampling of fluid from
the reactor. The amount of degassed CO2 was deter-
mined from the ΣCO2 concentrations of the fluid sample
directly introduced into the sealed vial and of the fluid
degassed under atmospheric conditions, then the ori-
ginal pH25 °C was calculated based on the amount of
degassed CO2. We calculated pHin-situ of the high-
temperature fluid in the reaction cell with the Geo-
chemist’s Workbench computer code (Bethke 2008)
based on the pH at room temperature (pH25 °C) and
concentrations of dissolved elements/species and gases. In
the pHin-situ calculations, charge balance was constrained
by pH25 °C, while Na was used to compensate for im-
balanced charges derived from analytical errors. The re-
quired thermodynamic database was generated by the
SUPCRT92 computer program (Johnson et al. 1992),
using thermodynamic data of minerals, aqueous spe-
cies, and complexes reported in Shock and Helgeson

(1988), Shock and Koretsky (1995), Shock et al. (1989,
1997), Sverjensky et al. (1997), and McCollom and
Shock (1997). The B-dot activity model was used in the
calculations (Helgeson 1969; Helgeson and Kirkham
1974). The temperature-dependent activity coefficient
for aqueous CO2 was derived from the empirical rela-
tionship established by Drummond (1981), and the
temperature-dependent activity of water in NaCl solu-
tion was derived from the formulation of Bethke
(2008). Cleverley and Bastrakov (2005) provided useful
temperature-dependent polynomial functions for both
of these last-mentioned parameters.
After the experiments, alteration products were re-

trieved from the reaction cell and dried at 80 °C for 12 h.
The solid alteration product of each experiment was ana-
lyzed with XRD and EPMA to determine the assemblage
and composition of the alteration minerals. Powdery alter-
ation products from the experiments at both temperatures
were embedded in Epofix resin, and thin sections were
made of these. The analytical conditions of the EPMA
were 15 kV of accelerating voltage, 10 nA of specimen
current, and 60–80 s of counting time. The precision of
the elemental concentration was less than 10%, which was
based on duplicate measurements. The detection limit for
the elemental concentration was 0.01 wt.%. Moreover, the
starting solid material (unaltered komatiite) was analyzed
with XRD, XRF, and EPMA.

Results and Discussion
Fluid chemistry
The Cl concentration in the fluid was kept relatively
constant throughout both experiments because Cl-bearing
minerals are generally rare in hydrothermally altered rocks
(Fig. 3 and Table 2). In contrast, the concentrations of all
other components (Na, K, Mg, Ca, Si, Fe, Mn, and ΣCO2)
changed immediately after the beginning of the experi-
ments and reached a near steady state within 2760 h at
250 °C and 1530 h at 350 °C. The Mg concentration in
Exp-250 (36–40 mmol/kg) was 30–40 times higher than
that in Exp-350 (<1.2 mmol/kg). The Fe concentration in
Exp-250 (0.49–0.97 mmol/kg) was approximately half
than that in Exp-350 (1.53–1.80 mmol/kg). No large
difference between Exp-250 and Exp-350 was identified
in the concentrations of other dissolved elements. Na
(820–1036 mmol/kg across both experiments) had the
second highest concentration next to Cl. The concentra-
tion of Ca increased and converged at 39–49 mmol/kg in
Exp-250 and 37–42 mmol/kg in Exp-350. The concentra-
tions of Si and K were 1.6–6.1 and 0.78–1.24 mmol/kg,
respectively, across both experiments. The concentration
of Mn was the lowest among all analyzed elements (0.15–
0.73 mmol/kg across both experiments).
The ΣCO2 concentration decreased from ca. 400 mmol/

kg at the beginning of the experiments to approximately
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33 mmol/kg in Exp-250 and approximately 171 mmol/kg
in Exp-350 (Fig. 4a and Table 2). This trend of the steady-
state ΣCO2 concentration in the higher-temperature ex-
periment being higher than that in the lower-temperature
experiment is consistent with the results of experiments
simulating high-temperature reactions between basalt and
CO2-rich seawater (Shibuya et al. 2013b). On the other
hand, the pHin-situ values were higher than the pH25 °C

values at the beginning of the experiments due to the
temperature dependence of the ion product of water and
speciation of CO2 species (e.g., Shibuya et al. 2010). As the
reaction proceeded, the pHin-situ values finally decreased
to 4.8 in Exp-250 and 5.7 in Exp-350, which are broadly

consistent with those of high-temperature hydrothermal
fluids in modern oceans (pHin-situ = approximately 5)
(Seyfried et al. 1991).
In both experiments, the H2 concentration in the fluid

suddenly increased and temporarily reached a high value
just after the start of the experiments, then slightly de-
creased in each experiment (Fig. 4b). Subsequently, the
H2 concentration remained almost constant in Exp-350,
whereas it gradually increased with time in Exp-250. Fi-
nally, it converged to reach a steady state at up to
0.024 mmol/kg in Exp-250 and 2.9 mmol/kg in Exp-350
(Table 2). This trend indicates that the H2 concentration
was unstable due to extensive water/rock reactions just
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Fig. 3 Concentrations of the dissolved species in an aqueous fluid coexisting with komatiite powder and its alteration products as a function of
reaction time in the experiments at a 250 and b 350 °C, 500 bars
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after the start of the experiments, and then gradually
reached a steady state. The steady-state H2 concentra-
tion in Exp-350 was approximately 100 times higher
than that in Exp-250, thus indicating that differences in
temperature significantly affect hydrogen generation
during water-rock reactions.

Alteration products
The XRD analysis revealed that the synthetic komatiites
were extensively altered throughout the experiments
(Fig. 5). The results show that the alteration product in
Exp-250 contains dolomite, serpentine, and a smectite/
chlorite mixture (Fig. 5b), whereas calcite, serpentine,
and a smectite/chlorite mixture were present as major
alteration minerals in Exp-350 (Fig. 5c). The existence of
serpentine and carbonate minerals in the run products
indicated komatiite was altered by both serpentinization
and carbonation. The precipitated carbonate mineral dif-
fered for the two temperatures.
Secondary electron imaging (SEI) and EPMA spot

analysis provided more detailed information on mineral
assemblage and composition (Fig. 6 and Table 3). In
Exp-250, EPMA analyses of the products revealed that
dolomite crystals contained a relatively high content of
iron (3–9 wt.% FeOtotal), whereas the serpentine and
smectite/chlorite mixture had FeOtotal contents of 13–
15.5 wt.% (Fig. 6a–d; Table 3). Siderite (including approxi-
mately 40 wt.% FeOtotal) and olivine were present as minor
minerals in the alteration products in Exp-250 (Fig. 6a, c;
Table 3). In Exp-350, the EPMA analyses of the alteration

products revealed that calcite crystals had a relatively low
FeOtotal content (0.1–0.8 wt.%) and that the serpentine
and smectite/chlorite mixture had FeOtotal contents of
14–17 wt.% (Fig. 6e; Table 3). Olivine and magnetite were
also identified as minor minerals; however, according to
the SEI observations in many places over the thin sections,
their abundances were likely greater in Exp-350 than in
Exp-250. Comparing the compositions of serpentine and
the smectite/chlorite mixture between Exp-250 and Exp-
350, no large difference in FeOtotal content was identified.
On the other hand, on average, the FeOtotal content in Fe-
bearing dolomite in Exp-250 was ten times higher than
that in calcite in Exp-350 (Table 3).

Dissolved CO2 concentration and pH
The ΣCO2 concentrations in fluids decreased from approxi-
mately 400 to 33 mmol/kg in Exp-250 and 171 mmol/kg in
Exp-350 (Fig. 4a and Table 2). These differing steady-state
ΣCO2 concentrations indicate that carbonate minerals are
destabilized with increasing temperature in the komatiite-
CO2-H2O system. This trend is consistent with previous
basalt experiments under CO2-rich conditions at 250 and
350 °C, where the final ΣCO2 concentrations were 1 mmol/
kg at 250 °C and 108 mmol/kg at 350 °C (Shibuya et al.
2013b). Comparing results for the same temperature, the
ΣCO2 concentration in our komatiite experiments is higher
than that in the basalt experiments of Shibuya et al.
(2013b), thus indicating that komatiite has a lesser ability
than basalt to absorb CO2 through water-rock reactions.
This would be derived from the lower CaO content of

Table 2 Composition of the sampled fluids in the experiments (mmol/kg)

Experiment Time (h) pH25 °C
a ΣCO2

b pH25 °C
c pHin-situ

d H2 ΣCO2 Cl Na K Mg Ca Si Fe Mn

250 °C 0 n.a. n.a. 4.9 6.0 0.003 396 1128 1036 0.08 n.d. 0.073 n.d. n.d. n.d.

43 6.3 0.9 3.7 4.1 0.010 161 1174 939 0.94 36.2 46.5 6.1 0.49 0.19

119 5.8 1.9 4.1 4.5 0.014 67 1168 951 0.89 40.4 39.7 4.4 0.56 0.15

452 6.6 1.0 4.3 4.7 0.004 35 1186 948 0.85 38.4 39.2 2.4 0.77 0.23

859 6.4 2.3 4.6 5.0 0.007 36 1178 937 1.24 37.2 48.7 2.1 0.85 0.24

1771 7.1 1.0 4.4 4.8 0.021 35 1186 820 0.88 36.4 43.6 1.6 0.93 0.24

2760 6.8 1.2 4.5 4.8 0.024 33 1175 949 0.95 36.4 48.8 3.5 0.97 0.25

350 °C 0 n.a. n.a. 4.9 7.2 n.d. 396 966 946 0.10 0.03 0.078 n.d. n.d. n.d.

90 6.1 1.9 3.8 5.6 6.0 176 971 902 0.78 1.2 39.4 3.7 1.53 0.71

258 6.4 1.7 3.9 5.6 2.8 163 968 882 0.86 1.2 38.0 3.7 1.80 0.73

594 6.4 1.7 3.9 5.6 2.9 179 963 877 0.98 1.1 42.2 3.6 1.65 0.67

1146 6.5 1.8 3.9 5.7 2.7 174 969 900 1.08 1.0 41.1 3.8 1.61 0.63

1530 6.6 1.7 3.9 5.7 2.2 171 953 884 0.81 1.0 37.3 4.1 1.55 0.60

n.a., not analyzed
n.d., not detected
aMeasured pH after CO2 degassing
bMeasured ΣCO2 concentration after CO2 degassing
cCalculated pH25 °C at 1 bar before CO2 degassing at room temperature
dCalculated pHin-situ at high-temperatures, 500 bars
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komatiite (compared with basalt) because CaO is the
main component in the alteration carbonate (mainly
calcite or dolomite) in the basalt and komatiite experi-
ments (Shibuya et al. 2013b and the present study).
The final pHin-situ values of fluids in the present exper-

iments (pHin-situ = 4.8 at 250 °C and 5.7 at 350 °C) are
clearly lower than those of the previous basalt-CO2-
NaCl fluid experiments (pHin-situ = 6.6 at 250 °C and 7.2
at 350 °C) (Shibuya et al. 2013b). This discrepancy is
probably derived from the lower pH25 °C of the initial so-
lution (pH25 °C = 4.9) in our experiments than the value
of 6.5 in the basalt experiments and/or compositional
differences between komatiite and basalt. In general,
under CO2-rich and near-neutral pH conditions at room
temperature, substantial HCO3

− is dissolved in the solu-
tion. With increasing temperature, the dissolved HCO3

−

is converted to CO2(aq) and OH−, which elevates the
pHin-situ value of the hydrothermal fluid (Shibuya et al.
2010). Although reactions with rocks generally cause
fluid pHin-situ to converge near 5.5 (neutral pH at 250–
350 °C), previous experiments have revealed that the al-
kalinization effect due to the increase in temperature
under CO2-rich conditions potentially elevates the
pHin-situ value beyond a neutral pH value at high
temperature, even if the fluid reacts with rocks (Shibuya et
al. 2013b). In this study, however, the assumed pH25 °C of
the initial solution was 4.9, which was likely too low to
form substantial HCO3

− in the initial solution at room
temperature. This implies that if seawater pH was lower
than approximately 5 (CO2aq was the main species),
metal-rich black smoker-type hydrothermal fluids would
have been generated in the Hadean komatiite hydrother-
mal systems in contrast to the metal-poor, alkaline hydro-
thermal fluids in the Archean basalt-hosted system.
Although the difference in whole rock composition be-
tween komatiite and basalt should be experimentally
evaluated, seawater pH was likely an important factor
controlling the composition of hydrothermal fluids in
the early Earth.

Serpentinization of komatiites
In this section, we compare our experimental results
with conditions in natural environments and thermo-
dynamic calculations in order to characterize the reac-
tion occurring in the reaction cell. The EPMA analysis
of alteration products revealed the presence of a small
quantity of olivine in both experiments, but the amount
of olivine in Exp-350 was greater than that in Exp-250.
Thermodynamic calculations for serpentinization of oliv-
ine and harzburgite (80 wt.% of olivine, 15 wt.% of
orthopyroxene, and 5 wt.% of clinopyroxene) indicate
that olivine becomes stable and is one of the major min-
erals at temperatures above approximately 315–350 °C
in the peridotite- or olivine-H2O system (e.g., McCollom
and Bach 2009; Klein et al. 2013). In analogy with the
calculation, the experiments in this study suggest that
olivine stabilizes with increasing temperature, even
during komatiite serpentinization at 250–350 °C. Neverthe-
less, olivine was observed as a minor phase even in
Exp-350. This is probably due to the composition of
komatiite that contains a certain level of Al2O3 would
stabilize serpentine and/or chlorite/smectite because
smectite becomes stable as bulk Al2O3 content in-
creases in ultramafic rocks such as komatiite (Shibuya
et al. 2015). However, it was difficult to determine
whether the igneous olivine still remains in the absence
of any reaction with a fluid or if the alteration olivine
was newly created through serpentinization.
Brucite commonly occurs in serpentinized rocks in

modern oceanic plates (e.g., Bach et al. 2006; Klein et al.
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2014) but was not found in the alteration products in
the present experiments. The absence of brucite in Exp-
350 is consistent with the thermodynamic calculations
for the serpentinization of olivine and harzburgite under
CO2-poor conditions, since brucite is destabilized at
temperatures above ~350 °C (McCollom and Bach 2009;
Klein et al. 2013). On the other hand, the instability of
brucite in Exp-250 is likely due to the CO2-rich condi-
tion in the experiment because previous experiments re-
vealed that Mg-bearing carbonate mineral is more stable
than brucite under CO2-rich conditions (Zhao et al.
2010; Hövelmann et al. 2012; Klein and McCollom
2013). Alternatively, high dissolved Si content in the
fluid (3.7–4.1 mmol/kg) possibly prohibited brucite for-
mation, which is supported by thermodynamic calcula-
tions (e.g., Klein and McCollom 2013).

Carbonation of komatiites
The steady-state ΣCO2 concentrations in both experiments
indicate that the amount of carbonate mineral was greater
in Exp-250 than in Exp-350 (Fig. 4a and Table 2). The for-
mation of dolomite in Exp-250 is characteristically different
from the basalt-CO2 experiments that yielded only calcite
as carbonate in previous studies at 250 and 350 °C (Shibuya
et al. 2013b). Comparing the experimental conditions of
this study to those in the previous study, compositional dif-
ferences between komatiite and basalt and/or the difference
in initial pH (4.9 in this study, and 6.5 in Shibuya et al.
(2013b)) likely caused the difference in precipitated car-
bonate species in the alteration products at 250 °C. Fur-
thermore, it was revealed that the precipitated carbonate
species strongly affected the Mg concentration in the
hydrothermal fluid, i.e., Mg concentration in Exp-250

Fig. 5 Representative XRD patterns (CuKα) of a the unaltered synthetic komatiite and the alteration products of b Exp-250 and c Exp-350.
Dol dolomite, Cal calcite, Sme smectite, Chl chlorite, Ol olivine, and Serp serpentine
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(carbonate as dolomite) is 30–40 times higher than that in
Exp-350 (carbonate as calcite), while fluid Ca concentra-
tions in both experiments are similar.
Previously, carbonate species were reported to correl-

ate with the concentration ratio between Mg and Ca
(mMg2+/(mMg2+ +mCa2+)) and the temperature of the
fluid (Fig. 7) (Rosenberg and Holland 1964; Rosenberg et
al. 1967; Tribble et al. 1995). In Exp-350, carbonate was
precipitated as calcite, whereas the mMg2+/(mMg2+ +
mCa2+) value of the fluid was approximately 0.03; thus, it
clearly falls within the stability field of calcite. On the
other hand, the mMg2+/(mMg2+ +mCa2+) value of the
fluid in Exp-250, where dolomite precipitated, was ap-
proximately 0.43, which is near the dolomite/magnesite
stability boundary. Therefore, the extremely high fluid
Mg concentration in Exp-250 is consistent with the
precipitation of dolomite in the alteration product. How-
ever, it is difficult to discuss the anteroposterior relation

between dolomite formation and enrichment of Mg in
fluids because the decrease in ΣCO2 concentration and
the Mg enrichment in the fluid were already confirmed at
the first sampling. It is widely accepted that seafloor
hydrothermal systems play a significant role as Mg sinks
in the modern ocean because basaltic oceanic crusts in-
corporate seawater Mg into alteration minerals such as
smectite and chlorite through hydrothermal alteration
at near mid-ocean ridges (e.g., Alt 1995). In addition,
Charlou et al. (2002) reported that ultramafic rock-
hosted high-temperature hydrothermal systems provide
fluids with little Mg into seawater and generally act as
Mg sinks in the ocean. On the other hand, weathering
of ultramafic rocks exposed at seafloor below 150 °C
and hydrothermal circulation at high water/rock ratios
provide Mg into seawater (Snow and Dick 1995). Our
results hypothesize that dolomite formation during
the serpentinization of komatiite would be a source
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of Mg for the Hadean ocean, even when the
temperature range of hydrothermal reaction zones
was near 250 °C. Further experiments will be neces-
sary to justify this hypothesis.
The dolomite crystals formed in this study contain

up to 9 wt.% FeOtotal in Exp-250 because Fe substi-
tutes Mg in dolomite during its precipitation owing
to the similarity in ion radius between Fe and Mg
(Mg2+: 0.72 Å; Fe2+: 0.61 Å) (Jia 1991). A similar Fe-
bearing carbonate mineral was also reported in a hydro-
thermal alteration experiment for komatiite conducted
under CO2-rich conditions (water 50.1 mg + CO2 7.3 mg:
about 3300 mmol/kg at the starting condition) at 300 °C
and 500 bars (Hao and Li 2015). Furthermore, Klein and
McCollom (2013) reported the precipitation of Fe-bearing
magnesite (FeO = 6.78 wt.%) through the serpentinization
of olivine under CO2-rich conditions at 230 °C. Although
differences in the composition of the starting materials
between the previous studies and our experiments would
have caused the difference in carbonate species, it seems
likely that carbonate minerals formed during
serpentinization under CO2-rich conditions contain
substantial FeO, probably at temperatures below ap-
proximately 300–350 °C.

Effect of seawater CO2 on H2 concentration in fluid
The maximum steady-state fluid H2 concentrations
were 0.024 mmol/kg in Exp-250 and 2.9 mmol/kg in
Exp-350 (Fig. 4b), and the results are consistent with
the analysis of solid alteration products. Magnetite,
whose formation is related to H2 generation (McCollom

Table 3 Composition of run products (wt.%)

Experiment-250 °C Experiment-350 °C

Sample Serp or Sme/Chl mixtureb Dolomite Siderite Serp or Sme/Chl mixtureb Calcite Olivinec Magnetite

SiO2 41.37 40.89 33.38 0.00 0.00 0.00 3.80 38.55 35.52 38.87 0.00 0.00 0.00 41.60 2.76

TiO 0.44 0.43 0.64 0.01 0.05 0.15 2.96 0.52 0.47 0.17 0.00 0.00 0.00 0.01 0.18

Al2O3 7.00 6.88 11.56 0.06 0.00 0.01 0.13 6.82 6.84 6.38 0.07 0.00 0.01 0.06 0.02

Cr2O3 0.47 0.43 0.29 0.11 0.06 0.12 1.46 0.37 0.47 0.39 0.04 0.00 0.02 0.14 0.23

FeOtotal
a 13.32 13.65 15.55 3.22 6.66 9.05 39.55 16.84 16.51 13.77 0.18 0.37 0.77 5.33 85.06

MnO 0.16 0.14 0.18 0.53 0.49 0.49 0.12 0.19 0.34 0.20 0.13 0.36 0.72 0.05 0.40

MgO 24.05 23.48 24.10 17.69 17.39 17.43 1.32 23.13 25.21 25.98 0.17 0.74 0.79 51.46 0.36

CaO 0.83 0.81 0.17 26.01 29.47 23.75 0.26 0.28 0.13 0.46 56.29 54.95 58.68 0.32 0.29

Na2O 0.06 0.08 0.03 0.03 0.11 0.04 0.09 0.16 0.07 0.15 0.01 0.00 0.00 0.00 0.02

K2O 0.09 0.11 0.02 0.03 0.02 0.02 0.05 0.04 0.01 0.03 0.01 0.01 0.01 0.02 0.03

NiO 0.17 0.20 0.12 0.00 0.00 0.08 0.10 0.10 0.00 0.16 0.01 0.00 0.05 0.45 0.10

Total 87.96 87.10 86.05 47.67 54.25 51.13 49.84 86.98 85.59 86.56 56.91 56.43 61.04 99.43 89.45

Mg# d 76.30 75.40 73.43 90.73 82.31 77.43 5.63 71.00 73.13 77.08 61.52 78.23 64.50 94.51 0.74
aTotal iron as FeO
bSerpentine or smectite/chlorite mixture
cAlterlation or relict olivine
dMg# = [Mg / (Mg+Fe)] × 100
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and Bach 2009), was observed in Exp-350 but not in Exp-
250. Nevertheless, the H2 concentrations in both experi-
ments were clearly lower than the steady-state H2 concen-
tration (~20 mmol/kg) in fluid generated by the reactions
between komatiite and a CO2-free NaCl fluid at 300 °C
and 500 bars (Shibuya et al. 2015). Although direct com-
parison is difficult owing to the difference in temperature
conditions, two possible factors explain the differences be-
tween the previous and present experiments in terms of
the steady-state H2 concentrations from the hydrothermal
reaction of komatiite.
The first factor is the temperature dependence of the

stability of magnetite in ultramafic systems. At tempera-
tures below 315–350 °C, the amount of magnetite forma-
tion increases with increasing temperature, but it drastically
decreases at temperatures above 315–350 °C because oliv-
ine becomes stable (McCollom and Bach 2009; Klein et al.
2013). Moreover, Klein et al. (2013) reported that within
the temperature range of 25–400 °C, the amount of hydro-
gen generation caused by the reaction with olivine (Fo 90)
reaches a maximum at 322 °C. Thus, the temperature de-
pendence of the stability of olivine and magnetite would be
a primary cause of the difference in fluid H2 concentrations
between the previous CO2-free komatiite experiment at
300 °C and our experiments.
The other factor is the presence of CO2 in the experi-

mental system. Based on thermodynamic calculations
simulating the relative amount of magnetite formation at
50–400 °C under 500 bars, Klein et al. (2013) expected
that the amount of hydrogen generation caused by the
reaction with olivine under CO2-free conditions is
greater at 250 °C than at 350 °C. In our experiments,
however, the steady-state fluid H2 concentration was
higher in Exp-350 than in Exp-250. In previous experi-
ments that simulated the reactions between olivine and
a CO2-rich fluid at 230 °C and 35 MPa, ferrous iron-
bearing talc and magnesite were generated, while mag-
netite formation and H2 generation were limited (Klein
and McCollom 2013). Under CO2-free conditions, the
iron is only partitioned into magnetite and ferrous iron-
bearing silicate in alteration products,

a FeOð Þrock þ bH2O→d Fe2O3ð Þrock þ dH2

þ a‐2dð Þ FeOð Þrock::
In contrast, the interaction between CO2-rich fluid

and rock leads to carbonate mineral precipitation and
ferrous iron incorporation therein. The reaction occur-
ring under a CO2-rich condition is the following:

a FeOð Þrock þ bH2Oþ cCO2→d Fe2O3ð Þrock þ dH2

þ e FeOð Þrock þ a‐2d‐eð Þ FeCO3ð Þrock
þ c‐aþ 2d þ eð ÞCO2:

In both equations, the value of “d” is the amount of
H2 generation and depends on temperature. Therefore,

it was suggested that the lack of H2 generation is due to
the direct incorporation of ferrous iron into carbonate
minerals without its oxidation during the hydrothermal
alteration. In our experiments, although a large differ-
ence in the composition of serpentine and smectite/
chlorite mixture was not identified between Exp-250 and
Exp-350, the Fe content of dolomite in Exp-250 (3–
9 wt.% FeOtotal) was clearly higher than that of calcite in
Exp-350 (Table 3). The amount of generated magnetite
in Exp-350 was greater than that in Exp-250. These data
suggest that the amount of ferrous iron incorporated
into the carbonate mineral strongly affected the extent
of magnetite formation and resulting hydrogen gener-
ation in the fluid. Although such a trend in the effect of
CO2 on H2 generation has been reported in some previ-
ous experiments at temperatures below 230 °C (Jones et
al. 2010; Klein and McCollom 2013; Neubeck et al.
2014), our experiments show that the suppression of H2

generation by the presence of CO2 in the system occurs
even at higher temperatures (250 °C) and in the CO2-
H2O-komatiite system. In addition, a small amount of
ferrous iron incorporated into calcite (up to 0.8 wt.%)
may have also slightly suppressed magnetite formation
in Exp-350.

Implications for the Hadean H2-rich hydrothermal
environments
It has been considered that the serpentinization of ko-
matiite would have served as the most ubiquitous
geological process for hosting H2-rich hydrothermal en-
vironments in the Hadean ocean (e.g., Takai et al. 2006).
The present experiments constrained the potential for
H2 generation during the serpentinization of komatiite
under CO2-rich conditions. This work provides further
important insights into our interpretation of hatcheries
for the emergence and early evolution of life in the
Hadean Earth. Exp-350 showed that the fluid H2 con-
centration increased up to 2.9 mmol/kg during the
serpentinization and carbonation of komatiite. This value
is lower than the maximum H2 concentration of the vent
fluids in modern peridotite-hosted hydrothermal systems;
the H2 and ΣCO2 concentrations in modern peridotite-
hosted hydrothermal systems are 12 and 10.1 mM at
Logatchev field, 16 and 16 mM at Rainbow field (Charlou
et al. 2002), and <1–15 mmol/kg and <0.8 mmol/kg at
Lost City field (Kelley et al. 2005), respectively. However,
the H2 concentration in Exp-350 broadly falls within the
range of the fluid H2 concentrations in the Kairei field
hosted by both basalt and troctolite (H2 = 2.5–8.5 mmol/
kg and ΣCO2 < 10.1 mmol/kg; Takai et al. 2004; Gallant
and Von Damm 2006; Kumagai et al. 2008; Nakamura
et al. 2009). This suggests that in the Hadean, the komati-
ite still had great potential to generate H2-rich hydrother-
mal fluids at high-temperature, even under CO2-rich
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conditions. Furthermore, considering that hydrogeno-
trophic methanogens—long believed to be one of the most
probable candidates for the earliest living forms and pri-
mary producers on Earth (e.g., Takai et al. 2006; Martin et
al. 2008)—indeed dominate in the microbial communities
associated with hydrothermal fluids in the Kairei field
(Takai et al. 2004), the komatiite-hosted seafloor hydro-
thermal systems would have fully prepared the energetic
basis of hatcheries for the emergence and early evolution
of hydrogenotrophic living forms in the Hadean ocean.
In contrast, the fluid H2 concentration in Exp-250

(0.024 mmol/kg) was much lower than that in Exp-350
and is comparable to the H2 concentration level in the
typical fluids of modern basalt-hosted hydrothermal
fields (Charlou et al. 1996, 2000; Gallant and Von Damm
2006). Given that the H2 generation potential of ultramafic
rocks decreases with decreasing temperature within the
unstable region of olivine (McCollom and Bach 2009;
Klein et al. 2013), the serpentinization of komatiite under
CO2-rich conditions might not have afforded the H2-rich
hydrothermal fluids at temperatures lower than 250 °C.
More importantly, carbonate minerals become stable with
decreasing temperature in H2O-CO2-rock systems (e.g.,
Shibuya et al. 2013b), which indicates that the carbonate
formation and resulting limitation of H2 generation would
occur more significantly at lower temperatures (e.g.,
<100 °C). Therefore, the possible H2-rich hydrothermal
environments may have been created only in the deep
ocean floor because high hydrostatic pressure can elevate
the temperature of hydrothermal reaction zones (fluid-
rock reaction zones). In other words, other potential
candidates, such as the hydrothermal systems in on-land
and shallow submarine environments, may not have fully
prepared the energetic basis (abundant H2 availability) of
hatcheries for the emergence and early evolution of life in
the Hadean Earth due to low-temperature hydrothermal
reactions.

Conclusions
High-temperature and high-pressure experiments using
komatiite and a CO2-rich NaCl solution revealed that
different hydrothermal reaction temperatures caused dif-
ferences in the carbonate species in alteration products
(iron-rich dolomite at 250 °C and calcite at 350 °C) dur-
ing the serpentinization of komatiites. The hydrothermal
fluid coexisting with dolomite at 250 °C showed high
Mg concentrations (up to ca. 40 mmol/kg), which is
markedly higher than those in typical modern high-
temperature hydrothermal fluids (generally less than
1 mmol/kg). This suggests that, in contrast to modern
seafloor hydrothermal systems, the dolomite-bearing
komatiite-hosted hydrothermal systems may have served
as a source of Mg in the Hadean ocean. The steady-state
H2 concentration in Exp-350 (up to 2.9 mmol/kg) was

approximately 100 times higher than that in Exp-250
(up to 0.024 mmol/kg) because the amount of ferrous
iron incorporated into carbonate was greater in Exp-250
than in Exp-350. These results perhaps suggest that only
high-temperature komatiite-hosted hydrothermal systems
have the potential to generate H2-rich hydrothermal envi-
ronments, even in the CO2-abundant Hadean ocean. Fur-
ther experiments based on a more precise estimation of
the ancient atmospheric/oceanic CO2 levels from geo-
logical records will clarify the geochemical nature of
komatiite-hosted hydrothermal environments and other
potential hatcheries for the emergence and early evolution
of life in the Hadean Earth because the ΣCO2 concentra-
tion in the fluid may significantly affect the mineral as-
semblage of serpentinized komatiites and hydrothermal
reactions taking place under various conditions.
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