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Diffusion-controlled growth and degree of
disequilibrium of garnet porphyroblasts: is
diffusion-controlled growth of
porphyroblasts common?
Kazuhiro Miyazaki

Abstract

Rate-limiting processes and the degree of disequilibrium during metamorphic mineral growth are key controls on
the rate of dehydration and hydration in the Earth’s crust. This paper examines diffusion-controlled growth and the
degree of disequilibrium of garnet porphyroblasts in the Tsukuba metamorphic rocks of central Japan. The analyzed
porphyroblasts have irregular and branching morphologies with clear diffusional haloes, indicating that they grew
in a diffusion-controlled regime. Mathematical analysis shows that the dominant wavelength of the interface of a
garnet porphyroblast is dependent on the extent of supersaturation (Δζ), which is an index for the degree of
disequilibrium. Using the calculated upper and lower limits of the dominant wavelength, the value of Δζ is estimated
to be 0.05 × 10−1–0.16, which corresponds to a Gibbs free energy (ΔGr) overstep of 0.9–27 kJ per mole of garnet (12
oxygen atoms) and a temperature overstep (ΔT) of 1.7–50 °C. Using the average value of the dominant wavelength,
the following results are obtained: Δζ = 0.15 × 10−1, ΔGr = 2.7 kJ per mole of garnet, and ΔT = 5 °C. These values bring
into question the importance of diffusion-controlled growth of garnet porphyroblasts, as highly irregular and branching
garnet porphyroblasts are rare in most metamorphic belts. After significant overstepping for the nucleation of garnet,
the garnet porphyroblasts grow at a high degree of disequilibrium. However, a high degree of disequilibrium
under diffusion-controlled growth would be characterized by diffusional instability. The results indicate that
garnet porphyroblasts that lack an irregular and branching morphology may grow at a high degree of disequilibrium
under interface-controlled growth, provided they are set in a medium where the diffusion and supply of constituent
elements are sufficient, such as a sufficient volume of metamorphic fluid.
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Background
Rate-limiting processes and the degree of disequilib-
rium of a metamorphic reaction are crucial factors
in the devolatilization and/or hydration of the Earth’s
crust. The release and consumption of fluids, such
as water-rich fluids and melts, have a critical influ-
ence on the evolution of mountain building and the
transport of energy and materials in the crust. Many
studies have assessed the rate-limiting processes for
metamorphic reactions (e.g., Ague and Carlson 2013,
Walther and Wood 1984). The following three types of

rate-limiting processes have been recognized (e.g., Fisher
1978): 1) interface-controlled, 2) diffusion-controlled, and
3) heat-flow-controlled. The formation of garnet is one of
the most common devolatilization reactions in the crust
(e.g., Ague and Carlson 2013), and diffusion-controlled
processes are widely applied to garnet-forming reactions,
including the nucleation and growth of the garnet (e.g.,
Carlson 1989) and Ostwald ripening (Miyazaki 1991,
1996). Although Carlson (1989) and Miyazaki (1991) both
assumed a diffusion-controlled process, the degree of
disequilibrium differed in their models. In particular,
the degree of disequilibrium for the nucleation and growth
model is much higher than that for Ostwald ripening.Correspondence: kazu-miyazaki@aist.go.jp
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Even if the rate-limiting processes were governed by diffu-
sion, the degree of disequilibrium should directly affect
the reaction rate and the patterns of metamorphic
textures. The growth of a metamorphic mineral at a low
degree of disequilibrium (i.e., a system close to equilib-
rium, implying a small overstep from the equilibrium
temperature and a low degree of supersaturation for the
metamorphic reaction) may result in an equigranular
metamorphic texture because interfacial energy becomes
an important control on crystal morphology and size. On
the other hand, growth at a high degree of disequilibrium
with a limited number of nuclei may result in a porphyro-
blastic texture. However, diffusion-controlled growth of
a mineral at a high degree of disequilibrium is likely to
involve diffusional instability and may lead to highly ir-
regular and branched morphologies. In this paper, I
examine the diffusional instability of garnet porphyroblasts
(Tsukuba metamorphic rocks, central Japan) that grew in
a diffusion-controlled regime.

Methods
Identification of a texture characteristic of diffusion-
controlled growth
Diffusion-controlled growth is the result of the sluggish
diffusion of the elements required for growth of the
product of the reaction and is characterized by the pres-
ence of a depleted zone that formed around the growing

product (Fig. 1). It is assumed that a uniform medium
existed initially before nucleation of the product. After
nucleation occurs, the region surrounding the reaction
product will supply elements to the growing product. Al-
though a uniform medium continues to exist outside the
region immediately surrounding the growing product,
the concentration of elements required for growth is re-
duced in the immediate surroundings by the diffusion of
those elements to the product. If the reactants needed
for the growth of the product exist in the surrounding
region, they should dissolve selectively. Therefore, it is
expected that the reactants should be remarkably de-
pleted in the immediate surroundings of the growing
product. The resulting depletion zone contains the char-
acteristic texture for diffusion-controlled growth. There-
fore, a search for a zone that is depleted in the reactants
of a garnet-forming reaction is the first step towards es-
timating the degree of disequilibrium associated with
diffusion-controlled growth of garnet porphyroblasts.

Mathematical analysis of diffusional instability
Diffusional instability should occur when a product grows
by a diffusion-controlled process. For example, if the small
tip of a growing product occurs in a diffusional medium,
the concentration gradient around the tip becomes larger
compared with the area around the flat surface of the prod-
uct (Fig. 2). The growth rate of the tip will be higher than
the flat surface because the influx of any reaction-limiting

Fig. 1 Schematic diagram of diffusion-controlled growth. A zone depleted in the reaction-limiting component (RLC) should form around the
growing product in a diffusion-controlled regime. The terms c and ceq represent the concentrations of the RLC in the diffusional medium and at
the flat surface interface of the growing product, respectively
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component (RLC) (Kelly et al. 2013a) is proportional to the
concentration gradient of the RLC in the diffusional
medium (see Fig. 2). This implies that diffusional instability
is always to be expected under diffusion-controlled growth,
and that diffusional instability will lead to highly branched
textures that emerge from very small perturbations. How-
ever, interfacial energy may offset this type of instability.
Assuming the growth of a spherical product (such as a

garnet porphyroblast) with radius Rg in a diffusional
medium, and a mass balance at the spherical surface,
where a growth rate dV/dt = 4πRg

2 (dRg/dt) is propor-
tional to the diffusional flux J = –D (∂c/∂r), the
diffusion-controlled growth rate becomes:

C−cRð Þ dV
dt

¼4 π R2
gD
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where D is the diffusion coefficient of the RLC in the
medium, C is the concentration of the RLC in the prod-
uct, and r, c, and cR are the distance from the center of
the product, the concentration of the RLC in the diffu-
sional medium, and the equilibrium concentration of the
RLC at the interface of the product with radius Rg, re-
spectively. Assuming the Gibbs–Thomson effect, the
concentration cR is defined as follows:

cR¼ceq 1þ 2 ΓD

Rg

� �
; ð2Þ

where ΓD = γΩ/RT is the capillary length, and γ and Ω are
the interfacial energy and the molar volume of the prod-
uct, respectively. The R is the gas constant and T is the
temperature. The ceq is the equilibrium concentration of

the RLC in the medium at the interface of a product with
a flat surface. The cR is higher than ceq due to the Gibbs–
Thomson effect. When concentration c only depends on
the radial component, the diffusion equation in polar co-
ordinates becomes ∂c/∂t = D (∂2c/∂r2 + 2/r (∂c/∂r)). As-
suming steady-state conditions (i.e., ∂c/∂t = 0), the
solution of c = cm – (cm – cR) (Rg/r) is obtained, where cm
is the concentration of the RLC at a long distance from
the product interface. The solution satisfies cr=∞ = cm and
cr=Rg = cR. Using Eqs. 1 and 2, and assuming steady-state
diffusion around the spherical product of radius Rg, the
growth rate dRg/dt becomes (e.g., Lifshitz and Slyozov
1961):

dRg

dt
¼ Dceq

C−cRð ÞRg
Δ ζ−

2 ΓD

Rg

� �
; ð3Þ

where Δζ is the supersaturation. The Δζ is defined as
follows:

Δζ ¼ cm�ceq
ceq

: ð4Þ

Mullins and Sekerka (1963) presented a mathematical
analysis of diffusional instability, and they introduced a
small perturbation δ on a spherical product with radius
Rg. The distorted interface of the sphere then becomes:

r¼RgþδY lm θ;φð Þ; ð5Þ
where r is the distance from the center of the product to
the interface, and Ylm (θ,φ) is a spherical harmonic func-
tion. The l (degree) and m (order) of the spherical har-
monic function are integers, where l > 0 and –l ≤ m ≤ l.
The wavelength of the perturbation decreases with in-
creasing l. For example, the wavelength of the small per-
turbation of Y30 (θ,φ) is three (Fig. 3). The following

Fig. 2 Schematic diagram of diffusional instability

(1)
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equation describes the relationship between degree l and
wavelength λl (Mullins and Sekerka 1963):

λl≃
2πRg

l
: ð6Þ

A growth rate dδl/dt for a small perturbation δl for the
degree l is obtained by assuming steady-state diffusion
around the growing product with radius Rg, as follows
(Mullins and Sekerka 1963):

dδl
dt

¼ Dðl−1Þceq
ðC−cRÞR2

g

Δζ−ΓD
ðl þ 1Þðl þ 2Þ þ 2

Rg

� �
δl: ð7Þ

The first term in the bracket on the right-hand side of
Eq. 7 represents an acceleration of the perturbation due
to diffusional instability, and the second term shows a
reduction in the perturbation due to interfacial energy.
Together, these two terms govern the evolution of the
small perturbation. Using Eq. 7, the growth rate dδl/dt
of the small perturbation can be obtained as a function
of the degree l. Using the relationship between l and λl
(Eq. 6), Fig. 4 implies that the growth rate has a max-
imum value at lmax. The lmax is defined as follows
(Mullins and Sekerka 1963):

lmax≡
RgΔζ

3ΓD

� �1=2

: ð8Þ

Equations 6 and 8 show that the dominant wavelength
λmax (=2πRg/lmax) can be directly extracted from the
supersaturation Δζ. In reverse, this means that the ob-
served dominant wavelength of the product interface
should be linked to the supersaturation.
The relative growth rate of a small perturbation for a

sphere with radius Rg is calculated using Eqs. 3 and 7, as
follows:

dδl=dtð Þ=δl½ �
dRg=dt
� �

=Rg
� 	¼ l−1ð Þ 1−Rl=Rg

� �
1−Rc=Rg

; ð9Þ

where Rl is the critical radius of the diffusional perturb-
ation of the degree l, and Rc is the critical radius for Ost-
wald ripening. Under the condition of Rg > Rc, the
perturbation of the degree l will grow when Rg > Rl. In
contrast, the perturbation of the degree l will disappear
when Rg < Rl. Because Eq. 9 becomes zero at l = 1, the
condition Rg > Rl=2 will lead to unstable growth, causing
an irregular shape to form instead of a sphere. On the

Fig. 3 A sphere perturbed by the harmonic Y30

Fig. 4 Relationship between the growth rates of a perturbation on a spherical surface (dδl/dt) and wavelength λl. The growth rate reaches a
maximum value with increasing wavelength. The growth rate and wavelength are calculated using Eqs. 6 and 7 assuming an interfacial energy
γ = 1.0 J/m2, C – cR ⋍ 1/Ω, molar volume Ω = 1.2 × 10−4 m3/mole, a capillary length ΓD = 0.016 μm, a diffusion coefficient D = 10−19 m2/s, an
equilibrium concentration of the RLC ceq = 10−4 mole/m3, and a radius of the growing product Rg = 650 μm
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other hand, when Rg < Rl=2, a compact spherical morph-
ology becomes stable. Assuming a growth rate dδl/dt = 0
and Rg = Rl in Eq. 7, Rl becomes:

Rl ¼ fðl þ 1Þðl þ 2Þ þ 2Þg ΓD

Δζ
: ð10Þ

Similarly, Rc is given by Eq. 3, as follows:

Rc ¼ 2ΓD

Δζ
: ð11Þ

Combining Eqs. 10 and 11, Rl can be written as follows:

Rl ¼ 1
2
fðl þ 1Þðl þ 2Þ þ 2gRc: ð12Þ

Although Rc has a very small value, Eq. 12 implies that
Rl becomes very large for a large l.

Measurement of the garnet morphology
Equations 6 and 8 imply that the supersaturation Δζ for
diffusion-controlled growth can be directly obtained
from the dominant wavelength λmax of the interface of
the growing product. Measurements of the dominant
wavelength of garnet produced by diffusion-controlled
growth were performed by measuring the radius of
local curvature of the garnet interface (method 1),
and by measuring the power spectra of the garnet
interface (method 2).
In method 1, the local curvature k is characterized by

the number of particles nl belonging to a circle with
radius rs (Koshizuka 2005). Here, the local curvature
k = 1/rr is calculated by counting the pixels included
in a circle with radius rs (Fig. 5), as follows:

2 θ ¼ ni
n0

π; ð13Þ

k¼ 1
rr
¼ 2 cos θ

rs
; ð14Þ

where ni is the number of pixels within circle i with ra-
dius rs. The n0 represents ni for a flat surface. The rs
ranges from 3.1 to 21.1 pixel units and is adjusted to ob-
tain the largest value of local curvature at a given position
on the garnet interface. The calculated local curvatures
are calibrated, as a local curvature of a circle with radius r
becomes 1/r. The calibration length ranges from r = 2 to
120 pixel units. The calibrating local curvatures for circles
with radii from r = 2 to 120 pixel units are basically identi-
cal to the inverse of the radii of the target circles (=1/r)
(Fig. 6). The dominant wavelength of the garnet interface
is clearly larger than twice the length of the radius of the
local curvature because the wavelength of a tip is always
larger than twice the length of the radius of the enveloping
circle at the tip. Hence, the lower limit for the dominant
wavelength is twice the length of the radius of the local
curvature.
Method 2 uses interface positions measured from the

garnet barycenter to estimate the power spectra of the
interface morphology. Before the measurement of inter-
face positions, inclusions in the garnet are filled. The
measured interface positions are represented by the
angle θ and the distance r from the barycenter (Fig. 7).
A θ value of 0° is defined as downward in the vertical
direction from the barycenter, and the value of θ in-
creases counterclockwise. The number of sampling
points is 1024 or 2048 between θ = 0° and 360° around
the barycenter. The power spectra f(θ) was estimated
using the fast Fourier transform (FFT) of the distance r
as a function of θ. The dominant spectra obtained in de-
grees are converted to lengths by the mean radius from
the barycenter of the garnet. The FFT cannot be applied
to overhanging parts of the interface; therefore, only

Fig. 5 Geometrical relationships between the radius of curvature and the circle radius where pixels are counted. The rr is the radius of curvature,
and rs is the radius of the circle in which pixels are counted. Please see text and Eqs.13 and 14 for a detailed explanation
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non-overhanging parts were used. This treatment leads
to a lack of information on the power spectra in over-
hanging parts, which have many undulations (Fig. 7).
Therefore, the estimates of the power spectra for shorter
wavelengths are underestimated in this paper. Here, I
used the dominant wavelength obtained from method 2
as the upper limit. Hence, the true value of the domin-
ant wavelength should lie between the values obtained
from methods 1 and 2.

Tsukuba metamorphic rock sample
The sample analyzed for this study was collected from the
high-grade part of the Late Cretaceous low pressure–high
temperature (LP–HT) Tsukuba metamorphic rocks that
form an eastern extension of the Ryoke metamorphic
complex. The locality of the sample (number Ma2-48a)

was described by Miyazaki (1999). The protoliths of the
Tsukuba metamorphic rocks were mudstones and sand-
stones of an accretionary complex of Late Jurassic to earli-
est Cretaceous age (Miyazaki et al. 1996). The Tsukuba
metamorphic rocks were intruded by Late Cretaceous to
earliest Paleogene granitic plutons. The metamorphic
grade increases from southeast to northwest.
Based on the mineral assemblages, the pelitic meta-

morphic rocks can be assigned to the biotite and silli-
manite zones. The mineral assemblage of the biotite
zone rocks is biotite + muscovite + quartz + plagio-
clase ± andalusite, whereas the sillimanite zone rocks
contain K-feldspar + sillimanite + biotite + quartz +
plagioclase ± cordierite ± garnet. The boundary be-
tween the biotite and sillimanite zones is defined by
the dehydration reaction of muscovite and quartz, which
produces K-feldspar, sillimanite, and water. The sample
analyzed for this study belongs to the high-grade part of
the sillimanite zone and contains K-feldspar + garnet +
cordierite + biotite + plagioclase + quartz + sillimanite.
The average pressure–temperature (P–T) conditions
of samples previously studied from the locality of the
present sample are P = 0.34 ± 0.1 GPa and T = 642 ± 16 °C
(Miyazaki 1999).
Based on digital maps showing the distribution of min-

erals, as compiled from X-ray intensity maps of Na, K,
Mn, Fe, and Al, the mineral mode of the sample is 57 %
quartz, 22 % K-feldspar, 8 % plagioclase, 6–7 % biotite,
4–5 % cordierite, 1–2 % garnet, and <1 % sillimanite
(Miyazaki 2001). K-feldspar, biotite, plagioclase, and
quartz are distributed randomly as matrix minerals with
diameters of 50–60 μm and do not occur as porphyro-
blasts (Miyazaki 2001). Because of its low abundance in
the sample, it is unclear if sillimanite also has a random
distribution in the matrix.
Cordierites occur as porphyroblasts (diameter ≤1 mm)

and exhibit irregular shapes. The porphyroblasts have a
highly branched texture that may have been formed by
diffusion-limited aggregation (DLA). The diffusion of Al

Fig. 6 Results for the calibration of local curvature for circles with
radii = 2–120 pixel units. Calculated and expected curvatures
represent the calibrated results using Eqs. 13 and 14, and the inverse
of the circle radii, respectively

Fig. 7 Locations of the interfaces of a garnet porphyroblast (shown in Fig. 9). The locations are plotted by distance from the barycenter, and the
angle around the barycenter. Black dots are used for fast Fourier transform (FFT) calculations to obtain power spectra
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may be rate-limiting for DLA-like cordierite porphyroblast
growth (Miyazaki 2001). Comparisons of the morpholo-
gies and fractal dimensions of the cordierites with those of
DLA indicate that formation of the cordierite porphyro-
blasts can be modeled as a DLA process (Miyazaki 2001).
A finite-sized growth fluctuation, induced by a random
distribution of matrix minerals, is amplified by the diffu-
sional field and results in a DLA-like pattern of porphyro-
blast growth. Hence, diffusion-controlled growth within a
random matrix field is essential for the formation of DLA-
like patterns in cordierite porphyroblasts (Miyazaki 2001).
Garnets occur as porphyroblasts (diameters ≤1 mm)

and have irregular shapes (Figs. 8 and 9). Biotite is de-
pleted around garnet porphyroblasts (Fig. 8). Quartz,
cordierite, K-feldspar, and plagioclase are present in the
depletion zone but biotite is rare or has smaller crystal
sizes compared with biotite outside the depletion zone.
Cordierite in the depletion zone is much smaller in size
than the porphyroblastic cordierite (Fig. 9b). The num-
ber and size of K-feldspar grains in the depletion zone
are also small compared with those outside the depletion
zone (Fig. 9a). Sillimanite does not occur in the deple-
tion zone.
The chemical compositions of the constituent minerals

were given by Miyazaki (1999). The garnet contains about
7 wt% MnO (73 % almandine, 16 % spessartine, 9 % pyr-
ope, and 2 % grossular). Compositional zoning of MnO,
FeO, MgO, and CaO was not detected (Fig. 9), but slightly
higher MnO contents occur rarely at the tips on the outer
rims of garnet porphyroblasts. Biotites are made up of the

components phlogopite (41 %), eastonite (26 %), Ti-biotite
(17 %), and muscovite (16 %). The end-member formulae
of these components are phlogopite (KM3AlSi3O10[OH]2),
eastonite (KM2Al2Si2O10[OH]2), Ti-biotite (KM1.5TiAl2-
Si2O10[OH]2), and muscovite (KAl3Si3O10[OH]2) (e.g.,
Ikeda 1990), where M represents the divariant cations of
Mg, Fe, and Mn. The cordierites consist of hydrous cor-
dierite (50 %) and Fe-cordierite (50 %). The K-feldspar
contains 20 % of the albite component.

Garnet-forming reaction and reaction entropy
To estimate the degree of disequilibrium, the garnet-
forming reaction in the sample should be identified,
which is crucial for evaluating the extent of reactant
depletion in the region surrounding garnet porphyro-
blasts. In addition, the reaction entropy ΔSr for the
garnet-forming reaction is required to estimate the
extent to which the Gibbs free energy ΔGr was over-
stepped. Because dG = (∂G/∂P) dP + (∂G/∂T) dT +
(∂G/∂N) dN, where P is pressure and N is the num-
ber of molecules, the Gibbs free energy depends only
on (∂G/∂T) = −S at constant pressure and bulk com-
position. Therefore, the reaction entropy for the
garnet-forming reaction is required to estimate the
overstepping of Gibbs free energy at constant pres-
sure and bulk composition. The ΔGr is calculated as
follows:

ΔGr ¼ ΔSrΔT ; ð15Þ

Fig. 8 Irregular and branching morphologies of garnet porphyroblasts and biotite depletion zones. a Photomicrograph. b–e Compositional maps
of Fe obtained by electron probe micro-analysis (EPMA). Green and red colors represent garnet and biotite, respectively. Black broken line in (a)
and white broken lines in (b)–(e) denote the area of the biotite depletion zone. Blue broken line in (b) shows area of Fig. 9a–d
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where ΔT is the temperature overstep from the equilib-
rium temperature. Equation 15 shows that a smaller re-
action entropy will yield a larger temperature overstep at
a constant overstepping of Gibbs free energy.
For simplicity, the garnet-forming reaction for the studied

sample is represented by the following univariant reaction
in the K2O–MgO–FeO–Al2O3–SiO2–H2O system:

10 Sillimaniteþ 4 Biotite þ 15:5 Quartz ¼ Garnet

þ 4:5 Cordieriteþ 4 K�feldspar

þ 1:75 water : ð16Þ

The model compositions used for the minerals are
listed in Table 1. In this system, garnet, biotite, and cor-
dierite are treated as almandine–pyrope, phlogopite–annite,
and hydrous cordierite–Fe-cordierite solid solutions, re-
spectively, with the XFe of these minerals adjusted to the
XFe observed in the sample. The other minerals are treated
as pure phases. The spessartine component in garnet and

the albite component in feldspar make minor contributions
to the reaction entropy. However, the Ti-biotite, eastonite,
and muscovite components in the biotite may contribute
significantly to the reaction entropy by increasing the
stoichiometric coefficient of water in the garnet-forming re-
action. Increasing these components increases the reaction

Fig. 9 Compositional maps of a garnet porphyroblast (garnet in Fig. 8b). X-ray mapping images of (a) Mn + K-fel: MnKα and distribution
of K-feldspar, (b) Fe: FeKα, (c) Mg: MgKα (c), and (d) Ca: CaKα. The intensity of each X-ray increases from cooler to warmer colors. The
distribution of K-feldspar (K-fel) in (a), biotite (bt) and cordierite (cd) in (b), and plagioclase (pl) in (d) are also shown

Table 1 Mineral compositions and entropies at 642 °C (used in
this paper)

Mineral Formula S (J/mole K)

Garnet (Grt) Fe2.7 Mg0.3Al2Si3O12 831

Biotite (Bt) KFe1.8 Mg1.2AlSi3O10(OH)2 913

Sillimanite (Sil) Al2SiO5 279

Quartz (Qtz) SiO2 106

K-feldspar (Kfs) KAlSi3O8 509

Cordierite (Crd) FeMgAl4Si5O18•(H2O)0.5 1192

Water (W) H2O 229

Reaction 4Bt + 10Sil + 15.5Qtz =
Grt + 4Kfs + 4.5Crd + 1.75 W

542
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entropy. To obtain the minimum reaction entropy, I
used a phlogopite–annite solid solution for biotite and
the maximum contribution from the hydrous cordierite
component.
Using the standard-state entropy and heat capacity of

the end-member minerals (Holland and Powell 2011)
and assuming ideal mixing for garnet, biotite, and cor-
dierite solid solutions, the reaction entropy at 642 °C be-
comes 542 J/K for the formation of 1 mole of garnet (12
oxygen atoms). The reaction entropy is also a function
of temperature at constant pressure. Here, I assumed
that the change in reaction entropy between 642 and
742 °C is not significantly different compared with the
reaction entropy at 642 °C. For example, the reaction en-
tropy is 541 J/K at 700 °C and 540 J/K at 742 °C.

Results
Diffusional haloes around garnet porphyroblasts
The garnet-forming reaction (Eq. 16) shows sillimanite,
biotite, and quartz as the reactants and garnet, cordier-
ite, K-feldspar, and water as the products. As shown in
Fig. 8, biotite is scarce in the area surrounding the gar-
net porphyroblasts. Biotite is the most important react-
ant that supplies Al, Fe, and Mg to a growing garnet
crystal. Therefore, the observed depletion of biotite
around garnet porphyroblasts provides direct evidence
for diffusion-controlled growth. The depletion zone is
recognized as diffusional haloes around garnet porphyr-
oblasts. Sillimanite is also an important reactant that
supplies Al to garnet, but it is scarce in the matrix. Be-
cause sillimanite is typically found farther away from
the garnet, the depletion zone of sillimanite around the
garnet is much more difficult to identify than the bio-
tite depletion zone.
Cordierite and K-feldspar are products of the garnet-

forming reaction. The cordierite crystals in the depleted
zone are much smaller than the porphyroblastic cor-
dierite. The number and size of K-feldspar grains in the
depletion zone are also smaller than outside the deple-
tion zone. These observations indicate that growth of
cordierite and K-feldspar within the depleted zone was
suppressed in comparison with growth of cordierite
porphyroblasts and K-feldspar matrix minerals outside
the depletion zone.

Dominant wavelength and supersaturation
Histograms of the radii of the local interface curvature
of seven garnets within the sample show a peak around
30–70 μm (Fig. 10). This peak corresponds to the high-
est frequency of radii measured from local curvatures of
undulations in the irregular garnets. As mentioned
above, the wavelengths of these undulations are larger
than twice the radius of the local curvatures. Using the
mid-range values of the histogram peaks for the seven

garnet crystals, the calculated average radius of the local
curvatures is 43 ± 4.5 μm (Table 2). Therefore, the dom-
inant wavelength obtained from method 1 should be
greater than 86 μm.
The power spectra of the interface of irregular garnets

show a broad maximum around 150–700 μm (Fig. 11).
Using the mid-range values of these maxima, the calcu-
lated average value is 489 ± 88 μm (Table 2). Therefore,
the dominant wavelength obtained from method 2
should be smaller than 489 μm.
Given a dominant wavelength between 86 and 489 μm,

interfacial energy γ = 1.0 J/m2 (Miyazaki 1991), molar vol-
ume Ω = 1.2 × 10−4 m3/mole (Miyazaki 1991), T = 642 °C,
and a capillary length ΓD = γΩ/RT = 1.58 × 10−5 mm for
garnet, Eqs. 6 and 8 yield a supersaturation Δζ of 0.05 ×
10−1–0.16 for garnet using the observed average garnet
radius of 644 μm. By decreasing the supersaturation
Δζ, the dominant wavelength becomes larger (Fig. 12).
Taking the average value of the lower and upper boundar-
ies for the dominant wavelength (288 μm; see Table 2), a
Δζ value of 0.15 × 10−1 is calculated. The average value of
the dominant wavelength is consistent with the crude spa-
cing of undulations along the irregular interface of garnet
porphyroblasts (Figs. 8 and 9).

Gibbs free energy and temperature oversteps
The calculated supersaturation can be used to determine
the magnitude of Gibbs free energy and temperature over-
steps. The sample retains the reactant mineral assemblage
of sillimanite + biotite + quartz in areas distant from the
garnet porphyroblasts. Conversely, the product mineral
assemblage of K-feldspar + cordierite occurs proximal to
the garnet porphyroblast. Assuming that reactants far
from the garnet porphyroblast are locally in equilibrium
with the diffusive medium, the chemical potential differ-
ence Δμdissolution for dissolution of a reactant is

Δμdissolution¼μreactant−μIGM¼0: ð17Þ
Here, μreactant is the chemical potential of the reactant

and μIGM is the chemical potential of the chemical spe-
cies dissolved in the intergranular medium. The μIGM is
expressed as follows:

μIGM¼
X
i

miμiþmRLCμRLC; ð18Þ

μRLC¼μ0RLCþRT lnXRLC;m ; ð19Þ
where mi is the number of moles of chemical species i ex-
clusive of the RLC that enter or leave the intergranular
fluid in the reactant-dissolution and product-precipitation
reactions, μi is the chemical potential of chemical species i
exclusive of the RLC, mRLC is the number of moles the
RLC, and μRLC is the chemical potential of the RLC. The
summation in Eq. 18 excludes the chemical potential
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of the RLC. In Eq. 19, the μ0RLC is the chemical potential of
the pure (unmixed) RLC and XRLC,m is the mole fraction
of the RLC in the intergranular medium at a site distant
from the garnet porphyroblast. Equation 19 assumes ideal
mixing of the RLC in the intergranular medium. In the
diffusion-controlled regime, XRLC,m varies between areas
proximal to and distant from the garnet porphyroblast.
Hence, Eq. 17 becomes

Δμdissolution ¼ μreactant−μIGM0−mRLCRT lnXRLC;m ¼ 0:

ð20Þ
Assuming the products around the garnet porphyroblast

are locally in equilibrium with the diffusive medium, the

chemical potential difference Δμprecipitation for a product
surrounding the garnet porphyroblast is

Δμprecipitation¼μproduct−μIGM0−mRLCRT lnXRLC;grt¼0 ;

ð21Þ

where μproduct is the chemical potential of the product
and XRLC,grt is the mole fraction of the RLC around the
garnet porphyroblast. Because garnet growth is con-
trolled by the slowest diffusion of the RLC, the chemical
potential differences of the intergranular medium be-
tween the areas proximal to and distant from the garnet

Fig. 10 Histograms of the radius of curvature for irregularly shaped interfaces of garnet porphyroblasts. The gray-colored horizontal bar represents
the range of the radius peaks for each sample

Table 2 Radius of curvature and dominant wavelength of garnet porphyroblast interfaces, and the estimated supersaturation (Δζ)
Garnet Rg: radius (μm) a: mid-range

of radius of
curvature (μm)

b: mid-range
of dominant
wavelength (μm)

c: average of the
dominant
wavelengths by
2 × a and b (μm)

Δζa lower bound
calculated with
value of b

Δζ*a mid-range
value calculated
with value of c

Δζ*a upper bound
calculated with value
of 2 × a

g1 780 40 500 270 0.06 × 10−1 0.02 0.23

g2 904 45 550 298 0.06 × 10−1 0.02 0.21

g3 536 40 425 233 0.06 × 10−1 0.02 0.16

g4 541 40 550 295 0.03 × 10−1 0.01 0.16

g5 479 50 300 175 0.01 0.03 0.09

g6 702 40 550 295 0.04 × 10−1 0.02 0.20

g7 568 45 550 298 0.04 × 10−1 0.01 0.13

Average 644 43 489 288b 0.05 × 10–1c 0.15 × 10–1c 0.16c

aCalculated using Eq. 8, with ΓD = 1.58 × 10−5 mm
bCalculated with average values of 2 × a and b
cCalculated with average values of radius Rg, 2 × a, b, and c

Miyazaki Progress in Earth and Planetary Science  (2015) 2:25 Page 10 of 14



porphyroblast depend on the chemical potential of the
RLC in the medium. This constancy indicates that μIGM0

in Eq. 20 has the same value as in Eq. 21. Using Eqs. 20
and 21, the mole fractions of the most sluggish compo-
nent of the RLC become

XRLC;m¼Exp
μreactant−μIGM0

mRLCRT

� �
; ð22Þ

XRLC;grt¼Exp
μproduct‐μIGM0

mRLCRT

� �
: ð23Þ

From Eqs. 4, 22, and 23, the supersaturation Δζ
becomes

Δζ¼ cm−ceq
ceq

¼ aXRLC;m−aXRLC;grt

aXRLC;grt
; ð24Þ

Fig. 11 Power spectra for the wavelengths of irregularly shaped interfaces of garnet porphyroblasts. Broken lines show the moving average of the
power spectra. The gray-colored horizontal bar represents the range of the dominant wavelength for each sample

Fig. 12 Relative growth rate of a sphere perturbation relative to the growth rate of a sphere. The relative growth rate ((dδl/dt)/(dRg/dt)) is a
function of wavelength λl. The relative growth rate is calculated using Eqs. 6, 9 , 10, and 11, with ΓD = 1.58 × 10−5 mm, Rg = 644 μm, and Δζ =
0.05 × 10−1–0.3
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Δζ¼Exp
ΔGr

mRLCRT

� �
−1 ; ð25Þ

where a is a constant for converting from a mole frac-
tion to concentration, and ΔGr = μreactant − μproduct is
the Gibbs free energy for the garnet-forming reaction
(Eq. 16). The ΔGr in this study is equivalent to reaction
affinity A (e.g., Pattison et al. 2011) and ΔGr is zero at
the equilibrium temperature. I assumed that the RLC is
Al, corresponding to mRLC = 24, and that the equilib-
rium temperature is T = 642 °C. Using Eq. 25, the super-
saturation Δζ of 0.05 × 10−1–0.16 yields a ΔGr of 0.9–
27 kJ per mole of garnet (12 oxygen atoms). The average
Δζ of 0.15 × 10−1 yields a ΔGr of 2.7 kJ per mole of
garnet.
Using Eq. 15, ΔGr, and the reaction entropy ΔSr of

542 J/K per mole of garnet for the garnet reaction, a
temperature overstep ΔT of 1.7–50 °C is calculated using
the lower and upper boundaries of the dominant wave-
length. When the average dominant wavelength is used,
a ΔT of 5 °C is calculated.

Discussion
Estimates of the degree of disequilibrium for the garnet-
forming reaction have been reported in previous studies.
Pattison and Tinkham (2009) evaluated the temperature
and Gibbs free energy oversteps for a garnet-forming re-
action in the Nelson aureole (British Columbia) using
discrepancies between phase-equilibrium modeling and
field observations of the location of the garnet isograd.
This approach yielded ΔT = 30 °C and ΔGr = 4.8 kJ per
mole of garnet. The degree of disequilibrium for the
Nelson aureole is similar to that calculated for the sam-
ple in this study. However, the garnet porphyroblasts in
the Nelson aureole are euhedral rather than irregular
and branching in the case of the garnets from the Tsu-
kuba metamorphic rocks. Kinetic modeling based on
interface-controlled nucleation and growth was used to
explain the formation of the garnet in the Nelson
aureole (Gaidies et al. 2011). On the other hand, Kelly
et al. (2013b) used numerical modeling of diffusion-
controlled nucleation and growth to reproduce the
crystal sizes and spatial distributions of minerals in 13
porphyroblastic rocks. They calculated ΔT = 5–67 °C
and ΔGr = 0.7–5.8 kJ per mole of garnet. Spear et al.
(2014) also evaluated the degree of disequilibrium for
the garnet-forming reaction. Using a combination of
quartz in garnet barometry (QuiG) and thermodynamic
modeling for garnet zone metamorphic rocks in eastern
Vermont, they calculated a ΔT of 10 °C, a pressure over-
step of 0.6 kbar, and a ΔGr of 2 kJ per mole of garnet.
For the staurolite–kyanite zone in the same meta-
morphic terrain and for a blueschist sample from Sifnos,
Greece, Spear et al. (2014) calculated a ΔT of 50 °C, a

pressure overstep of 2–5 kbar, and a ΔGr of 10–18 kJ
per mole of garnet. Although diverse methods have been
used to infer the degree of disequilibrium for the garnet-
forming reaction, the calculated values suggest that in all
cases the garnet nucleated and grew after a significant
overstep from equilibrium conditions.
Wilbur and Ague (2006) used Monte Carlo simula-

tions of crystal growth to demonstrate the formation
of irregular and branching morphologies in garnet
porphyroblasts. Because this simulation assumed ran-
dom walk of chemical species, the morphology was
produced by diffusion-controlled growth. They deter-
mined that a minimum Gibbs free energy overstep of
about 2 kJ per mole of garnet was needed to produce
a branched morphology for silicate minerals (Wilbur
and Ague 2006). This value is consistent with the
Gibbs free energy overstep calculated in this paper.
Spear and Daniel (2001) proposed an amoeba-like growth
model for garnet porphyroblasts based on observations of
heterogeneous chemical zoning. This model supports the
development of an irregular and branching morphology in
garnet porphyroblasts. Collectively, the results obtained
using these different approaches suggest that the irregular
and branching morphology of garnet porphyroblasts is
indicative of diffusion-controlled growth.
Ostwald ripening and grain growth are not considered

in this paper because the garnets occur as porphyro-
blasts, meaning that the size of the garnet crystals is
much larger than the surrounding matrix minerals. Be-
cause grain growth associated with Ostwald ripening
takes place due to the reduction of interfacial energy
when the system is close to equilibrium, this mechanism
should occur at a faster rate for smaller grain sizes.
Hence, grain growth due to Ostwald ripening is only im-
portant for non-porphyroblastic minerals.
Figure 13 summarizes the relationships among super-

saturation, temperature oversteps, and the critical grain
diameter for diffusional instability with respect to the
diffusion-controlled growth of garnet porphyroblasts in
the Tsukuba metamorphic rocks. It is clear that nucle-
ation occurs after a significant overstep from equilibrium
conditions for the garnet-forming reaction. Figure 13
shows two different trends in garnet size vs. degree of
supersaturation, with path-A and path-B representing
nearly constant supersaturation and decreasing supersat-
uration during garnet growth, respectively. The supersat-
uration should decrease with consumption of the garnet
component in the system. The rate of decrease of the
garnet component depends on the relative magnitudes
of the garnet precipitation rate and the dissolution rate
of reactants in the garnet-forming reaction. Both rates
are limited by diffusion of the RLC. For simplicity, it was
assumed that the garnet and reactant crystals are the
same size.
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If the number of garnet crystals is much fewer than
the number of reactant crystals, the evolution of gar-
net size and degree of supersaturation should follow
path-A. For diffusion-controlled growth in this case, a
small nucleation rate and large number of reactant
crystals favor the growth of a small number of garnet
crystals, thus producing unstable porphyroblastic gar-
net. Large garnet porphyroblasts with irregular and
branching morphologies will form. Conversely, if the
number of garnet crystals is much larger than the
number of reactant crystals, the evolution of garnet
size and degree of supersaturation should follow path-
B. Due to a high nucleation rate and a small number
of reactant crystals, many small garnets should grow
rather than porphyroblasts. In addition, path-B promotes
a stable garnet morphology, thus preventing the formation
of branching and irregular textures.
Kelly et al. (2013b) proposed diffusion-controlled growth

for the formation of garnet porphyroblasts whereas
Gaidies et al. (2011) proposed interface-controlled growth.
Based on the mean radii of garnet porphyroblasts measured

in these studies, the mean diameters of garnet porphyro-
blasts range from 180 to 2400 μm (Fig. 13). Most diame-
ters fall in the range of 1000 to 2000 μm. Therefore,
diffusion-controlled growth of garnet porphyroblasts with-
out the development of irregular and branching morph-
ology is difficult to achieve. This finding contradicts the
hypothesis that diffusion-controlled growth of garnet por-
phyroblasts dominates in nature, which is consistent with
the rarity of irregular and branching garnet porphyroblasts
in metamorphic belts.
Over a scale of 10 cm, temperature heterogeneities

produced by the growth of a garnet porphyroblast will
be quickly dissipated over a time interval significantly
shorter than the long growth period of the porphyro-
blast. This reasoning indicates that a control on por-
phyroblast growth by heat flow is unlikely. Therefore,
the results of this study suggest that garnet porphyroblasts
lacking an irregular and branching morphology (common
in many metamorphic belts) may grow at a high degree of
disequilibrium under interfacial-controlled growth, pro-
vided they are set in a medium in which diffusion is rapid

Fig. 13 Relationships among supersaturation, temperature overstep, and critical diameter 2 × Rl=2 for diffusional instability. The 2 × Rc represents
the critical diameter for Ostwald ripening. The Rl=2 and Rc are calculated using Eqs.10 and 11 , and ΓD = 1.58 × 10−5 mm. The measured diameters
of the garnet porphyroblasts, the estimated supersaturation (calculated using Eq. 8 and Rg = 644 μm), and the temperature overstep (calculated
using Eqs. 15 and 25, ΔS = 542 J/K per mole of garnet, and assuming 12 oxygen atoms) for the Tsukuba metamorphic rocks are shown (dark gray box).
Two representative evolution paths (path-A and path-B) are also shown. See the text for detailed explanations of these paths. The range of mean
diameters of garnet porphyroblasts from various metamorphic belts is based on the data of Gaidies et al. (2011) and Kelly et al. (2013b) (gray box)
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and the supply of elements from metamorphic fluids is
sufficient.

Conclusions
Garnet porphyroblasts with an irregular morphology and
a diffusional halo of reactants occur in the LP–HT
Tsukuba metamorphic rocks of central Japan. The fea-
tures observed suggest diffusion-controlled growth of
the porphyroblasts.
Using an analysis of diffusional instability, the degree

of disequilibrium can be determined by measuring the
dominant wavelength of the interface of the garnet por-
phyroblasts. The results show that the supersaturation is
0.05 × 10−1–0.16. From the extent of supersaturation,
the calculated overstep of Gibbs free energy from equi-
librium is 0.9–27 kJ per mole of garnet (12 oxygen
atoms), and the temperature overstep is 1.7–50 °C.
A high degree of disequilibrium for a garnet-forming

reaction is expected during growth of a garnet porphyro-
blast after nucleation. The present results suggest that
garnet porphyroblasts that lack irregular and branching
morphologies, a typical feature of many metamorphic
belts, may grow at a high degree of disequilibrium under
interfacial-controlled growth, provided they are set in a
medium where diffusion and the supply of elements is
sufficient, such as a sufficient volume of metamorphic
fluid.
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FFT: fast Fourier transform; QuiG: quartz in garnet barometry; RLC:
rate-limiting component.
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