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Abstract

Early evolution of life

Serpentinization of Al-depleted and Al-undepleted komatiites (and olivine for comparison) was experimentally
characterized under high-temperature and high-pressure conditions of 300 °C and 500 bar to evaluate the H,
generation potential in komatiite-hosted hydrothermal systems in the early Earth. From the results, the steady-state
H, concentrations of fluids were estimated to be approximately 20 and 0.05 mmol/kg during the serpentinization
reactions for Al-depleted and Al-undepleted komatiites, respectively (60 mmol/kg in the case of olivine). The H,
concentration of hydrothermal fluid generated from the serpentinization of Al-depleted komatiite is lower than that
from olivine but is comparable to that of typical modern peridotite-hosted hydrothermal systems (~16 mmol/kg).
The relatively low H, concentration from Al-undepleted komatiite is similar to the levels in modern basalt-hosted
hydrothermal fluids. Considering that the generation of Al-depleted komatiite melt requires a hotter mantle
upwelling (plume) than the generation of Al-undepleted komatiite melt and that the temperature of the mantle
has gradually decreased throughout Earth’s history, Al-depleted komatiite may have constituted ultramafic
volcanism in Hadean oceanic islands/plateaus. Furthermore, it seems unlikely that seafloor exposure of mantle
peridotites occurred frequently in the Hadean because the oceanic crust of that time was presumably much thicker
than the modern equivalent. Therefore, the serpentinization of Al-depleted komatiites may have been the main
process that provided abundant H.-rich seafloor hydrothermal environments in the Hadean ocean, which potentially
acted as a nursery for the prebiotic chemical evolution and the emergence and early evolution of life on Earth.
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Background

Serpentinization of seafloor ultramafic rocks is one of
the most important geological processes that could have
been involved in the emergence and early evolution of
life on Earth. During serpentinization, molecular hydro-
gen (H,) is characteristically generated by the reaction of
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water with ferrous oxide in rocks. This process would
have sustained Hj-rich seafloor hydrothermal environ-
ments where organic materials necessary for the emer-
gence of life could have been synthesized and preserved
(Amend and McCollom 2009), and energetically pre-
ferred catabolic and anabolic metabolisms of early life
could have been established (Takai et al. 2006; Martin et
al. 2008; Shibuya et al. 2010; Russell et al. 2014; Sleep et
al. 2011).

In modern oceans, serpentinization of ultramafic rocks
and the resulting Hj-rich hydrothermal activity often
occur in slow-spreading ridges without sufficient mag-
matic supply, such as the Mid-Atlantic Ridge (MAR)

© 2015 Shibuya et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.


http://crossmark.crossref.org/dialog/?doi=10.1186/s40645-015-0076-z&domain=pdf
mailto:takazos@jamstec.go.jp
http://creativecommons.org/licenses/by/4.0/

Shibuya et al. Progress in Earth and Planetary Science (2015) 2:46

(Charlou et al. 2002) and the Central Indian Ridge
(Kumagai et al. 2008; Nakamura et al. 2009; Morishita et al.
2015) and exceptionally in off-axis mantle-exposed regions
such as the Lost City hydrothermal field away from the
MAR (Kelley et al. 2001, 2005; Lang et al. 2010). These
peridotite-associated hydrothermal systems have been a
subject of great research interest because of their geological,
geochemical, and biological uniqueness in comparison with
conventional basalt-hosted mid-ocean ridge hydrothermal
systems (Takai et al. 2006; Nakamura and Takai 2014). Fur-
thermore, an experiment simulating hydrothermal reac-
tions between peridotite and seawater also revealed the
great potential of serpentinization to generate H-rich
hydrothermal fluid (Seyfried et al. 2007). Therefore, such
peridotite-associated hydrothermal systems have been per-
ceived as modern analogues of the Hadean ultramafic-
hosted systems that could have been possible nurseries for
the emergence and early evolution of life.

In the early Earth, the oceanic crust was likely much
thicker (approximately three times thicker) than the
modern equivalent (6-7 km thickness) owing to the
hotter mantle at that time and has become thinner as
the temperature of the mantle has decreased with time,
as suggested by the geological occurrence of ophiolites
(Moores 2002) and the compositional evolution of
greenstones derived from mid-ocean ridges (Komiya
2004). Therefore, it has been theoretically hypothesized
that the thick lid of oceanic crust probably limited ex-
posure of mantle peridotite on the seafloor; thus, ko-
matiite rather than peridotite would have been the
predominant ultramafic rock in the early Archean
ocean floor (Takai et al. 2006). Regarding the genesis of
komatiite, there was a controversy as to whether koma-
tiites were derived from wet or dry mantle (Arndt et al.
1998; Grove and Parman 2004) since komatiites were
first recognized by Viljoen and Viljoen (1969). It is now
known that komatiites can be generated not only by
high-temperature and high-pressure partial melting in
dry mantle (Takahashi and Scarfe 1985) but also under
much lower temperature and pressure conditions in hy-
drous mantle plumes (Inoue and Sawamoto 1992; Inoue
et al. 2000). Grove and Parman (2004) even interpreted
komatiites as being formed by shallow-level melting of
hydrous mantle wedge above subduction zone. How-
ever, the low water contents in komatiitic melt inclu-
sions (Shimizu et al. 2001; Berry et al. 2008) and the
similar oxygen fugacity of komatiite magmas to the
modern normal upper mantle (Canil 1997, 1999; Puchtel
et al. 2013) are not consistent with the hydrous melting
model. Therefore, most researchers have agreed that
komatiites were produced by extraordinarily hot melting
in mantle upwellings (plumes) under nearly dry conditions
(e.g., Takahashi and Scarfe 1985; Campbell et al. 1989;
Herzberg et al. 2010).
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Furthermore, Archean komatiites have generally been
classified into two types by their Al,O3 content, such as Al-
depleted (Barberton-type) and Al-undepleted (Munro-type)
komatiites, which mainly occur in the early and late
Archean greenstone belts, respectively (Nesbitt et al. 1979).
Melting experiments under dry conditions revealed that
Al-depleted komatiite (ADK) was formed by high-
temperature, ultra-deep, high-degree mantle partial melt-
ing, whereas Al-undepleted komatiite (AUK) was generated
under relatively lower pressure and temperature conditions
than ADK (e.g., Wei et al. 1990; Herzberg 1992). Therefore,
this compositional change of komatiite likely reflects the
decrease in mantle temperature through geologic time
(Herzberg et al. 2010).

Of course, komatiite-associated hydrothermal activity
does not occur in the modern ocean; thus, the H, gener-
ation potential of komatiites during serpentinization can
only be experimentally estimated through simulated hydro-
thermal fluid—rock reactions under high-temperature and
high-pressure conditions, as previously conducted to recon-
struct modern (Seyfried 1987; Seyfried et al. 2007; McCol-
lom et al. 2010; Kato et al. 2013; Suzuki et al. 2015a, b),
ancient (Yoshizaki et al. 2009; Lazar et al. 2012; Shibuya et
al. 2013), and even extraterrestrial subseafloor hydrother-
mal systems (Hsu et al. 2015; Sekine et al. 2015). Yoshizaki
et al. (2009) confirmed hydrogen generation by a prelimin-
ary, ongoing experiment using komatiite and pure water
(Yoshizaki et al. 2009). However, the H, generation poten-
tial of not only ADK but also AUK, during serpentinization,
has not yet been evaluated by completed experiments.

In this study, we conducted experiments to simulate
the reactions between komatiite and seawater (NaCl so-
lution) at 300 °C and 500 bar, using a batch-type (closed
system) hydrothermal reactor (Yoshizaki et al. 2009).
For these experiments, both ADK and AUK were pre-
pared to ascertain the H, generation potential in komati-
ite-hosted hydrothermal system through geologic time.
The results allowed us to estimate the H, concentration of
hydrothermal fluids in Hadean komatiite-hosted hydro-
thermal systems, which can be used to obtain further in-
sights into the possible energetics and kinetics of prebiotic
chemical evolution and the emergence and early evolution
of life on the early Earth.

Methods

Preparation of the starting solid materials

Olivine (San Carlos) and two types of synthetic komati-
ite were prepared for use as the starting solid materials
in the experiments. Two types of komatiites were syn-
thesized from reagents. The composition of the reagent
powders was adjusted to produce synthetic Al-depleted
(AlL,O3=c. 5 wt%) and Al-undepleted (Al,O3=c. 10 %)
komatiites based on the compositions of natural ADK
and AUK (Arth et al. 1977; Wei et al. 1990) (Table 1).
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Table 1 Composition of the starting materials used in the experiments and the natural Al-depleted and Al-undepleted komatiites

(Wt%)

Starting material Natural komatiite

Olivine® Al,03-5 % komatiite® ALO3-10 % komatiite® ADK® ADK? AUK® AUK
Sio, 4125 46.92 4430 46.50 47.16 4590 4896
TiO, 001 030 029 030 038 041 047
Al,O5 0.02 478 1011 474 409 797 987
FeOrora 920 11.16 1053 11.90 12,01 11.07 10.96
MnO 0.10 021 020 021 020 021 0.19
MgO 4992 2061 27.95 2930 27.97 2638 19.50
Ca0 0.09 6.55 6.19 6.32 661 774 891
Na’0 001 035 033 035 037 043 1.06
K,O 0.00 011 0.11 0.11 004 0.09 008

“Determined by EPMA analysis
PCalculated from the amounts of reagents

“An Al-depleted komatiite collected from Barbertone Greenstone Belt (South Africa) (Yoshizaki et al. 2009)

dAn average composition of Al-depleted komatiites from Barbertone greenstone belt (South Africa) (Wei et al. 1990)

€An average composition of Al-undepleted komatiites from Munro/Newton Township (Canada) and Belingwe greenston belt (Zimbabwe) (Wei et al. 1990)
fAn average composition of Al-undepleted komatiites from Munro Township (Canada) (Arth et al,, 1977)

Approximately 30 g of sample powder was placed in a Pt-
Rh crucible and heated at 1000 °C for 1 h in an electric
furnace to decarbonate the initial reagents. Subsequently,
the sample was fused at 1600 °C for 1 h while regulating
oxygen fugacity at a QFM (quartz—fayalite—magnetite)
buffer under an H,—CO, mixed gas atmosphere. To create
the spinifex texture of olivine, the temperature was low-
ered to 1450 °C over 1.5 h and then to 1350 °C over 18 h
under QFM conditions, after which the sample was imme-
diately quenched, yielding a fresh komatiite.

The San Carlos olivine crystals and synthesized olivine-
spinifex komatiite (with minor spinel phase) was crushed
in a tungsten mortar and sieved to obtain the <90 pum
fraction. To remove possible contamination by organic
matter during sample preparation, the powdered komati-
ite was ultrasonically washed with acetone and pure water
several times and then dried at 50 °C for 12 h prior to the
experiment. The composition of olivine was determined
using an electron probe microanalyzer, and the compos-
ition of synthetic komatiites was also confirmed using
X-ray fluorescence.

Experimental system

An autoclave based on Seyfried et al. (1979) was used
for the hydrothermal reaction experiment in this study.
The autoclave is made of Inconel-alloy, which is
corrosion-resistant and possesses adequate strength at
elevated temperatures and pressures of up to 600 °C and
600 bar, respectively (Fig. 1; modified after Yoshizaki et
al. 2009). The reaction cell is made of a gold bag with a
titanium head because these materials are inert with re-
spect to high-temperature water. In addition, as gold is
flexible, the water inside the reaction cell can be pressur-
ized by the surrounding water. Although the Ti head is

corrosion-resistant, it is known that metallic Ti can react
with water to produce hydrogen; thus, the surface of the
Ti head was oxidized prior to use. The flexible gold reac-
tion cell allows on-line sampling of the aqueous fluid at al-
most constant temperature and pressure simply by adding
a small amount of pressurized water to the space sur-
rounding the reaction cell in the autoclave. In this way,
fluid samples can be obtained from the reaction cell
through a gold-lined sampling tube at any time during an
ongoing experiment. All materials that would come into
contact with the reaction fluid in the experiment were

Sampling valve
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<«—— Water

Pump
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NaCl solution

% A
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Fig. 1 Schematic of the hydrothermal reactor used in this study,
modified after Yoshizaki et al. (2009)
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baked in a muffle furnace at 500 °C for 3 h prior to use to
eliminate organic matter.

The NaCl solution (approximately 6-7 mol/kg) was
prepared from NaCl and pure water to simulate the Ha-
dean seawater, which was potentially saltier than that of
the present day owing to the absence of continental
crust and associated salt deposits in the Hadean (Knauth
2005). To avoid contamination with organic matter, the
NaCl was baked prior to use. The water/rock mass ratio
was adjusted to four at the beginning of the experiment
(approximately 60 g of solution and 15 g of rock powder)
based on the results of Wetzel and Shock (2000) that the
water/rock mass ratio in the high-temperature region in
the subseafloor hydrothermal system is limited to values
less than five. The overall background level of hydrogen
concentration in hydrothermal fluid is lower than
0.002 mmol/kg, which was estimated from a 3-month ex-
periment using pure silica powder and NaCl solution
under the same temperature and pressure conditions.

Sampling and analysis

Fluid samples were obtained from the reaction cell
through a gold-lined sampling tube several times during
the ongoing experiment. For the analysis of H, concen-
tration, approximately 0.5 ml of fluid was directly intro-
duced into an Ar-purged, sealed vial without air
contamination at room temperature. After equilibration
between gas and liquid phases in the vial, the H, con-
centration in the gas phase was quantitatively analyzed
by gas chromatography (GC) at JAMSTEC. The analyt-
ical reproducibility was better than 5 % (1o). The solid
materials of alteration products were dried in an oven
immediately after the experiments and then preserved in
a vacuum desiccator. The alteration products were ana-
lyzed by X-ray diffraction (XRD) at JAMSTEC and by a
magnetometer (see below) after the experiment.

Magnetic measurements

For the starting solid material and alteration product of
the experiments with olivine, Al,O3-5 %, and Al,O3-
10 % komatiites, the magnetic hysteresis loops at room
temperature were measured to estimate the amount of
magnetite generated through the experiments using a
MicroMag 2900 Alternating Gradient Magnetometer
(AGM, Princeton Measurements Corporation) at Kyushu
University with a maximum field of 500 mT. The strong-
field thermomagnetic curve of the alteration product of
the olivine experiment was measured between 50 °C and
780 °C using a MicroMag 3900 Vibrating Sample Magnet-
ometer (VSM, Princeton Measurements Corporation) at
the Tokyo Institute of Technology. The magnetic hyster-
esis loops at low temperatures (10, 15, 20, 25, 30, 35, 40,
45, 50, 55, 60, and 65 K) were measured for the starting
materials and alteration products of the komatiite
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experiments using an MPMS-XL5 Magnetic Property
Measurement System (MPMS, Quantum Design) at the
Center for Advanced Marine Core Research (CMCR),
Kochi University. In the low-temperature measurements,
the maximum field in the hysteresis loop measurement
was set to be 3 T.

Results and discussion

The powdered olivine, Al,O3-5 %, and Al,O3-10 %
komatiites were reacted with NaCl solution at 300 °C
and 500 bar for 2112-2688 h to assess their H, gener-
ation potential in seafloor hydrothermal systems. In this
section, we discuss the alteration of solid materials and
its relation to the H, concentration in hydrothermal
fluid, which yields implications for H,-rich hydrothermal
environments in the Hadean ocean.

Alteration products

The XRD analyses of the alteration products revealed
that all the experiments generated a certain amount of
serpentine during the hydrothermal reactions (Fig. 2),
indicating that serpentinization occurred during these
experiments. However, peaks of smectite were observed
in the alteration products after the experiments with
both Al,O3-5 % and Al,O3-10 % komatiites. The peaks
of smectite in the alteration products were larger for
Al,O3-10 % komatiite than for Al,O3-5 % komatiite; this
suggests that smectite becomes more stable as the Al,O3
content of the starting material is increased. In addition,
CaO originally contained in the starting material of both
komatiites was converted to xonotlite.

In general, H, generation during serpentinization is
caused by the reduction of water as a result of oxidation
of ferrous iron in fresh ultramafic rocks (e.g., Janecky
and Seyfried 1986). This process can be written as

2(FeO) + H,O — (Fe203)r0ck + Hoa,

rock
where (FeO), refers to the ferrous oxide component
in silicate minerals (and glass) while (Fe;O3),0c indicates
the ferric oxide component of minerals in a serpenti-
nized rock (e.g., McCollom and Bach 2009). Because the
ferric oxide typically precipitates as magnetite (ferric/
ferrous oxide: Fe;O,), the amount of magnetite gener-
ated through reactions is strongly related to the H, con-
centration in hydrothermal fluid. In the XRD analyses of
the alteration products, no clear peaks of magnetite
were identified owing to its small quantities (below the
detection limit). However, the magnetic measurements
provided constraints on the amounts of effective mag-
netite generated in the experiments. Figure 3 shows the
hysteresis loops of the starting material and alteration
product of all experiments. From the hysteresis loops,
the saturation magnetization (M) values were also
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Fig. 2 Results of the XRD analysis (CuKa) of the alteration products.
XRD pattern of the alteration products from the experiments with
(a) olivine, (b) Al,O3-5 % komatiite, and (c) Al,O5-10 % komatiite.
Mineral abbreviations and ideal chemical formula: Ol = olivine

(Mg, Fe),Si0,), Sme = smectite ((Na, Ca)y(Al, Fe, Mg)>_s(Si, AN4O;0(OH)s -
nH,0), Srp = serpentine (Mg, Fe)sSi-05(OH),), Brc = brucite (Mg,
Fe)(OH),), and Xon = xonotlite (CagSigO;7(OH),)

calculated (Table 2). In the olivine experiment, the M
values of the alteration product and starting material
were estimated from the room-temperature hysteresis
loops to be 3.69 Am?/kg and less than 0.01 Am?*/kg, re-
spectively (Fig. 3a, b, and Table 2). Furthermore, the
strong-field thermomagnetic curve of the alteration
product of the olivine experiment shows that the Curie
temperature (7c) was 538 °C (Fig. 4a), indicating the
formation of nearly pure magnetite during the experi-
ment. Using the well-known magnetite M; value of
92 Am?/kg (Hunt et al. 1995), the alteration product of
the olivine experiment is estimated to contain 4.0 wt%
magnetite.

In both komatiite experiments, the M values of the
starting material and alteration product were less than
0.05 Am?/kg at room temperature (Table 2), which indi-
cates that these solid materials contain no or only
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minute quantities of ferromagnetic minerals with 7¢
higher than room temperature. In contrast, the A
values calculated from the hysteresis loops measured at
10 K for these samples were greater than 0.80 Am?/kg
(Fig. 3c—f, Table 2). These results revealed that the solid
materials mainly contained a magnetic mineral with T¢
lower than room temperature. The temperature depen-
dences of M, were also calculated from their hysteresis
loops (Fig. 4b), which yielded T values of these mate-
rials of approximately 30 K. Although it is difficult to de-
termine the composition of these magnetic minerals, the
most probable candidate with a T value of approxi-
mately 30 K is a solid solution between magnetite and
spinel phases such as (Fe30,),(MgAl,Oy4);  (Harrison
and Putnis 1996). The starting materials showed a cer-
tain level of M, value (Table 2), which is consistent with
the starting materials originally containing spinel. In
addition, the normalized M of the starting material of
the Al,O3-5 % komatiite experiment is slightly higher
than that of the alteration product at temperatures above
30 K (Fig. 4b), indicating that a tiny amount of magnet-
ite is probably contained in the starting material in
addition to the magnetite—spinel solid solution. On the
other hand, the M values of the alteration products are
clearly higher than those of the starting materials in both
experiments. More importantly, the increment of the M
value in the Al,O3-5 % komatiite experiment is higher
than that in the Al,O3-10 % komatiite experiment
(Table 2). This trend strongly suggests that the total
amount of effective magnetite component in the mag-
netite—spinel solid solution that was newly generated
during serpentinization is greater in the Al,O3-5 % ko-
matiite experiment than in the Al,O03-10 % komatiite
experiment.

Even considering the results of all experiments, the in-
crement of the M value decreases with increasing Al,O3
content in the starting material, which is likely derived
from the decrease in the amount of effective magnetite
generated with increasing Al,O3 content in the starting
material. It is therefore suggested that the increase in
Al,O3 content in ultramafic rock elevates the amount of
smectite and reduces the amount of magnetite in the al-
teration minerals. The formation of smectite presumably
inhibited magnetite formation because the FeO origin-
ally contained in the starting material was incorporated
directly into smectite.

Effect of Al,Os; content in rocks on H, concentration in
hydrothermal fluid

The three experiments revealed that the final, steady-state
H, concentrations of fluids were approximately 60 mmol/
kg (with olivine), 20 mmol/kg (with Al,O3-5 % komatiite),
and 0.05 mmol/kg (with Al,O3-10 % komatiite) (Figs. 5
and 6; Table 3). The H, concentration in the olivine
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Fig. 3 Magnetic hysteresis loops of (a) the starting material and (b) the alteration product of the olivine experiment, (c) the starting material and
(d) the alteration product of the Al,Os-5 % komatiite experiment, and (e) the starting material and (f) the alteration product of the Al,05-10 %

komatiite experiment. The hysteresis loops were corrected by subtracting diamagnetic/paramagnetic slopes. Note that the loops were measured
at 10 K for both komatiite samples and at room temperature for the olivine samples

Table 2 Summary of the magnetic measurements

Room temperature 10K
Experiment Sample state m (mQq) M (uAmz) M (Amz/kg) m (mQg) M (uAmz) M (Am2/kg) Tc (K)
Olivine Starting material 9.22 0 0 - - - -
Alteration product 4.14 15.3 369 - - - 811
Al,O03-5 % komatiite Starting material 11.98 062 0.05 336 321 095 ~30
Alteration product 6.58 0.01 0 186 502 2.70 ~30
AlL,O5-10 % komatiite Starting material 5.96 0.01 0 411 330 0.80 ~30
Alteration product 2.70 0.04 0.01 13.1 225 1.72 ~30
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experiment is significantly higher than that obtained in
a previous experiment with olivine at 400 °C (Allen and
Seyfried 2003) and is rather comparable with that gener-
ated by an experiment simulating serpentinization of lher-
zolite at 200 °C (Seyfried et al. 2007). This is consistent
with the thermodynamic analysis of serpentinization; oliv-
ine becomes stable above approximately 315-390 °C,
which limits magnetite formation and H, generation in
hydrothermal fluid (McCollom and Bach 2009). The
steady-state H, concentration in the Al,O3-5 % komatiite
experiment is clearly higher than that obtained from the
previous ongoing experiment using Al,O3-5 % komatiite
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102 | / .
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J ‘BG
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1076
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Fig. 5 Changes in H, concentration during the experiments with
olivine, Al,O3-5 % and Al,Os-10 % komatiites. The arrow indicates
the maximum background H, concentration after c. 2000 h

and pure water (2.4 mmol/kg) (Yoshizaki et al. 2009). This
may be due to the difference of initial solution because
NaCl solution is generally much more reactive with rocks
than pure water. More importantly, the experiments in
this study showed that the steady-state H, concentration
in fluid increases as the Al,O3 content in the starting ma-
terial is reduced (Fig. 7). This pattern is also consistent
with the amount of generated magnetite, which increases
with decreasing Al,O3 content in the starting material.
Therefore, it is suggested that the Al,O3 content in the
starting material strongly affects the generated H, concen-
tration in fluid because the Al,O5 level controls the for-
mation of smectite, which potentially inhibits magnetite
formation.

Comparison with known H, concentrations in modern
seafloor hydrothermal vent fluids shows that the concen-
tration in the Al,03-10 % komatiite experiment is com-
parable to those observed in typical MORB-hosted
systems (generally 0.1-1 mmol/kg) (Fig. 6). In contrast,
natural peridotite-associated high-temperature hydro-
thermal fluids have higher H, concentrations of up to
16 mmol/kg (Charlou et al. 2002; Gallant and Von
Damm 2006; Kumagai et al. 2008), which was success-
fully reconstructed in experiments using orthopyroxene
+ clinopyroxene + olivine at 400 °C (Allen and Seyfried
2003). Thus, the Al,O3-5 % komatiite has the potential
to generate an H, concentration similar to or higher
than those observed in modern peridotite-associated
hydrothermal fluids.

Potential role of komatiite serpentinization in the origin
of life and early ecosystems in the Hadean ocean
Theoretical predictions for the thermodynamic state of pre-
biotic chemical evolution have highlighted that the H-rich
hydrothermal environment is energetically advantageous
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Fig. 6 Comparison of H, concentrations in hydrothermal fluid from experiments and modern natural hydrothermal vent systems. Data sources:
AlL,O3-5 % komatiite experiment with pure water at 300 °C and 500 bar (Yoshizaki et al. 2009), Iherzolite experiment at 200 °C and 500 bar
(Seyfried et al. 2007), four experiments with Ol, Opx, and/or Cpx at 400 °C and 500 bar (Allen and Seyfried 2003), EPR 9°50'N (Lilley et al. 2003;
Von Damm and Lilley 2004), EPR 13°N (Von Damm 1995), EPR 17-19°S (Charlou et al. 1996b), EPR 21°S (Lilley et al. 1983), Lucky Strike and Menez
Gwen (Charlou et al. 2000), MARK-1/2 (Charlou et al. 2002), TAG (Charlou et al. 1996a), Logatchev and Rainbow (Charlou et al. 2002), Kairei (Gallant
and Von Damm 2006; Kumagai et al. 2008), and Lost City (Proskurowski et al. 2006). The H, concentrations of seafloor hydrothermal fluids were
mainly obtained from the compilation of Nakamura and Takai (2014). Mineral abbreviations: Ol = olivine, Opx = orthopyroxene, Cpx = clinopyroxene

for synthesis and preservation of organic molecules
such as amino acids and fatty acids (Amend and
McCollom 2009; Amend et al. 2011). Furthermore, it
has been hypothesized that the most plausible energy
metabolisms to support the emergence and early evolu-
tion of life may have been H,-driven hydrogenotrophic
methanogenesis/acetogenesis and/or methanotrophic

acetogenesis (Russell et al. 1989; Takai et al. 2006;
Martin et al. 2008; Russell et al. 2010, 2014). In this
section, we discuss the possible geological settings that
may have generated H,-rich hydrothermal systems in
the Hadean ocean.

Considering the relationship between the decreasing
mantle temperature during the history of Earth and the

Table 3 Changes in H, concentration and pH of fluid samples through time

Olivine AlL,O5-5 % komatiite Al,03-10 % komatiite
Time (h) pPH>s o H, (mmol/kg) Time (h) pH>s o H, (mmol/kg) Time (h) pPHs o H, (mmol/kg)
0 638 35%x107* 0 7.0 7ax107* 0 7.0 nd.
24 103 1.5 24 7.5 39%x1073 24 7.7 0.005
96 96 59 96 82 0.20 9 7.3 0.042
336 109 44 264 82 1.1 264 78 0.019
1512 108 61.2 648 7.7 19 648 85 0.018
1848 109 674 1176 8.1 20.0 1176 7.5 0.074
2688 105 61.8 2112 80 230 2112 77 0.052
2668 80 0.030
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For comparison, the results of the lherzolite experiment at 200 °C
(Seyfried et al. 2007) and the experiments with Ol, Opx, and/or Cpx
at 400 °C (Allen and Seyfried 2003) are also shown

chemical composition/production process of komatiites,
the different H, generation potentials of ADK and AUK
imply that komatiite-hosted hydrothermal fluid evolved
from Hjy-enriched to H,-depleted through geologic time.
Previously, high-pressure experiments on the generation
of komatiite melts revealed that ADK melt is generated
under high-temperature and high-pressure (>7 GPa)
conditions, leaving majoritic garnet as a liquidus phase
of mantle, whereas AUK may form owing to high de-
grees of mantle melting at shallower depths where oliv-
ine is a liquidus phase (e.g., Herzberg 1992; Arndt et al.
2008). Therefore, it is believed that the formation of
ADK requires a higher mantle plume temperature than
for the generation of AUK. This indicates that ADK was
produced more abundantly in the oceanic-island/plateau
volcanism of the earlier Earth with the hotter mantle
than AUK, which is consistent with the geological re-
cords of ~3.5 Ga Barberton-type (Al-depleted) and c.
2.7 Ga Munro-type (Al-undepleted) komatiites (Nesbitt
et al. 1979; Herzberg 1992). As the Al,O3-5 % (Al-de-
pleted) komatiite has a greater potential to enrich H, in
hydrothermal fluid than Al,O3-10 % (Al-undepleted) ko-
matiite (Figs. 6 and 7), the Hy-rich hydrothermal environ-
ments hosted by ADK were present abundantly and
ubiquitously on the ocean floor prior to the early Archean.

In contrast, the exposure of mantle peridotite at the
ocean floor was probably rare in the Archean (Takai
et al. 2006). Modern abyssal peridotite is frequently ob-
served near slow-spreading ridges without sufficient
magmatic supply because large-scale normal faults (e.g.,
detachment faults) penetrate deeply, and the mantle
peridotite is dragged up to the seafloor (Escartin et al.
2003). However, it has been revealed that the Archean
oceanic crust was much thicker than the modern equiva-
lent owing to the higher potential mantle temperature at
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that time (Moores 2002; Ohta et al. 1996; Komiya 2004;
Shibuya et al. 2007, 2012). The thicker ocean crust
would have limited the development of deep normal
faults reaching to the mantle and exposure of mantle
peridotite, which has led to the hypothesis that the early
Archean H,-rich hydrothermal environment was mainly
driven by komatiite volcanism instead of much less
abundant fault-related peridotite (Takai et al. 2006). This
hypothesis is further substantiated by the results ob-
tained in this study and can be applied to the Hadean.
The serpentinization of ADK may have generated abun-
dant H,-rich (ca. 20 mmol/kg) hydrothermal fluid and
proximal H,-rich hydrothermal fluid—seawater mixing
zones in the Hadean ocean, which could potentially have
served as nurseries for prebiotic chemical evolution and
the subsequent emergence and early evolution of life on
Earth. Furthermore, considering that the oceanic crust
was probably sufficiently thick throughout the Hadean
and Archean to limit the exposure of peridotite on the
seafloor and that ADK disappeared after the early
Archean, the Hadean era was more favorable for the
emergence of life than the Archean era in terms of H,-
rich hydrothermal environments.

Conclusions

The H, generation potential of ADK and AUK during
serpentinization was estimated by the experimental
hydrothermal reactions of komatiites at 300 °C and
500 bar. The experiments revealed that the H, concen-
tration (ca. 20 mmol/kg) in hydrothermal fluid generated
from the serpentinization of ADK is comparable to that
of the most H,-rich hydrothermal systems in modern
oceans. Furthermore, considering the limited exposure
of mantle peridotite owing to the thick lid of oceanic
crusts in the Hadean ocean floor, ADK was likely the
most ubiquitous seafloor ultramafic rock that could host
Hy-rich hydrothermal system. Such Hj-rich hydrother-
mal systems would have provided a favorable environ-
ment (redox, electrochemical, and thermal gradients in
the seawater/hydrothermal fluid mixing zone) for the ac-
quisition of bioavailable free energy and for prebiotic
chemical evolution in the Hadean. Further experiments
and thermodynamic calculations to simulate the mixing
between Hadean seawater and Hj-rich hydrothermal
fluid should be carried out to test this hypothesis.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

TS, KN, KT, and SM proposed and designed the study. TS and MY carried out
the experiments. TS, MY, and KS prepared the starting materials. TS, MY, MS,
and HT analyzed the fluid samples and solid materials. TS, MY, MS, KN, SO,
KS, and KT interpreted the data. All authors read and approved the final
manuscript.



Shibuya et al. Progress in Earth and Planetary Science (2015) 2:46

Acknowledgements

We thank the three anonymous reviewers for their helpful comments and H
Kawahata for careful editorial handling. This study was partially supported by
the Trans-crustal Advection and In-situ biogeochemical processes of Global
sub-seafloor Aquifer (TAIGA) project and the Grants-in-Aid for Scientific
Research (No. 22740333) from the Japanese Ministry of Education, Culture,
Sports, Science and Technology. This work was also performed under the
cooperative research program of Center for Advanced Marine Core Research
(CMCR), Kochi University (Accept No. 14A007 and 14B005).

Author details

1Laboratory of Ocean-Earth Life Evolution Research (OELE), Japan Agency for
Marine-Earth Science and Technology (JAMSTEQ), 2-15 Natsushima-cho,
Yokosuka 237-0061, Japan. Research and Development (R&D) Center for
Submarine Resources, Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan.
3Project Team for Development of New-generation Research Protocol for
Submarine Resources, Japan Agency for Marine-Earth Science and
Technology JAMSTECQ), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan.
“Department of Earth and Planetary Sciences, Tokyo Institute of Technology,
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan. “Geological Survey of
Japan, National Institute of Advanced Industrial Science and Technology,
1-1-1 Higashi, Tsukuba 305-8567, Japan. ®Kochi Institute for Core Sample
Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEQ),
200 Monobe, Nankoku, Kochi 783-8502, Japan. 'Department of Systems
Innovation, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo
113-8656, Japan. The Open University of Japan, 2-11 Wakaba, Mihama-ku,
Chiba 261-8586, Japan. “Department of Subsurface Geobiological Analysis
and Research (SUGAR), Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan.

"% arth-Life Science Institute, Tokyo Institute of Technology, 2-12-1
Ookayama, Meguro-ku, Tokyo 152-8551, Japan.

Received: 10 July 2015 Accepted: 8 December 2015
Published online: 21 December 2015

References

Allen DE, Seyfried Jr WE. Compositional controls on vent fluids from ultramafic-
hosted hydrothermal systems at midocean ridges: an experimental study at
400 °C, 500 bars. Geochim Cosmochim Acta. 2003;67:1531-42.

Amend JP, McCollom TM. Energetics of biomolecule synthesis on early Earth.

In: Zaikowski L, Friedrich JM, Seidel SR, editors. Chemical evolution II: from
the origins of life to modern society. Washington, D.C.: American Chemical
Society; 2009. p. 63-94.

Amend JP, McCollom TM, Hentscher M, Bach W. Catabolic and anabolic energy
for chemolithoautotrophs in deep-sea hydrothermal systems hosted in
different rock types. Geochim Cosmochim Acta. 2011;75:5736-48.

Arndt N, Ginibre C, Chauvel C, Albarede F, Cheadle M, Herzberg C, et al. Were
komatiites wet? Geology. 1998;26:739-42.

Arndt N, Lesher CM, Barnes SJ. Komatiite. Cambridge: Cambridge University
Press; 2008.

Arth JG, Arndt NT, Naldrett AJ. Genesis of Archean komatiites from Munro
Township, Ontario: trace-element evidence. Geology. 1977;5:590-4.

Berry AJ, Danyushevsky LV, O'Neill HSC, Newville M, Sutton SR. Oxidation state of
iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature.
2008;455:960-3.

Campbell IH, Griffiths RW, Hill RI. Melting in an Archean mantle plume—heads its
basalts, tails its komatiites. Nature. 1989,339:697-9.

Canil D. Vanadium partitioning and the oxidation state of Archaean komatiite
magma. Nature. 1997,389:842-5.

Canil D. Vanadium partitioning between orthopyroxene, spinel and silicate melt
and the redox states of mantle source regions for primary magmas. Geochim
Cosmochim Acta. 1999,63:557-72.

Charlou JL, Donval JP, Jean-Baptiste P, Dapoigny A, Rona PA. Gases and helium
isotopes in high temperature solutions sampled before and after ODP Leg 158
drilling at TAG hydrothermal field (26°N, MAR). Geophys Res Lett. 1996a,23:3491-4.

Charlou JL, Fouquet Y, Donval JP, Auzende JM, Jean-Baptiste P, Stievenard M, et al.
Mineral and gas chemistry of hydrothermal fluids on an ultrafast spreading
ridge: East Pacific Rise, 17° to 19°S (Naudur cruise, 1993) phase separation
processes controlled by volcanic and tectonic activity. J Geophys Res. 1996b;
101:15899-919.

Page 10 of 11

Charlou JL, J. P. Donval a ED, Jean-Baptiste P, Radford-Knoery J, Fouquet Y, Dapoigny
A, et al. Compared geochemical signatures and the evolution of Menez Gwen
(37°50'N) and Lucky Strike (37°17'N) hydrothermal fluids, south of the Azores
Triple Junction on the Mid-Atlantic Ridge. Chem Geol. 2000;171:49-75.

Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N. Geochemistry of high
H, and CH,4 vent fluids issuing from ultramafic rocks at the Rainbow
hydrothermal field (36°14'N, MAR). Chem Geol. 2002;191:345-59.

Escartin J, Mével C, MacLeod CJ, McCaig AM. Constraints on deformation conditions
and the origin of oceanic detachments: the Mid-Atlantic Ridge core complex at
15°45N. Geochem Geophy Geosy. 2003;4:1067. doi:10.1029/2002GC000472.

Gallant RM, Von Damm KL. Geochemical controls on hydrothermal fluids from
the Kairei and Edmond Vent Fields, 23°-25°S, Central Indian Ridge. Geochem
Geophy Geosy. 2006;7:Q06018. doi:10.01029/02005GC001067.

Grove TL, Parman SW. Thermal evolution of the Earth as recorded by komatiites.
Earth Planet Sci Lett. 2004;219:173-87.

Harrison RJ, Putnis A. Magnetic properties of the magnetite-spinel solid solution:
curie temperature, magnetic susceptibilities, and cation ordering. Am
Mineral. 1996;81:375-84.

Herzberg C. Depth and degree of melting of komatiites. J Geophys Res.
1992;97:4521-40.

Herzberg C, Condie K, Korenaga J. Thermal history of the Earth and its
petrological expression. Earth Planet Sci Lett. 2010,292:79-88.

Hsu H-W, Postberg F, Sekine Y, Shibuya T, Kempf S, Horanyi M, et al. Ongoing
hydrothermal activities within Enceladus. Nature. 2015;519:207-10.

Hunt CP, Moskowitz BM, Banerjee SK. Magnetic properties of rocks and minerals.
In: Ahrens TJ, editor. Rock physics & phase relations: a handbook of physical
constants. Washington, D. C.: American Geophysical Union; 1995. p. 189-204.

Inoue T, Sawamoto H. High pressure melting of pyrolite under hydrous condition
and its geophysical implication. In: Syono Y, Manghnani MH, editors. High-
pressure research: application to earth and planetary sciences. Washington
D. C: Terra, Tokyo and AGU; 1992. p. 323-31.

Inoue T, Rapp RP, Zhang J, Gasparik T, Weidner DJ, Irifune T. Garnet fractionation
in a hydrous magma ocean and the origin of Al-depleted komatiites: melting
experiments of hydrous pyrolite with REEs at high pressure. Earth Planet Sci
Lett. 2000;177:81-7.

Janecky DR, Seyfried Jr WE. Hydrothermal serpentinization of peridotite within
the oceanic crust: experimental investigations of mineralogy and major
element chemistry. Geochim Cosmochim Acta. 1986;50:1357-78.

Kato S, Shibuya T, Nakamura K, Suzuki K, Rejishkumar VJ, Yamagishi A. Elemental
dissolution of basalts with ultra-pure water at 340 °C and 40 MPa in a newly
developed flow-type hydrothermal apparatus. Geochem J. 2013;47:89-92.

Kelley DS, Karson JA, Blackman DK, Friih-Green GL, Butterfield DA, Lilley MD, et al.
An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N.
Nature. 2001;412:145-9.

Kelley DS, Karson JA, Frih-Green GL, Yoerger DR, Shank TM, Butterfield DA, et al.
A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science.
2005;307:1428-34.

Knauth LP. Temperature and salinity history of the Precambrian ocean:
implications for the course of microbial evolution. Palaesogeogr
Palaeoclimateol Palaeoecol. 2005;219:53-69.

Komiya T. Material circulation model including chemical differentiation within the
mantle and secular variation of temperature and composition of the mantle.
Phys Earth Planet Inter. 2004;146:333-67.

Kumagai H, Nakamura K, Toki T, Morishita T, Okino K, Ishibashi J-i, et al.
Geological background of the Kairei and Edmond hydrothermal fields along
the Central Indian Ridge: implications of their vent fluids' distinct chemistry.
Geofluids. 2008;8:239-51.

Lang SQ, Butterfield DA, Schulte M, Kelley DS, Lilley MD. Elevated concentrations
of formate, acetate and dissolved organic carbon found at the Lost City
hydrothermal field. Geochim Cosmochim Acta. 2010;74:941-52.

Lazar C, McCollom TM, Manning CE. Abiogenic methanogenesis during
experimental komatiite serpentinization: implications for the evolution of the
early Precambrian atmosphere. Chem Geol. 2012;326-327:102-12.

Lilley MD, Baross JA, | GL. Reduced gases and bacteria in hydrothermal fluids: the
Galapagos spreading center and 21°N East Pacific Rise. In: Rona PA, Bostrom K,
Laubier L, Smith Jr KL, editors. Hydrothermal processes at seafloor spreading
centers. Marine Sciences: NATO Conference Series IV; 1983. p. 411-49.

Lilley MD, Butterfield DA, Lupton JE, Olson EJ. Magmatic events can produce
rapid changes in hydrothermal vent chemistry. Nature. 2003;422:878-81.
Martin W, Baross J, Kelley D, Russell MJ. Hydrothermal vents and the origin of life.

Nat Rev Microbiol. 2008,6:805-14.


http://dx.doi.org/10.1029/2002GC000472
http://dx.doi.org/10.01029/02005GC001067

Shibuya et al. Progress in Earth and Planetary Science (2015) 2:46

McCollom TM, Bach W. Thermodynamic constraints on hydrogen generation during
serpentinization of ultramafic rocks. Geochim Cosmochim Acta. 2009;73:856-75.

McCollom TM, Sherwood Lollar B, Lacrampe-Couloume G, Seewald JS. The
influence of carbon source on abiotic organic synthesis and carbon isotope
fractionation under hydrothermal conditions. Geochim Cosmochim Acta.
2010;74:2717-40.

Moores EM. Pre-1 Ga (pre-Rodinian) ophiolites: their tectonic and environmental
implications. Geol Soc Am Bull. 2002;114:80-95.

Morishita T, Nakamura K, Shibuya T, Kumagai H, Sato T, Okino K, et al. Petrology
of peridotites and related gabbroic rocks around the Kairei hydrothermal
field in the Central Indian Ridge. In: Ishibashi J, Okino K, Sunamura M, editors.
Subseafloor biosphere linked to hydrothermal systems. Tokyo: Springer
Japan; 2015. p. 177-93.

Nakamura K, Morishita T, Bach W, Klein F, Hara K, Okino K, et al. Serpentinized
troctolites exposed near the Kairei Hydrothermal Field, Central Indian Ridge:
insights into the origin of the Kairei hydrothermal fluid supporting a unique
microbial ecosystem. Earth Planet Sci Lett. 2009;280:128-36.

Nakamura K, Takai K. Theoretical constraints of physical and chemical properties of
hydrothermal fluids on variations in chemolithotrophic microbial communities
in seafloor hydrothermal systems. Prog Earth Planet Sci. 2014;1:5. doi:10.1186/
2197-4284-1-5.

Nesbitt RW, Sun SS, Purvis AC. Komatiites: geochemistry and genesis. Can
Mineral. 1979;17:165-86.

Ohta H, Maruyama S, Takahashi E, Watanabe Y, Kato Y. Field occurrence,
geochemistry and petrogenesis of the Archean mid-oceanic ridge basalts
(AMORBs) of the Cleaverville area, Pilbara Craton, Western Australia. Lithos.
1996;37:199-221.

Proskurowski G, Lilley MD, Kelley DS, Olson EJ. Low temperature volatile
production at the Lost City hydrothermal field, evidence from a hydrogen
stable isotope geothermometer. Chem Geol. 2006;229:331-43.

Puchtel IS, Blichert-Toft J, Touboul M, Walker RJ, Byerly GR, Nisbet EG, et al. Insights
into early Earth from Barberton komatiites: evidence from lithophile isotope and
trace element systematics. Geochim Cosmochim Acta. 2013;108:63-90.

Russell MJ, Hall AJ, Turner D. In vitro growth of iron sulphide chimneys: possible
culture chambers for origin-of-life experiments. Terra Nova. 1989;1:238-41.

Russell MJ, Hall AJ, Martin W. Serpentinization as a source of energy at the origin
of life. Geobiology. 2010;8:355-71. doi:10.1111/].1472-4669.2010.00249.x.

Russell MJ, Barge L, Bhartia R, Bocanegra D, Bracher P, Branscomb E, et al. The
drive to life on wet and icy worlds. Astrobiology. 2014;14:308-43.

Sekine Y, Shibuya T, Postberg F, Hsu H-W, Suzuki K, Masaki Y, et al. High-temperature
water-rock interactions and hydrothermal environments in the chondrite-like
core of Enceladus. Nat Commun. 2015;6:8604. doi:10.1038/ncomms9604.

Seyfried Jr WE, Gordon PC, Dickson FW. A new reaction cell for hydrothermal
solution equipment. Am Mineral. 1979,64:646-9.

Seyfried Jr WE. Experimental and theoretical constraints on hydrothermal alteration
processes at mid-ocean ridges. Annu Rev Earth Planet Sci. 1987;15:317-35.

Seyfried Jr WE, Foustoukos DI, Fu Q. Redox evolution and mass transfer during
serpentinization: an experimental and theoretical study at 200 °C, 500 bar
with implications for ultramafic-hosted hydrothermal systems at mid-ocean
ridges. Geochim Cosmochim Acta. 2007;71:3872-86.

Shibuya T, Kitajima K, Komiya T, Terabayashi M, Maruyama S. Middle Archean ocean
ridge hydrothermal metamorphism and alteration recorded in the Cleaverville
area, Pilbara Craton, Western Australia. ] Metamorph Geol. 2007,25:751-67.

Shibuya T, Komiya T, Nakamura K, Takai K, Maruyama S. Highly alkaline, high-
temperature hydrothermal fluids in the early Archean ocean. Precambrian
Res. 2010;182:230-8.

Shibuya T, Tahata M, Kitajima K, Ueno Y, Komiya T, Yamamoto S, et al. Depth
variation of carbon and oxygen isotopes of calcites in Archean altered upper
oceanic crust: implications for the CO, flux from ocean to oceanic crust in
the Archean. Earth Planet Sci Lett. 2012;321-322:64-73.

Shibuya T, Yoshizaki M, Masaki Y, Suzuki K, Takai K. Reactions between basalt and
CO,-rich seawater at 250 and 350 °C, 500 bars: implications for the CO,
sequestration into the modern oceanic crust and the composition of
hydrothermal vent fluid in the CO,-rich early ocean. Chem Geol. 2013;359:1-9.

Shimizu K, Komiya T, Hirose K, Shimizu N, Maruyama S. Cr-spinel, an excellent
micro-container for retaining primitive melts — implications for a hydrous
plume origin for komatiites. Earth Planet Sci Lett. 2001;189:177-88.

Sleep NH, Bird DK, Pope EC. Serpentinite and the dawn of life. Philos Trans R Soc
Lond B Biol Sci. 2011,366:2857-69.

Suzuki K, Kato S, Shibuya T, Hirose T, Fuchida S, Kumar YR, et al. Development of
hydrothermal and frictional experimental systems to simulate sub-seafloor

Page 11 of 11

water-rock-microbe interactions. In: Ishibashi J, Okino K, Sunamura M,
editors. Subseafloor biosphere linked to hydrothermal systems. Tokyo:
Springer Japan; 2015a. p. 71-85.

Suzuki K, Shibuya T, Yoshizaki M, Hirose T. Experimental hydrogen production in
hydrothermal and fault systems: significance for habitability of subseafloor H,
chemoautotroph microbial ecosystems. In: Ishibashi J, Okino K, Sunamura M,
editors. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer
Japan; 2015b. p. 87-%4.

Takahashi E, Scarfe CM. Melting of peridotite to 14 GPa and the genesis of
komatiites. Nature. 1985;315:566-8.

Takai K, Nakamura K, Suzuki K, Inagaki F, Nealson KH, Kumagai H. Ultramafics-
Hydrothermalism-Hydrogenesis-HyperSLIME (UltraH3) linkage: a key insight
into early microbial ecosystem in the Archean deep-sea hydrothermal
systems. Paleontol Res. 2006;10:269-82.

Viljoen MJ, Viljoen RP. Evidence for the existence of a mobile extrusive peridotitic
magma from the Komati Formation of the Onverwacht Group. Geol Soc S
Afr Spec Publ. 1969;2:87-113.

Von Damm KL. Controls on the chemistry and temporal variability of seafloor
hydrothermal fluids. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson
RE, editors. Seafloor hydrothermal systems: physical, chemical, biological, and
geological interactions. Washington DC: Geophysical Monograph. American
Geophysical Union; 1995. p. 222-47.

Von Damm KL, Lilley MD. Diffuse flow hydrothermal fluids from 9°50'N East
Pacific Rise: origin, evolution and biogeochemical controls. In: Wilcock WSD,
Delong EF, Kelley DS, Baross JA, Cary SC, editors. The subseafloor biosphere
at mid-ocean ridges, Geophysical Monograph, vol. 144. Washington DC:
American Geophysical Union; 2004. p. 245-68.

Wei K, Tronnes RG, Scarfe CM. Phase relations of aluminum-undepleted and
aluminum-depleted komatiites at pressures of 4-12 GPa. J Geophys Res.
1990,95:15817-27.

Wetzel LR, Shock EL. Distinguishing ultramafic- from basalt-hosted submarine
hydrothermal systems by comparing calculated vent fluid compositions.

J Geophys Res. 2000;105:8319-40.

Yoshizaki M, Shibuya T, Suzuki K, Shimizu K, Nakamura K, Takai K; et al. H,
generation by experimental hydrothermal alteration of komatiitic glass at
300 °C and 500 bars: a preliminary result from on-going experiment.
Geochem J. 2009;43:e17-22.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://dx.doi.org/10.1186/2197-4284-1-5
http://dx.doi.org/10.1186/2197-4284-1-5
http://dx.doi.org/10.1111/j.1472-4669.2010.00249.x
http://dx.doi.org/10.1038/ncomms9604

	Abstract
	Background
	Methods
	Preparation of the starting solid materials
	Experimental system
	Sampling and analysis
	Magnetic measurements

	Results and discussion
	Alteration products
	Effect of Al2O3 content in rocks on H2 concentration in hydrothermal fluid
	Potential role of komatiite serpentinization in the origin of life and early ecosystems in the Hadean ocean

	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



