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Abstract

We propose an emergency alert framework for geomagnetically induced currents (GICs), based on the empirically
extreme values and theoretical upper limits of the solar wind parameters and of dB/dt, the time derivative of magnetic
field variations at ground. We expect this framework to be useful for preparing against extreme events. Our analysis is
based on a review of various papers, including those presented during Extreme Space Weather Workshops held in
Japan in 2011, 2012, 2013, and 2014. Large-amplitude dB/dt values are the major cause of hazards associated with
three different types of GICs: (1) slow dB/dt with ring current evolution (RC-type), (2) fast dB/dt associated with auroral
electrojet activity (AE-type), and (3) transient dB/dt of sudden commencements (SC-type). We set “caution,” “warning,”
and “emergency” alert levels during the main phase of superstorms with the peak Dst index of less than −300 nT (once
per 10 years), −600 nT (once per 60 years), or −900 nT (once per 100 years), respectively. The extreme dB/dt values of
the AE-type GICs are 2000, 4000, and 6000 nT/min at caution, warning, and emergency levels, respectively. For the SC-
type GICs, a “transient alert” is also proposed for dB/dt values of 40 nT/s at low latitudes and 110 nT/s at high latitudes,
especially when the solar energetic particle flux is unusually high.

Keywords: Geomagnetically induced currents, Magnetic storms, Auroral substorms, Sudden commencements, Solar
energetic particles

Review
Geomagnetically induced currents (GICs) are an import-
ant natural space weather hazard for our global modern
society which depends on power grids (Royal Academy
of Engineering Report 2013; Tsurutani et al. 2015). The
motivation of this paper is to contribute to the 2015
NASA Living with a Star Institute GIC Working Group,
where we aimed to understand the basic properties of
extreme GICs for a robust operation of power grids to
mitigate the potential hazard from extreme GIC events.
To predict large-amplitude GICs, the most essential par-

ameter is dB/dt, the time derivative of the local magnetic
field at ground. Detailed time-frequency representations
of dB/dt during intense magnetic storms have been inves-
tigated (e.g., Pulkkinen and Kataoka 2006; Kataoka and
Pulkkinen 2008; Pulkkinen et al. 2010; Tsurutani and
Lakhina 2014). GIC events with large-amplitude dB/dt
values can be categorized into three different types: (1)
magnetic storms or ring current evolution characterized
by slow dB/dt values globally with a timescale of hours
(RC-type); (2) substorm activities in which aurora electro-

jet currents cause fast dB/dt in auroral regions with a
timescale of several minutes (AE-type); and (3) sudden
commencements in which rapid compression of the mag-
netosphere causes global enhancement of dB/dt with a
timescale of tens of seconds (SC-type).
Here, on the basis of a review of extreme events and

important recent papers, we propose an emergency alert
framework that takes into account the different time-
scales and largest observed amplitudes of RC-type, AE-
type, and SC-type GICs.

RC-type slow GICs
The emergency level of GICs can be well defined by the
magnetic storm level because large-amplitude, global, and
long-duration GICs are associated with the evolution of
the ring current on a timescale of 10–60 min. It is also
worth noting here that, depending on ground conductiv-
ities, slow GICs can also be the most effective source of
GICs at low magnetic latitudes, for example, in Hokkaido,
Japan (Watari et al. 2009; Pulkkinen et al. 2010).
The “Halloween storms” of 29–31 October 2003 threat-

ened electrical grids in South Africa and Sweden (Pulkkinen
et al. 2005). This double-peaked superstorm reached mini-
mum Dst index values of −353 and −383 nT on 29 and 30
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October, respectively (Mannucci et al. 2005). The
maximum dB/dt amplitude as estimated from the Dst
index was 100 nT/h. The largest magnetic storm on rec-
ord during the space age (the last half century), which
occurred on 13 March 1989 (Allen et al. 1989), led to
the collapse of the Hydro-Quebec high-voltage power
transmission system (Bolduc 2002). The peak Dst index
was −589 nT, and the maximum dB/dt amplitude was
130 nT/h. The SYM-H value (the symmetric disturbance
index for the H-component, 1 min time cadence) for this
storm was −710 nT (Lakhina and Tsurutani 2016). The
occurrence rate of a storm comparable to the March
1989 storm has been estimated to be once every 60 years
(Tsubouchi and Omura 2007; Riley 2012; Kataoka 2013),
although it has been argued that such storms cannot be
predicted with reasonable accuracy (Willis et al. 1997;
Tsurutani et al. 2003; Love 2012; Yermolaev et al. 2013;
Love et al. 2015; Lakhina and Tsurutani 2016). The solar
wind parameters were not very extreme at the time
of the 1989 storm. For example, Nagatsuma et al.
(2015) estimated that the solar wind speed of
960 km/s and southward interplanetary magnetic field
Bz of −50 nT continuing for 5 h drove the main
phase of the March 1989 storm, whereas Lakhina and
Tsurutani (2016) indicated that the interplanetary
driver of the March 1989 storm included multiple
shocks, multiple sheaths, and multiple magnetic
clouds. It is therefore reasonable to assume that a
perfect “slot machine”-type combination of solar wind
parameters sometimes results from the complex inter-
actions of chains of coronal mass ejections during
their propagation in the solar wind (Cid et al. 2014;
Kataoka et al. 2015).
The largest magnetic storm in magnetometer history

(last 170 years), the “Carrington storm,” occurred on 2
September 1859 and was observed at Colaba (magnetic
latitude = 9.6°) in Bombay (Tsurutani et al. 2003). The
peak Dst index has been estimated as −1760 nT
(Tsurutani et al. 2003), −850 nT (Siscoe et al. 2006),
and −900 nT (Cliver and Dietrich 2013). Its dB/dt amp-
litude was therefore 6.0 × 102 nT/h on average because
the main phase duration was 1.5 h. Another “Carring-
ton-like” storm (with a comparable amplitude of
−825 nT < Dst < −900 nT), which occurred on 15 May
1921 at Apia, Samoa (−15.3°), had a dB/dt amplitude of
3.0 × 102 nT/h (Angenheister and Westland 1921;
Silverman and Cliver 2001). Both the Carrington storm
and the May 1921 storm caused disruptions of tele-
graph services (Boteler 2006). The occurrence rate of a
storm comparable to the Carrington storm is about
once per century (Love et al. 2015). It is worth noting
that a rapid recovery phase of a superstorm can also
cause a high dB/dt amplitude in a slow RC-type GIC
(Keika et al. 2015).

To prepare for unprecedented extreme storms, larger
than the Carrington storm, theoretical discussions can
help us to understand the upper limits of the Dst index
and of dB/dt for the “emergency” alert level. Vasyliunas
(2011) suggested that the upper limit of the Dst index is
−2.5 × 103 nT. The estimated time to reach the satur-
ation value during the development of such a super-
storm is 2–6 h (Vasyliunas 2013). The dB/dt amplitude
would therefore range from 4.0 × 102 to 1.25 × 103 nT/h.
In fact, a naive estimation from solar wind parameters,
in particular the largest in situ observed values of the
interplanetary magnetic field B (=1.0 × 102 nT; Russell et
al. 2013) and solar wind speed V (=2240 km/s; Skoug et
al. 2004), made by extending the empirical relationship
reported by O’Brien and McPherron (2000), gives a max-
imum injection rate of ring current energy of 9.8 ×
102 nT/h. Note that Tsurutani and Lakhina (2014) esti-
mated the maximum possible interplanetary magnetic
field and solar wind speed to be 127 nT and 2700 km/s,
respectively.
Recorded superstorms are listed in Table 1. In our emer-

gency alert framework, we set the criterion for the first
alert level, “caution,” to Dst < −300 nT for a slow GIC
(10–60 min) timescale, with an expected dB/dt of around
100–150 nT/h. All such slow GIC effects are global, and
their duration is several hours, that is, the typical duration
of the main phase of magnetic storms. The “warning” level
is assigned to superstorms somewhat larger than the
March 1989 storm (Dst < −600 nT), which have an ex-
pected dB/dt in the range of 150–400 nT/h. The “emer-
gency” alert is for superstorms as large as or larger than
the Carrington storm (Dst < −900 nT) with an expected
dB/dt of 400–1250 nT/h.

AE-type fast GICs
The largest dB/dt variations are associated with sub-
storm activities at high magnetic latitudes, although
these substorm effects can extend even to middle and
low magnetic latitudes during extreme events. The rec-
ord largest rapid change in the north-south component
dH recorded at middle latitudes was 1710 nT at Green-
wich (53.3°) on 25 September 1909 (Cliver and Svalgaard
2004). On the same day, dH > 1500 nT was observed at
Potsdam, Germany (52.6°) (Tsurutani et al. 2003). A tele-
graph interruption that occurred at Tokyo (magnetic
latitude = 25.3°) on 25 September 1909 was the first
Japanese accidental example of GICs (Uchida 1909). The
magnetometer record at Tokyo was off-scale (H-compo-
nent maximum = −200 nT), but the initial rapid decrease
of 200 nT occurred within 5 min at around 1140 UT,
that is, at the onset, the dB/dt amplitude was >40 nT/
min, a result that is hard to interpret without considering
substorm activities. Local midnight at Tokyo is at 1500 UT,
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and an aurora was seen that night at Sapporo (32.7° mag-
netic latitude) and at Niigata (27.5° magnetic latitude).
Akasofu and Kamide (2005) proposed that the “H-

spike” of the 1859 Carrington storm was due to field-
aligned currents, but Tsurutani et al. (2005) rejected that
proposal. More recently, Cliver and Dietrich (2013) re-
ported that the H-spike recorded at Colaba (9.6°) during
the Carrington storm included contributions from
aurora-related currents, because of the similarity be-
tween the Colaba magnetometer time series and that of
the May 1847 storm recorded at Greenwich (53.3°). The
most notable observation of activity was made at Rome
(38.8°), where Secchi (1859) reported a decrease of
−3.0 × 103 nT in the H-component. Similar levels of per-
turbation (3.5 × 103 nT) at middle latitudes for a
Carrington-type superstorm event were simulated in a
study by Ngwira et al. (2014). More recently, on the
basis of a comparison of the Halloween storms and the
Carrington storm, Cid et al. (2015) hypothesized that the
auroral current system can influence the middle to low
latitudes during superstorms, especially in the pre-noon
sector. The mechanism of this pre-noon enhancement is
straightforward: Not only ionospheric currents but also
upward field-aligned currents induce a negative north-
south (H-component) excursion at middle to low lati-
tudes in the pre-noon sector during superstorms. In fact,
Tsuji et al. (2012) reported that dH enhancement was
highly localized in the magnetic local time direction dur-
ing the main phase of a storm in the middle latitudes
(35–55°), possibly owing to the dH contribution from
upward field-aligned currents. We note, however, that
Lakhina and Tsurutani (2016) recently presented a re-
buttal of the hypothesis of Cid et al. (2015).
If the importance of field-aligned currents is assumed,

then such aurora-related effects cannot be negligible in
the middle to low latitudes. The local area of influence
of an AE-type GIC with large-amplitude dB/dt can ex-
tend to a latitude 20° lower than the equatorward
boundary of the auroral oval, even though the dB/dt
amplitude is only an order of magnitude smaller than its
amplitude in the high latitudes (Ngwira et al. 2013,
2014). By extending the empirical relationship of
Yokoyama et al. (1998), the equatorward boundary of
the auroral oval during the Carrington storm can be

extrapolated down to 30° magnetic latitude (peak Dst =
−900 nT), whereas during most superstorms with peak
Dst < −300 nT, the boundary is at 36–43° magnetic lati-
tude. More studies are needed to investigate how such
an extreme equatorward boundary of the auroral oval
can occur because recent simulations have pointed to a
saturation level of aurora oval expansion (Ngwira et al.
2013), although there are contemporary reports of a
low-latitude aurora during the Carrington event
(Kimball 1960). One of the most equatorward auroras
ever reported was observed during the Carrington event.
Kimball (1960) has pointed out that red auroras were
detected at ±23°, and Tsurutani et al. (2003) estimated
the Dst index of the Carrington event by assuming that
the plasmapause during the storm was located at ±23°.
The largest known auroral extent was observed at 19°
magnetic latitude on 4 February 1872 (Cliver and Sval-
gaard 2004).
For practical purposes, it is worth noting here that the

lowest latitude aurora sighting is also 20° lower than the
latitude of sightings of the overhead coronal aurora (i.e.,
of the apparent auroral oval) during extreme events
(Silverman and Cliver 2001). Reports of an aurora sight-
ing are therefore a sign of the area of influence of AE-
type fast GICs where the dB/dt amplitude is expected to
be an order of magnitude smaller than its high-latitude
amplitude.
Viljanen et al. (2014) reported that a dB/dt as high as

1200 nT/min has been observed at the middle latitude
Nurmij rvi station in Finland (56.9°) during super-
storms (Dst < −300 nT) such as the Halloween storms
and the 13 July 1982 storm (peak Dst = −325 nT).
Nakamura et al. (2015) showed statistically that the AU
and AL indices have upper limits that give an upper
limit of the AE index of 6.0 × 103 nT. In extreme cases,
the fast AE-type dB/dt of 6.0 × 103 nT/min can therefore
be observed at high latitudes. The upper limit of the AE
index observed so far is 4.4 × 103 nT. For example,
Tsurutani et al. (2015) reported several super-substorms
with an AE index of < −2500 nT and noted that the AE
index of the largest event reached −4418 nT.
In our emergency alert framework, the “caution” level

poses the maximum dB/dt of 2.0 × 103 nT/min at mag-
netic latitudes >40° during the main phase of superstorms

Table 1 Historical hazardous RC-type GIC events

Date −Dst (nT) dB/dt (nT/h) Note

2 September 1859 850a (900b) 600 Historically largest storm

15 May 1921 825–900b >400 Low-latitude aurorasc

13, 14 March 1989 589 130 Largest storm in the space age since 1957

29, 30 October 2003 353, 389 100 GIC hazardous superstorms
aSiscoe et al. (2006)
bCliver and Dietrich (2013)
cSilverman and Cliver (2001)
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with Dst < −300 nT. At lower latitudes, the largest possible
local GIC effect is expected to be a dB/dt of 2.0 × 102 nT/
min. The “warning” level poses the maximum dB/dt of
4.0 × 103 nT/min at middle to high latitudes during the
main phase of storms with Dst < −600 nT. During these
storms, a local GIC effect of dB/dt = 4.0 × 102 nT/min is
expected at low latitudes. For extreme, stronger-than-
Carrington storms (Dst < −900 nT), the “emergency” level
poses the maximum dB/dt level of 6.0 × 103 nT/min at
middle to high latitudes, and at low latitudes, the largest
possible local GIC effect is expected to be dB/dt = 6.0 ×
102 nT/min.

SC-type transient GICs
Sudden commencements (SCs) cause global, large-
amplitude, transient GICs, especially in the high-
frequency domain. For example, the 24 March 1991 SC
event had a peak dB/dt of 40 nT/s for tens of seconds at
low latitudes (Kappenman 2003). One of the largest
known SCs occurred on 24 March 1991 at Kakioka
(26.6°) around the noon sector (Araki et al. 1997). The
northward magnetic field change dH rapidly increased
up to 202 nT within 1.0 min. Recently, Araki (2014) re-
ported two historically large SCs were recorded at
Kakioka on 13 November 1960 (dH = 220 nT) and on 24
March 1940 (dH > 273 nT). Another historically large
SC (dH = 308 nT) was recorded only at Alibag (10.3°) on
7 July 1928. Because at the same time dH was only 8 nT
at Kakioka, this particular July 1928 event tells us that
local enhancement of an SC can occur in the low lati-
tudes. Interestingly, almost all large SC events have been
clustered in the maximum and early declining phase of
sunspot cycles (Araki 2014).
The dB/dt amplitudes of SC-type GICs basically de-

pend on the dynamic pressure of the solar wind. This
solar wind parameter dependence is essentially different
from the parameter dependence of dB/dt amplitudes of
RC-type and AE-type GICs, which mainly depend on the
southward component of the interplanetary magnetic
field and the solar wind speed. A “transient alert” of SC-

type GICs is always in effect when caution, warning, or
emergency alerts are issued, because during such super-
storm situations incoming interacting chains of fast cor-
onal mass ejections are likely, and rapid variations of the
solar wind dynamic pressure can always occur. In
addition to during superstorms, however, a “transient
alert” should be issued whenever the flux of solar ener-
getic particles (SEPs), which is accelerated by fast cor-
onal mass ejections, is unusually high. In fact, extremely
high speed solar wind events and super SC events are al-
ways accompanied by very high SEP flux events or
superstorms (Table 2).
The complex waveform of the largest SCs can be

interpreted by examining the so-called DL and DP
components (Araki et al. 1997), where DL denotes a
step-like disturbance dominant at low latitudes (global
compression), and DP denotes an impulsive disturb-
ance of polar origin (current vortices associated with
a preliminary impulse and a main impulse). The time-
scale of the DL component can be derived from the
shock transit time over an effective length of 30 Earth
radii (Araki et al. 2004), and the timescale of the DP
component can be derived from the shock transit
time over an effective length of 3.5 Earth radii
(Kubota et al. 2015). The shortest transit time on rec-
ord, from the flare onset to the shock arrival at the
Earth, of 14.6 h occurred on 4 August 1972 (Vaisberg
and Zastenker 1976) for an average propagation speed

Table 2 Historical hazardous events with SC-type transient GICs

Date Record Notes

24 March 1940 dH > 273 nT at KAKa Second largest storm (dH = −661 nT) at KAK

13 November 1960 dH = 220 nT at KAKa GLE10b, 3rd largest 30 MeV SEPc

4 August 1972 Shortest transit time, GICd GLE24f, 8th largest 30 MeV SEPc

24 March 1991 dH = 202 nTf, GICg Largest 10 MeV SEPh

aMagnetometer observations at Kakioka (Araki 2014)
bSteljes et al. (1961)
cCliver and Svalgaard (2004)
dLanzerotti (1983)
ehttp://neutronm.bartol.udel.edu/~pyle/GLE_List.txt (GLE stands for the ground level enhancement of neutron monitor counting rate caused by the most
energetic SEP)
fAraki (1997)
gKappenman (2003)
hhttp://umbra.nascom.nasa.gov/SEP/

Table 3 Parameters for the GIC emergency alert model. The
criterion for each alert level is shown in the second column,
and the following columns show the expected extreme dB/dt
values for RC-, AE-, and SC-type GICs

dB/dt of GICs

Alert level Criterion RC (nT/h) AE (nT/min) SC (nT/s)

Caution Dst < −300 nT 100–150 2000 40–110

Warning Dst < −600 nT 150–400 4000 40–110

Emergency Dst < −900 nT 400–1250 6000 40–110

Transient alert High SEP flux 40–110
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of 2850 km/s (Tsurutani and Lakhina 2014), which is
faster than the second shortest transit time of 17.5 h
during the Carrington event. A similarly short transit
time of 15–17 h from the Sun to the Earth was also
reported for the 23 July 2012 STEREO-A event (Rus-
sell et al. 2013). If a high shock speed of 2.5 ×
103 km/s is assumed, then the DL and DP compo-
nents would have shortest minimum durations of 76
and 9 s, respectively.
The amplitude of the DL component is pr-

oportional to the square root of dynamic pressure
(Siscoe et al. 1968), and the extreme DL jump is
320 nT, assuming a dynamic pressure of 460 nPa
(Araki 2014). The amplitude of the DP component
is also proportional to the square root of dynamic
pressure, and the extreme DP is 1.0 × 103 nT at
high latitudes and 3.5 × 102 nT at low latitudes
(Kubota et al. 2015).
By combining the above extreme values, transient

dB/dt values for SC-type GICs of 1.1 × 102 nT/s at
high latitudes and of 39 nT/s at low latitudes are ob-
tained. In a recent analysis, Fiori et al. (2014) reported
data that support these estimates. Note, however, that
Tsurutani and Lakhina (2014) estimated a maximum
SC-type dB/dt = 30 nT/s on a 22 s timescale, from a
different point of view. The boundary between the two
dB/dt regimes at high latitudes and at low latitudes
changes with the extent of the auroral oval, and we
can use the same equatorward boundary of the auroral
oval used for “caution/warning/emergency” alerts for
the boundary between the two regimes.

Emergency alert framework
In summary, we determined extreme dB/dt values for
three different types of GICs, slow RC-type, fast AE-
type, and transient SC-type GICs. For RC-type and AE-
type GICs, we set “caution,” “warning,” and “emergency”
alert levels for magnetic storms with a peak Dst index of
less than −300, −600, and −900 nT, respectively. The oc-
currence rates of storms at the caution, warning, and
emergency levels are once every 10, 60 , and 100 years,
respectively. The extreme dB/dt values of AE-type GICs
range from 2000 to 6000 nT/min. For SC-type GICs, a
“transient alert” is used for the extreme dB/dt values of
110 nT/s at high latitudes and 40 nT/s at low latitudes.
The alert criteria and the extreme values are listed in
Table 3 and also shown graphically in Fig. 1.
The Dst index, as provided at the website of Kyoto

University, must be monitored in real time to use the
emergency alert framework. Real-time monitoring of en-
ergetic protons of >10 MeV, as observed by the GOES
satellites, is also necessary to activate the “transient
alert.”

Conclusions
The proposed emergency alert framework provides a basic
starting point for understanding the expected extreme
values of dB/dt around the world. Empirical, theoretical,
and statistical approaches could improve this framework
and make it more detailed. To make the “emergency alert”
approach more flexible and dynamic by using physics-
based quantitative predictions, a complete parameter sur-
vey of both global magnetohydrodynamic and ring current

Fig. 1 Emergency alert framework for geomagnetically induced currents. The equatorward boundary of the auroral oval according to the model
of Yokoyama et al. (1998) is shown by the solid curve, and the dotted curve shows its theoretical extrapolation. It is important to update the
possible extension of the auroral oval toward middle to low latitudes during extreme magnetic storms

Kataoka and Ngwira Progress in Earth and Planetary Science  (2016) 3:23 Page 5 of 7



simulations should be performed with various sets of solar
wind parameters, such as the interplanetary magnetic field
and the solar wind speed and density, to identify the lar-
gest dB/dt values of RC-type, AE-type, and SC-type GICs
at high, middle, and low latitudes.
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