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δ Osw estimate for Globigerinoides ruber
from core-top sediments in the East China Sea
Keiji Horikawa1*, Tomohiro Kodaira2, Jing Zhang1 and Masafumi Murayama3
Abstract

The paired analyses of the Mg/Ca ratio and oxygen isotopic composition (δ18Oc) of surface-dwelling planktonic
foraminifera have become a widely used method for reconstructing the oxygen isotopic composition of ambient
seawater (δ18Osw) as a robust proxy for surface salinity. Globigerinoides ruber (G. ruber) is a mixed-layer dweller,
and its fossil shell is an ideal archive for recording past sea surface water conditions, such as those caused by
variability in the East Asian summer monsoon (EASM). Here, we investigate the validity of shell-derived δ18Osw

estimates for G. ruber using core-top sediments from the East China Sea (ECS). First, we determined a local
δ18Osw–salinity equation for the eastern part of the ECS in July [δ18Osw = −7.74 + 0.23 × salinity]. Then, we calculated
δ18Osw from core-top δ18Oc and Mg/Ca values in G. ruber using the δ18Oc–temperature equation of Bemis et al.
(Paleoceanography 13(2):150–160, 1998) and the Mg/Ca–temperature equation of Hastings et al. (EOS 82:PP12B-10, 2001).
The core-top δ18Osw and salinity were estimated to be in the ranges of −0.2 to +0.39‰ and 33.7 to 34.5, respectively,
which fall close to the local δ18Osw–salinity regression line. The core-top data showed that the Mg/Ca–temperature
calibration by Hastings et al. (EOS 82:PP12B-10, 2001) and the δ18Oc–temperature equation by Bemis et al.
(Paleoceanography 13(2):150–160, 1998) are appropriate for calculating δ18Osw in the ECS. Furthermore, we
measured core-top Ba/Ca ratios of G. ruber (Ba/CaG. ruber), which ranged from 0.66 to 2.82 μmol mol−1. There was not
a significant relationship between the salinity and Ba/CaG. ruber ratios due to the highly variable Ba/CaG. ruber data.
Given the seawater Ba/Ca data and the published partition coefficient for Ba (DBa = 0.15–0.22), pristine Ba/CaG. ruber
ratios at northern Okinawa Trough sites should be less than 0.84 μmol mol−1. Anomalously high Ba/CaG. ruber ratios
(>0.84 μmol mol−1) might be attributable to contamination by sedimentary barite adherent on fossil shells. Therefore,
further evaluation of the Ba/CaG. ruber ratio as a paleo-salinity proxy requires diethylene triamine pentaacetic acid
(DTPA)-cleaned Ba/Ca data that can minimize the influence of barite contamination.

Keywords: Oxygen isotope composition of seawater; Reconstruction of sea surface salinity; Mg/Ca–temperature;
Globigerinoides ruber; East China Sea
Background
An East Asian summer monsoon (EASM) precipitation
zone is formed by the convergence of a westerly flow to
the north of the Tibetan Plateau and a southerly mon-
soon flow over eastern China, which gradually moves
northward from South China and reaches northern
China in late July (Qian and Lee 2000). This EASM pre-
cipitation has caused anomalous climatic events (both
wet and dry) on an inter-decadal scale, influencing the
agricultural production and economy in Asia (Wang
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2006). Paleoclimate records show that anomalous dry
periods, when summer monsoons weakened, caused
crop failure and led to the collapse of some Chinese
dynasties (Yancheva et al. 2007). Therefore, EASM vari-
ability, its effect on remote areas, and the mechanisms
behind this variability have been investigated intensively
as important climate change issues (Wang et al. 2005;
Chen et al. 2008; Wang et al. 2008; Chang et al. 2009;
Liu et al. 2014).
The EASM brings a large amount of precipitation to

South China and the drainage area of the Changjiang
River (Yangtze River) and induces a large influx of
Changjiang River runoff to the East China Sea (ECS),
forming Changjiang diluted water (CDW) in the
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hich permits unrestricted use, distribution, and reproduction in any medium,
.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40645-015-0048-3&domain=pdf
mailto:horikawa@sci.u-toyama.ac.jp
http://creativecommons.org/licenses/by/4.0


Horikawa et al. Progress in Earth and Planetary Science  (2015) 2:19 Page 2 of 20
Changjiang River Estuary (Zhang et al. 1990; Chen et al.
1994) (Fig. 1). The CDW extends farther offshore, driven
by the southerly and southwesterly monsoons from June
to August, and advection of the CDW causes a signifi-
cant decrease in the sea surface salinity (SSS) of the
northern Okinawa Trough (Chang and Isobe 2003; Lee
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and Chao 2003). Consequently, the northern Okinawa
Trough is considered an oceanic area where EASM-
related variability in SSS can be seen (Chang and Isobe
2003).
In such areas, the oxygen isotopic compositions of sea-

water (δ18Osw) have been estimated from paired analyses
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of Mg/Ca temperatures and oxygen isotopes (δ18Oc) in
the surface-dwelling foraminifera Globigerinoides ruber
(G. ruber) to reconstruct EASM-related variability in
SSS (Sun et al. 2005; Kubota et al. 2010). However,
δ18Osw estimates from paired analyses of Mg/Ca temper-
atures and δ18Oc in planktonic foraminifera entail high
levels of uncertainty (>0.2‰) due to the propagation
error of δ18Oc and Mg/Ca measurements and Mg/Ca–
temperature calibration (Schmidt 1999; Rohling 2007).
Furthermore, the lack of a local δ18Osw–salinity equation
causes additional uncertainties in salinity estimates cal-
culated from δ18Osw values. Additionally, if the habitat
of G. ruber shifts seasonally, independent of EASM
variability, shell-derived δ18Osw estimates also change,
and interpreting EASM variability will be complicated.
Therefore, a reliable reconstruction of SSS with respect to
EASM variability requires adequate Mg/Ca–temperature,
δ18Oc–temperature, and local δ18Osw–salinity calibration
equations and an understanding of the habitat season and
depth of G. ruber in the ECS.
In this study, we first derive a local δ18Osw–salinity

equation for the northern Okinawa Trough to provide a
basis for salinity estimates calculated from δ18Osw for G.
ruber. Then, using ECS core-top sediments, we calculate
the core-top δ18Osw from Mg/Ca ratios and δ18Oc for G.
ruber and compare them with the local δ18Osw–salinity
line. We find that the Mg/Ca–temperature calibration
by Hastings et al. (2001) and the δ18Oc–temperature
equation by Bemis et al. (1998) are appropriate for
calculating δ18Osw in the ECS. Finally, we present the
Ba/Ca ratios of G. ruber from ECS core-top sediments
for the first time and discuss the possibility of using shell
Ba/Ca ratios as an independent paleo-salinity proxy in
the ECS.

Oceanographic setting
The ECS is a marginal sea in the northwestern Pacific
bounded by China, Taiwan, Ryukyu Island, Kyushu, and
the Korean Peninsula (Fig. 1). The Yellow Sea is located
in the northern part of the ECS, with most (>70 %) of
both the Yellow Sea and ECS located above the contin-
ental shelf (<200 m water depth). The deep Okinawa
Trough (~2000 m water depth) is a back-arc basin that
occupies the remaining southeastern part of the ECS
(Ichikawa and Beardsley 2002).
The Yellow Sea and the ECS receive the saline and

warm Kuroshio water that enters the ECS along the east
of Taiwan and flows northeastward along the shelf slope
in the ECS (Fig. 1). The annual cycle of Kuroshio volume
transport has an estimated maximum of 24 Sv (1 Sv =
1 × 106 m3 s−1) in the summer and a minimum of 20 Sv
in the autumn (Lee et al. 2001). In addition, the Taiwan
warm current (TWWC), which originates from the
Kuroshio, flows into the ECS from the South China Sea
(SCS) through the Taiwan Strait off western Taiwan, with
an annual mean northward transport of 0.78 Sv (Jan et al.
2006; Zhang et al. 2014) (Fig. 1). In the autumn and win-
ter, Changjiang River runoff decreases (1.0 × 104 m3 s−1

in January) (Yanagi 1994), and the CDW flows south-
westward along the Chinese coast as a narrow band; the
saline water (>34) of Kuroshio origin enters the Yellow
Sea (Chang and Isobe 2003). However, during the sum-
mer, when the Changjiang River supplies a large amount
of freshwater to the ECS (4.8 × 104 m3 s−1 in July)
(Yanagi 1994), the CDW starts to extend offshore and
spread east- and northeastward. Then, the eastward-
flowing CDW mixes with the TWWC and the Kuroshio
water in the southern and eastern parts of the ECS, re-
spectively (Chang and Isobe 2003) (Fig. 2a).
Since the annually averaged precipitation and evapor-

ation are near equilibrium in the ECS and Yellow Sea
and the Changjiang River runoff accounts for 90 % of
the total river discharge (with an annual mean of ~3.0 ×
104 m3 s−1), the Changjiang River discharge is consid-
ered the dominant freshwater source in the ECS
(Beardsley et al. 1985; Chen et al. 1994; Yanagi 1994).
This Changjiang River water extends offshore, and there-
fore, the water mass characteristics of the offshore ECS
can be roughly described by the binary mixing of the
cooler, less saline CDW and the warmer, more saline
Kuroshio water (Zhang et al. 1990; Ichikawa and Beardsley
2002; Zhang et al. 2007). In contrast, there are other local
water masses in the coastal ECS and the Yellow Sea, such
as the TWWC and the Yellow Sea Central Cold Water
(YSCCW) (Fig. 1). Therefore, the water mass characteris-
tics and δ18Osw–salinity relationships of the coastal ECS
are more complicated than those of the offshore ECS, as
discussed in a later section.
The northern Okinawa Trough, which is the main

focus of this study, shows distinct seasonal changes in
SSS (e.g., site HR11, SSS = 33.2–34.7) due to the advec-
tion of the CDW, in comparison with the central
Okinawa Trough (e.g., site HR2, SSS = 34.4–34.8) (Figs. 1
and 2a). Sea surface temperature (SST) distribution also
varies seasonally owing to monsoonal winds (Lee and
Chao 2003). The climatological mean annual SST is
22.2 °C near site HR11 in the northern Okinawa Trough,
with a maximum in August (28.1 °C) and a minimum in
February (17.5 °C). In the central Okinawa Trough, the
mean annual SST is 25.0 °C near site HR2, with a max-
imum in August (28.9 °C) and a minimum in February
(21.5 °C) (Japan Oceanographic Data Center (JODC),
available at http://www.jodc.go.jp/).

Methods
Seawater and sediment samples
Seawater samples were collected using a CTD (conduct-
ivity, temperature, and depth) Carousel multisampling

http://www.jodc.go.jp/


Fig. 2 Surface distribution of salinity and δ18Osw. a SSS in July–September averaged statistically for 1955–2012. The data is from the World Ocean
Atlas 2013 (Zweng et al. 2013). Circles represent locations for surface seawater samples (see Fig. 1 and Table 1). b SSS and c δ18Osw of seawater in
early July 2013. The lowest SSS and δ18Osw values were found at YS1 within the CDW
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system (Sea-Bird, model SBE 9plus) during the KH-13-4
cruise in early July 2013 (R/V Hakuho Maru) (Table 1).
The CTD system has 24 attached Niskin bottles, each
with a volume of 12 L. Subsurface seawater samples
were taken with the Niskin bottles, and surface water
samples were taken using a bucket (~0 m depth) or
pumped from below the ship (~5 m depth). All seawater
samples were transferred into glass vials for salinity and
δ18Osw measurements, and the samples for the δ18Osw

measurements were stored at 4 °C until laboratory analysis.
Salinity was measured with an onboard Autosal laboratory
salinometer (Model 8400B, Guildline Instruments Ltd.,
Canada) and is reported using the practical salinity scale.
Sampling vials for salinity were prepared according to
Joint Global Ocean Flux Study (JGOFS) protocols. The
Autosal was standardized using International Associ-
ation for the Physical Sciences of the Oceans (IAPSO)
standard seawater.
Three sampling stations (YS1–3) are located in the

southwest area off the Korean Peninsula, and 19 other sta-
tions (MT, HR, and SSW sites) are located in the contin-
ental shelf slope area of the ECS and in the Pacific Ocean
(Fig. 1). We report salinity and δ18Osw data from these sta-
tions, and the vertical profiles of both datasets were ob-
tained for nine stations (Fig. 1 and Table 1). Surface
sediment samples were taken by a multiple corer at six
sites along the central to northern parts of the Okinawa
Trough from water depths of 709 to 1675 m during the
KH-13-4 and KT-12-25 cruises (Fig. 1 and Table 2).
Sediment samples were subsampled onboard with a 1 cm
resolution and stored in a refrigerator until analysis in the
laboratory.
The lithology of the sediment cores (~30 cm core

length) was characterized as foraminifer-bearing silty
clay or clayey silt with no visible turbidities or erosional
surfaces. In general, the central to northern parts of the
Okinawa Trough preserve thick late Holocene sediments
due to their high sedimentation rates (10–50 cm kyr−1),
except in shelf slope regions (Ujiié et al. 2003; Sun et al.
2005; Kubota et al. 2010). All core-top δ18Oc values of
G. ruber were isotopically lighter than −2.0‰, which is
consistent with the late Holocene values in the central
to northern Okinawa Trough (Table 2) (Sun et al. 2005;
Kubota et al. 2010). Therefore, we conclude that the
core-top sediments used in this study represent at least
late Holocene sediments. Site HR2 was located at a
depth below the present calcite saturation horizon
(CSH) in the ECS (~1600 m) (Fig. 6a). The Mg/Ca ratios
from this site should be treated with caution regarding
the partial dissolution of G. ruber shells, which will be
discussed in a later section.

Analysis of the oxygen isotopic composition of seawater
(δ18Osw)
We measured δ18Osw with a stable isotope mass spec-
trometer (PRISM, Micromass UK, Ltd.) at the University
of Toyama. Oxygen isotopic analysis was carried out
using the automated H2O–CO2 equilibrium method



Table 1 Salinity and δ18Osw data at each station in the ECS

Depth (m) Temperature (°C) Salinity δ18Osw (‰, VSMOW) Std.dev (‰) Site area

YS1 (30 June 2013, 124° 39.66′ E, 33° 29.80′ N) Yellow Sea–ECS shelf site

0 23.40 29.89 −0.81 0.03

5 22.95 30.60 −0.67 0.03

10 22.83 31.51 −0.47 0.02

20 17.10 32.82 −0.18 0.02

40 10.17 33.05 −0.12 0.02

YS2 (30 June 2013, 124° 40.07′ E, 34° 00.40′ N) Yellow Sea–ECS shelf site

0 22.90 31.37 −0.54 0.03

5 22.80 31.50 −0.52 0.02

10 22.76 31.86 −0.43 0.03

20 17.14 32.35 −0.35 0.04

30 13.54 32.57 −0.29 0.03

YS3 (1 July 2013, 124° 40.04′ E, 34° 59.64′ N) Yellow Sea–ECS shelf site

0 23.90 31.88 −0.53 0.03

5 23.12 31.86 −0.52 0.03

10 17.29 31.87 −0.48 0.02

20 13.73 32.09 −0.44 0.02

30 7.71 32.21 −0.42 0.02

HR8 (2 July 2013, 127° 19.84′ E, 30° 12.68′ N) Yellow Sea–ECS shelf site

0 26.70 33.40 −0.06 0.02

20 25.50 33.90 0.07 0.02

40 24.09 34.34 0.15 0.02

60 21.33 34.58 0.27 0.02

70 19.44 34.61 0.26 0.02

MT4 (2 July 2013, 127° 41.25′ E, 30° 54.42′ N) Yellow Sea–ECS shelf site

0 26.10 33.10 −0.18 0.02

6 25.81 33.16 −0.19 0.02

10 25.79 33.37 −0.14 0.04

30 24.44 33.81 0.00 0.03

60 21.56 34.19 0.10 0.02

100 19.08 34.64 0.20 0.02

HR10 (2 July 2013, 128° 00.21′ E, 31° 30.22′ N) Yellow Sea–ECS shelf site

0 26.10 33.75 −0.04 0.02

5 25.87 33.68 −0.08 0.02

10 25.80 33.82 −0.02 0.02

20 25.49 34.07 0.05 0.02

40 24.96 34.20 0.09 0.02

59 22.91 34.39 0.17 0.04

80 21.01 34.59 0.22 0.02

99 19.86 34.65 0.24 0.03

HR11 (2 July 2013, 129° 01.85′ E, 31° 40.60′ N) Okinawa Trough site

0 26.90 33.88 0.01 0.02

49 23.76 34.30 0.15 0.02
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Table 1 Salinity and δ18Osw data at each station in the ECS (Continued)

75 21.96 34.56 0.23 0.02

99 20.27 34.69 0.24 0.04

HR6 (8 July 2013, 128° 25.43′ E, 29° 17.42′ N) Okinawa Trough site

0 29.70 34.22 0.12 0.05

20 29.57 34.23 0.11 0.02

50 28.63 34.35 0.23 0.02

75 27.21 34.52 0.27 0.04

99 23.69 34.66 0.33 0.04

HR2 (9 July 2013, 127° 24.03′ E, 27° 40.97′ N) Okinawa Trough site

0 29.40 34.25 0.18 0.02

5 29.63 34.24 0.13 0.02

10 29.36 34.19 0.14 0.03

20 29.01 34.17 0.14 0.02

50 26.32 34.40 0.24 0.02

75 23.86 34.61 0.32 0.02

100 22.47 34.74 0.35 0.02

HR9 (7 July 2013, 129° 31.29′ E, 30° 28.26′ N) Okinawa Trough site

0 28.50 33.73 −0.07 0.03

MT5 (8 July 2013, 128° 23.41′ E, 30° 31.22′ N) Okinawa Trough site

0 28.50 33.91 −0.03 0.02

SSW07 (2 July 2013, 126° 45.99′ E, 31° 04.86′ N) Yellow Sea–ECS shelf site

5 23.20 30.80 −0.59 0.04

SSW08 (2 July 2013, 127° 04.33′ E, 30° 37.06′ N) Yellow Sea–ECS shelf site

5 25.30 31.80 −0.36 0.02

SSW09 (7 July 2013, 129° 47.01′ E, 33° 38.63′ N) Off-Kyushu site

5 24.10 33.33 0.00 0.02

SSW10 (7 July 2013, 129° 22.50′ E, 32° 34.00′ N) Off-Kyushu site

5 23.60 33.71 0.12 0.05

SSW11 (9 July 2013, 126° 24.20′ E, 26° 36.00′ N) Okinawa Trough site

5 28.80 34.00 0.12 0.02

SSW12 (9 July 2013, 125° 33.84′ E, 25° 49.26′ N) Okinawa Trough site

5 29.20 34.38 0.21 0.03

SSW13 (9 July 2013, 124° 30.06′ E, 24° 38.41′ N) Okinawa Trough site

5 28.80 33.81 0.03 0.02

SSW14 (10 July 2013, 123° 59.02′ E, 23° 32.27′ N) Kuroshio site

5 29.30 34.06 0.06 0.02

SSW15 (10 July 2013, 123° 40.09′ E, 23° 14.07′ N) Kuroshio site

5 29.30 34.33 0.12 0.09

SSW16 (10 July 2013, 123° 26.97′ E, 22° 59.89′ N) Kuroshio site

5 29.40 34.23 0.15 0.02

SSW17 (10 July 2013, 123° 11.60′ E, 22° 45.00′ N) Kuroshio site

5 29.40 34.34 0.20 0.02
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Table 2 Details of the core-top sediments and metal/Ca and δ18O values from Globigerinoides ruber (sensu stricto)

Core site Latitude Longitude Water depth (m) δ18O (VPDB ‰) Mg/Ca (mmol mol−1) ±SD Ba/Ca (μmol mol−1) ±SD Mn/Ca (μmol mol−1) ±SD

KH13-4-HR2MC 27° 40.79′ N 127° 23.95′ E 1675 −2.93 Ave 4.09 0.18 0.72 0.74 7.88 5.5

Run #1 4.05 0.66 0.74

Run #2 3.94 0.78 6.50

Run #3 4.03 1.53 11.58

Run #4 4.35 2.25 12.71

KT12-25-St.1 27° 58′ N 127° 16′ E 1153 −2.52 Ave. 4.20 0.03 0.77 0.01 23.25 21.3

Run #1 4.22 0.78 8.18

Run #2 4.18 0.77 38.31

KH13-4-HR6MC 29° 17.35′ N 128° 25.18′ E 1065 −2.47 Ave. 3.97 0.25 0.79 0.20 4.37 4.4

Run #1 3.68 1.04 1.92

Run #2 4.13 0.66 9.49

Run #3 4.09 0.92 1.72

KH13-4-HR9MC 30° 28.19′ N 129° 31.06′ E 709 −2.78 Ave. 4.19 0.25 0.81 1.09 53.01 13.7

Run #1 3.91 0.81 48.40

Run #2 4.36 1.11 68.44

Run #3 4.30 2.82 42.18

KH13-4-MT5MC 30° 31.23′ N 128° 23.38′ E 823 −2.27 Ave. 3.61 0.22 0.88 0.11 44.50 7.7

Run #1 3.41 0.72 51.73

Run #2 3.44 0.95 46.37

Run #3 3.68 0.97 46.21

Run #4 3.89 0.87 33.67

KH13-4-HR11MC 31° 40.57′ N 129° 01.99′ E 725 −2.42 Ave. 3.30 0.02 0.85 0.06 44.86 37.0

Run #1 3.31 0.89 18.67

Run #2 3.29 0.80 71.05

A7 27° 49.2′ N 126° 58.7′ E 1264 −2.35 4.06

MD012403 25° 17′ N 123° 10′ E 1420 −2.51 4.40

MD012404 26° 38.84′ N 125° 48.75′ E 1397 −2.60 4.24

KY07-04-01 31° 38.35′ N 128° 56.64′ E 725 −2.50 3.50
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Table 2 Details of the core-top sediments and metal/Ca and δ18O values from Globigerinoides ruber (sensu stricto) (Continued)

No dissolution-corrected Mg/Ca-derived SST Dissolution-corrected Mg/Ca-derived SST

SSTa (°C) SSTb (°C) SSTc (°C) SSTa (°C)
Δ[CO3

2−]
(μmol kg−1)

Corrected Mg/Ca
(mmol mol−1)

Calcification
SST

Shell-derived δ18Osw

(VSMOW ‰)
Calcification
salinity

Calcification
season

Calcification
depth (m)

26.7 24.4 29.4 28.7 −2.3 4.90 28.5 0.22 34.43 July–Sept 0–10

27.0 24.6 29.7 28.0 5.9 4.60 26.6 0.27 34.50 May–Oct 0–30

26.4 24.1 29.0 27.3 7.3 4.30 26.3 0.19 34.41 May–Oct 0–30

27.0 24.6 29.6 27.1 12.9 4.24 27.3 0.01 34.01 June–Sept 0–30

25.3 23.2 27.9 25.7 11.1 3.75 25.1 0.17 34.17 May–Oct 0–30

24.3 22.3 26.9 24.5 12.7 3.37 25.3 −0.20 33.76 June–Sept 0–30

26.6 24.3 29.3 27.9 4.2 4.55 25.9 0.37 34.54 May–Oct 0–30

27.5 25.1 30.2 29.0 1.7 5.01 26.5 0.39 34.43 May and Oct 0–30

27.1 24.7 29.8 28.6 2.1 4.84 26.9 0.21 34.38 May–Oct 0–30

24.9 22.9 27.6 25.2 12.7 3.57 25.6 −0.14 33.68 June–Sept 0–20

Decreases in Mg/Ca ratios due to calcite dissolution were calculated using critical thresholds for the dissolution (14 μmol kg−1 Δ[CO3
2−]) and sensitivity of Mg/Ca ratio to Δ[CO3

2−] (0.05 mmol mol−1 per μmol−1 kg−1)
(Johnstone et al. 2011). Core-top Mg/Ca and δ18O data from A7, MD012403, MD012404, KY07-04-01 were from Sun et al. (2005), Lin et al. (2006), Chen et al. (2010), and Kubota et al. (2010), respectively
aSST = ln(Mg/Ca/0.38)/0.089, Hastings et al. (2001)
bSST = ln(Mg/Ca/0.34)/0.102, Anand et al. (2003)
cSST = ln(Mg/Ca/0.3)/0.089, Lea et al. (2000)
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(Epstein and Mayeda 1953). The stable isotope ratios are
given as conventional δ values (‰), and the analytical
precision was ±0.02‰ (1σ) for δ18O. Oxygen isotopic
composition is expressed relative to Vienna Standard
Mean Ocean Water (VSMOW).

δ18O and Mg/Ca analyses of G. ruber
Core-top sediments (0–1 cm) were wet washed through
a 63 μm sieve and then dried in an oven at 50 °C. To
minimize ontogenic and growth rate effects on shell geo-
chemistry, specimens of G. ruber (sensu stricto form;
20–30 shells) were handpicked from the 250–355 μm
size fraction. Planktonic foraminifera were gently
crushed and rinsed three times with ultrapure water and
methanol (super special grade, Wako Pure Chemical In-
dustries, Ltd.) to remove adherent clay particles. The
shells were then split into two fractions for δ18Oc and
Fig. 3 Potential temperature and salinity (T–S) plot in the ECS. The T–S dia
surface water, Kuroshio subsurface water, YSCCW, and CDW. The color in ci
and subsurface waters are characterized by higher δ18Osw values, whereas
water properties in the northern part of the Okinawa Trough can be explai
The potential density curves (σθ = 19–27) are also shown. The T–S diagram
http://odv.awi.de, 2014)
metal/Ca measurements. δ18Oc values were obtained
using a Finnigan MAT 253 mass spectrometer at the
Center for Advanced Marine Core Research (CMCR),
Kochi University and calibrated in accordance with
standard NBS 19. The precision of these measurements
was better than ±0.08‰ (1σ) for δ18Oc.
The samples for metal/Ca analysis were cleaned ac-

cording to the procedure developed for trace element
analysis (Boyle and Keigwin 1985; Rosenthal et al. 1997).
In brief, samples underwent a multistep process consist-
ing of initial rinses in ultrapure water and methanol,
followed by treatments with hot reducing and oxidizing
solutions, transferred into new acid-leached micro-
centrifuge tubes (1.5 mL), and finally leached with a di-
lute ultrapure nitric acid solution (0.001 M HNO3,
TAMAPURE-AA-100 from Tama Chemicals, Ltd.). The
sample solution was then dissolved with a Sc-spiked
gram shows four distinct water masses in early July: the Kuroshio
rcles indicates the δ18Osw value of the seawater. The Kuroshio surface
the CDW is characterized by relatively low δ18Osw values. Surface
ned by isopycnal mixing with the CDW and Kuroshio surface water.
was made using Ocean Data View (Schlitzer R, Ocean Data View,

http://dx.doi.org/10.1029/2002PA000846
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dilute ultrapure nitric acid solution (2 % HNO3) to ob-
tain a Ca concentration of 10 ± 1 μg g−1. All clean work
was conducted in laminar flow benches or a clean room
under trace metal clean conditions.
The metal/Ca ratio was determined with a Thermo

Scientific ELEMENT 2 sector field inductively coupled
plasma mass spectrometer (ICP–MS) at the University
of Toyama, operated in a low-resolution mode (m/Δm =
300) (Marchitto 2006). We analyzed 24Mg, 26Mg, 43Ca,
44Ca, 88Sr, 137Ba, and 138Ba during the same run to de-
termine Mg/Ca for temperature reconstructions and
measured 56Fe (in a mid-resolution mode) and 55Mn to
monitor contamination by clay minerals and diagenetic
coatings (Table 2). Element counts were converted into
molar ratios by the intensity ratio method based on a
series of matrix-matched standard solutions. The accur-
acy and precision of Mg/Ca ratios were confirmed by
analyses of the CaCO3 reference materials BAM RS3
and ECRM 752-1. The repeated analyses gave Mg/Ca ra-
tios of 0.786 ± 0.008 (n = 100, 1σ, RSD = 1.0 %) and 3.92
± 0.06 (n = 24, 1σ, RSD = 1.5 %), respectively, which were
within the reported value for BAM RS3 (0.791 ± 0.03)
and slightly higher than the reported value for ECRM
752-1 (3.824 ± 0.095) (Greaves et al. 2008). Samples
often show high Mn/Ca ratios (>100 μmol mol−1) due to
the presence of diagenetic coatings that were not
Fig. 4 δ18Osw–salinity plot of shallow seawaters in the ECS. δ18Osw–salinity
2013). The data are classified into four site groups: Yellow Sea–ECS shelf, Ku
regression line is derived from the data in the Yellow Sea–ECS shelf and Ku
are a mixture of the CDW and Kuroshio surface water, δ18Osw and salinity d
Regression lines (dotted lines) and equations from the literature are also sho
and shelf waters near the Changjiang Estuary. Although these regression lines
the end-member of the seawater shows lower δ18Osw values than that of the
removed during the cleaning process. Such samples were
rejected. To further minimize the impact of sample het-
erogeneity and the analytical error of metal/Ca ratios,
we report replicate measurements of metal/Ca ratios on
re-picked G. ruber shells (Table 2).

Results and discussion
δ18Osw–salinity relationship in the eastern ECS
In early July, surface water samples showed the highest
SSS (34.3) at site SSW17 in the Kuroshio water area and
the lowest SSS (29.9) at YS1 in the Yellow Sea (Fig. 2b
and Table 1). The δ18Osw ranged from −0.81 to 0.21‰,
and relatively low δ18Osw values were observed in the
Yellow Sea, the ECS shelf, and the northern part of the
Okinawa Trough (Fig. 2c). Spatial distributions of salin-
ity and δ18Osw values were almost similar to the summer
(July–September) salinity distribution averaged statisti-
cally over 1955–2012 (Zweng et al. 2013) (Fig. 2a), sug-
gesting that the CDW spread east- and northeastward in
the southern Yellow Sea and the northern Okinawa
Trough during the sampling period.
A temperature and salinity plot (T–S diagram) of the

surface and subsurface waters (0–100 m) in the Yellow
Sea and the ECS shows four typical water masses: (1)
the Kuroshio surface water in the subtropical Pacific
Ocean (e.g., SSW14–17), (2) the Kuroshio subsurface
plot of all shallow seawater (0–100 m) data in this study (early July
roshio, Okinawa Trough, and off-Kyushu sites (Table 1). The black
roshio sites. Since the surface waters in the northern Okinawa Trough
ata from northern Okinawa Trough sites fall on this regression line.
wn. Regression lines III, IV, and V were developed in mainly coastal
represent freshwater end-members that are similar to our regression line,
Kuroshio surface water (34.2 and 0.13‰; SSW14–17)
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water in the Okinawa Trough (identified by a salinity
of ~34.4 and a δ18Osw of 0.2–0.5‰) (Kang et al. 1994;
Kim et al. 2005), (3) the YSCCW (<10 °C) in the bottom
water (30 m) at YS3, and (4) the less saline CDW in the
surface water at YS1 (Fig. 3). The T–S diagram also
shows that the majority of the shallow water data in the
Okinawa Trough fall on the isopycnal mixing line con-
necting the CDW and Kuroshio surface water (Fig. 3).
Indeed, the δ18Osw values and salinity of the shallow sea-
water (0–100 m) are strongly correlated, indicating that
the data can be explained by a binary mixing of fresh-
water and saline seawater (Fig. 4).
To derive a local δ18Osw–salinity relationship around

the northern Okinawa Trough, sampling sites were
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the text
classified by geographic and oceanographic characteris-
tics (Table 1). Sites SSW14–17, which are outside the
ECS and under the influence of the Kuroshio surface
water, were defined as Kuroshio sites. Data from the
Yellow Sea and the ECS were divided into three groups:
Yellow Sea–ECS shelf sites at depths shallower than
150 m, Okinawa Trough sites deeper than 150 m, and
off-Kyushu sites influenced by local freshwater inputs
from Kyushu (Fig. 4 and Table 1). Given that the
eastward-flowing CDW mixes with the warmer, more sa-
line Kuroshio water near the shelf edge in the summer
(Chang and Isobe 2003), salinity and δ18Osw values in
the Kuroshio surface water should reflect the end-
member for saline water (Kang et al. 1994). Therefore,
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Calculation of the calcite saturation state Δ[CO3
2−] was accomplished via subtracting the carbonate ion concentration [CO3

2−] at saturation from
the in situ [CO3

2−]. To compute the in situ [CO3
2−] with the program CO2sys.xls (Lewis and Wallace 1998), we used total alkalinity, TCO2, pH, and

hydrographic water column data in the ECS (NODC Accession 0109919, http://data.nodc.noaa.gov/nodc/archive/metadata/approved/). Arrows
indicate the water depths of cores analyzed in this study and by Sun et al. (2005), Lin et al. (2006), Chen et al. (2010), and Kubota et al. (2010).
b δ18Oc-derived calcification temperature and non-dissolution-corrected Mg/Ca-derived temperature plot. c δ18Oc-derived calcification temperature
and dissolution-corrected Mg/Ca-derived temperature plot. d δ18Oc-derived calcification temperature and Mg/Ca-derived temperature plot. The
dissolution-corrected Mg/Ca ratio was used for the deepest site, HR2, where Δ[CO3

2−] < 0 μmol kg−1. The other data were non-dissolution-corrected
Mg/Ca ratios
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taking into consideration this mixing of two water
masses in the eastern part of the ECS, we derived the
following δ18Osw–salinity equation from the summer
Yellow Sea–ECS shelf and Kuroshio site data:

δ18Osw ¼ −7:74 �0:4ð Þ þ 0:23 �0:01ð Þ
� salinity r2 ¼ 0:97; p < 0:001; n ¼ 40

� �

ð1Þ
The quoted errors of the slope and intercept are 95 %

confidence intervals. This equation includes the surface
(0–30 m water depth) and subsurface (40–100 m water
depth) data. The surface data (0–30 m) alone result in
the same equation within the 95 % confidence intervals
of Eq. (1).
Equation (1) indicates a projected freshwater end-

member of −7.74‰ (±0.4‰). This value is consistent
with the δ18O values (−8.4 to −7.1‰) for Changjiang
River water in January and July (Zhang et al. 1990).
However, the regression lines of the δ18Osw–salinity rela-
tionships developed for the Changjiang River mouth and
the western part of the ECS indicate lower δ18Osw values
in the salinity range of 30 to 34 [δ18Osw = −8.41 + 0.24 ×
salinity in January (line IV of Fig. 4) and δ18Osw = −7.06 +
0.20 × salinity in July (line III of Fig. 4)]. Similar regression
lines were developed for the Yellow Sea and the ECS
[δ18Osw = −8.66 + 0.24 × salinity in winter (line V of Fig. 4)
and δ18Osw = −10.7 + 0.27 × salinity in summer] (Ye et al.
2014). These regression lines do not pass through the
end-member values of the Kuroshio surface water (salin-
ity = 34.2–34.4 and δ18Osw = 0.1–0.2‰), indicating that
the Kuroshio surface water was not the source of saline
water for these areas (Fig. 4). Since these data were mainly
from coastal and shelf waters near the Changjiang Estuary,
the less saline, δ18O-depleted TWWC may be the domin-
ant source of saline water rather than the Kuroshio water.
Therefore, δ18Osw–salinity relationships in the coastal
ECS are highly variable and differ from our equation.
Like our regression line, regression lines that pass

through the saline Kuroshio surface water were derived
for the ECS shelf covering a broad sampling area for
June–July (line II of Fig. 4) (Du et al. 2012), for the
southern Yellow Sea in July (Kang et al. 1994), and for
the area from the ECS to off the southern Japan Islands
(Oba 1990) (line I of Fig. 4). Our regression line oc-
cupied an intermediate area between these regression
lines. Furthermore, our equation is derived from the data
obtained in the eastern part of the ECS where the
eastward-flowing CDW mixes with the Kuroshio water
in the summer. Therefore, our δ18Osw–salinity equation
should be representative of the northern Okinawa
Trough during the EASM season.
Even if the freshwater end-member changed from −7.74

to −9.0‰ (given the averaged y-intercept of lines II, IV,
and V as the potential change in the riverine δ18O), this
change in amplitude does not yield a significant difference
between the two calibration lines within the salinity range
of 33 to 34.2. In addition, since end-member values of the
CDW and the Kuroshio surface water may not have chan-
ged significantly during the Holocene in comparison with
the glacial–interglacial cycles (Wang et al. 2008), our local
δ18Osw–salinity equation may provide an approximate re-
lationship between the salinity and δ18Osw in the eastern
part of the ECS, at least during the Holocene.

Core-top δ18Oc and Mg/Ca ratios for G. ruber
The core-top δ18Oc values for G. ruber ranged from −2.9
to −2.3‰ in the central to northern parts of the
Okinawa Trough (Fig. 1 and Table 2). The lightest value
was observed at HR2, the southernmost site, whereas
the heaviest value was found at MT5 near the CDW ad-
vection area. Core-top Mg/Ca ratios of G. ruber ranged
from 3.29 to 4.35 mmol mol−1 (Table 2). The Mg/Ca
value at HR2 (4.09 mmol mol−1, 1675 m water depth),
which is the deepest site, was lower than that at the
nearby shallower site St.1 (4.20 mmol mol−1, 1153 m),
even though HR2 had the lowest δ18Oc value of G. ruber
(−2.9‰) (Table 2). Since site HR2 is below the CSH
(~1600 m) (Fig. 6a), the Mg/Ca ratio at HR2 seems to be
lowered due to calcite dissolution (discussed below).
Core-top Mg/Ca ratios, including the data from the lit-
erature (Sun et al. 2005; Lin et al. 2006; Chen et al.
2010; Kubota et al. 2010), tend to be higher in the south-
ern sites (e.g., HR2 and St.1) and lower in the northern
sites (HR11 and MT5) (Table 2), which is consistent
with the distribution of the summer SST. In contrast,
core-top δ18Oc values correlate poorly with the Mg/Ca
ratios (r2 = 0.19), indicating that δ18Oc values are
strongly influenced by δ18Osw.

Calcification season and calcification temperature of G.
ruber
The foraminifera shell Mg/Ca response to temperature
is biologically modulated and dependent on pH and/or
[CO3

2−] (Lea et al. 1999; Russell et al. 2004). Therefore,
many species- and basin-specific Mg/Ca–temperature
equations have been developed, some of which take into
consideration the potential effect of dissolution (Lea
et al. 2000; Dekens et al. 2002; Anand et al. 2003;
McConnell and Thunell 2005). There is, however, no
equation for G. ruber in the ECS, and previous studies
conducted in the ECS have converted Mg/Ca values of
G. ruber to SST using a Mg/Ca–temperature calibration
equation [T (°C) = ln(Mg/Ca/0.38)/0.089] developed for G.
ruber based on the SCS core-top sediments by Hastings
et al. (2001) (Sun et al. 2005; Lin et al. 2006; Chen et al.
2010; Kubota et al. 2010). Although this calibration equa-
tion yields temperatures corresponding to the warm
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summer months, it has not been fully investigated
whether there is consistency between δ18Oc- and Mg/Ca-
derived temperatures, even though reconciled estimates of
temperatures are crucial for calculating δ18Osw.
First, to calculate calcification temperatures (δ18Oc-de-

rived SSTs), we identified the calcification season and
depth based on a comparison of core-top δ18Oc values
with predicted δ18Oc values. Predicted δ18Oc values were
calculated using the following δ18Oc–temperature equa-
tion assuming oxygen isotopic equilibrium in foraminif-
eral calcite:

T �Cð Þ ¼ 14:9−4:8 δ18Oc− δ18Osw−0:27‰
� �� � ð2Þ

This δ18Oc–temperature equation was determined
from culturing experiments of a symbiont-bearing spe-
cies, Orbulina universa, grown under high-light condi-
tions (Bemis et al. 1998). The high-light conditions
(>380 μEinstein m−2 s−1) in the culturing experiments
take into consideration symbiont effects on shell δ18Oc

(i.e., high photosynthetic activity forms 18O-depleted
shells). The applicability of this equation to the surface-
dwelling, symbiont-bearing species G. ruber has been
confirmed (Bemis et al. 1998; Benway et al. 2006).
Temperature and salinity data averaged statistically for
1930–2003 in a 1° × 1° (latitude × longitude) grid provided
by JODC were used for the calculation. Salinity was con-
verted to δ18Osw values using Eq. (1). The term −0.27‰
corrects for the δ18O difference between VSMOW and
Pee Dee Belemnite (PDB).
Figure 5 shows a comparison of the predicted vertical

profiles of δ18Oc values for each month with core-top
δ18Oc values of G. ruber at each site. Among the six
core-top datasets, HR2 and HR9 showed relatively
lighter δ18Oc values that are approximately equal to the
δ18Oc values in the surface water for July–September. In
contrast, the other sites (St.1, HR6, MT5, and HR11)
were marked by isotopically heavier values than the peak
summer δ18Oc in the surface water, suggesting a large
contribution of G. ruber shells formed in deeper waters
(>50 m) or in surface water in May, June, and/or Octo-
ber (Fig. 5). Since G. ruber (sensu stricto) lives predom-
inantly in the top 20 m of the subtropical North Pacific
(Kuroyanagi and Kawahata 2004), calcification of shells
in deeper water (>50 m) should be negligible. Further-
more, sediment trap data from the ECS, which unfortu-
nately do not include data for September, show that the
fluxes of G. ruber from May to October account for
80 % of the total fluxes each year and the fluxes in May
alone account for 20 % of the yearly fluxes (Xu et al.
2005). Based on these data, we regard the dominant
habitat depth of G. ruber in the ECS as the top 0 to
30 m (mixed layer) and contend that the G. ruber shell
geochemistry in the ECS records the weighted mean sur-
face ocean conditions from May to October.
To calculate the calcification temperatures and salinity

of the seawater in which G. ruber shells were formed, we
computed seasonal average (May–October or July–Sep-
tember) δ18Oc values and compared these predicted
values to core-top δ18Oc values (Table 2). The calcifica-
tion seasons and depths at HR2 and HR11 were identi-
fied as July–September and 0–10 m and June–
September and 0–30 m, respectively. The δ18Oc-derived
SSTs at HR2 and HR11 were calculated as 28.5 and
25.3 °C, respectively (Fig. 6 and Table 2). The calculated
calcification SSTs at all sites ranged from 25.1 to 28.5 °C
in the central to northern Okinawa Trough (Table 2). It
is noteworthy that the calcification season of G. ruber
was not necessarily uniform across the ECS; data from
sites HR2 and HR9 clearly show a warmer seasonal bias
(close to the peak summer SST), in contrast to other site
data (Figs. 1 and 5). The core-top δ18Oc data shows that
Eq. (2) provides better estimates for calcification depth,
season, and temperature that agree with sediment trap
and plankton tow data (Kuroyanagi and Kawahata 2004;
Xu et al. 2005).
Although we applied the δ18Oc–temperature equation

by Bemis et al. (1998) to the core-top data, there are
other δ18Oc–temperature relationships that yield various
estimates for calcification temperature. For instance,
δ18Oc–temperature equations by Kim and O’Neil (1997)
and Mulitza et al. (2003) yield an offset of approximately
1 °C to the calcification temperatures calculated by Eq.
(2). If these equations are applied to our core-top data
with the assumption of δ18O equilibrium, calcification
temperatures at HR2 and HR9 will exceed the peak sum-
mer SST. Therefore, we should consider δ18O disequilib-
rium in foraminiferal calcite (i.e., vital effect) for at least
these sites. However, since the vital effect for G. ruber
has not been determined precisely (0 to −1.0‰) (Niebler
et al. 1999), applying these equations will introduce sig-
nificant uncertainties in calcification temperature
estimates.

Assessment of G. ruber Mg/Ca-derived temperatures
G. ruber is one of the species of planktonic foraminifera
most susceptible to dissolution (Thunell and Honjo
1981). Partial dissolution of G. ruber shells can decrease
Mg/Ca ratios owing to the higher solubility of Mg-rich
calcite (Dekens et al. 2002). The ECS is the most under-
saturated marginal sea with respect to calcite, and the
CSH is shallow (~1600 m) (Fig. 6a). In our dataset, site
HR2 is below the CSH, and the published core-top data
from site A7, MD012404 (hereafter 404), and MD012403
(hereafter 403) were also derived from bottom water con-
ditions with low calcite saturation states of <5 μmol kg−1

(Δ[CO3
2−] = [CO3

2−]in situ − [CO3
2−]saturation) (Fig. 6a; see
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caption of Fig. 6a for more details). According to data
from core-top G. ruber tests of a depth transect in the
Ontong Java Plateau, Mg/Ca ratios of G. ruber started to
decrease with decreasing Δ[CO3

2−] (−0.05 mmol mol−1 per
μmol−1 kg−1) from an initial Δ[CO3

2−] of 14 μmol kg−1

(Johnstone et al. 2011). This finding is a cause for concern
that ECS Mg/Ca data obtained under bottom water condi-
tions with low Δ[CO3

2−] may be influenced by dissolution
(Fig. 6a).
Therefore, we assessed the impact of calcite dissol-

ution on Mg/Ca ratios in the ECS by applying critical
thresholds for the dissolution (14 μmol kg−1 Δ[CO3

2−])
and the sensitivity of the Mg/Ca ratio to Δ[CO3

2−]
(0.05 mmol mol−1 per μmol−1 kg−1) (Johnstone et al.
2011). We calculated Δ[CO3

2−] for the bottom waters at
each core site and estimated the dissolution-corrected
Mg/Ca ratios for all core sites (Table 2). Figure 6 shows
a comparison of the δ18Oc-derived SSTs with non-
dissolution-corrected and dissolution-corrected Mg/Ca-
derived SSTs (Fig. 6b, c). Both Mg/Ca ratios were con-
verted to SSTs using the SCS calibration equation of
Hastings et al. (2001).
The shallowest site, HR9, where the Δ[CO3

2−] value is
12.9 μmol kg−1, showed good agreement with the non-
dissolution-corrected Mg/Ca- and δ18Oc-derived SSTs
(Fig. 6b). It is noteworthy that core-top data at depths
ranging from 1000 to ~1400 m (HR6, St.1, A7, 404, and
403) also showed agreement with the non-dissolution-
corrected Mg/Ca- and δ18Oc-derived SSTs, even though
the Δ[CO3

2−] values were lower than the critical thresh-
old for dissolution (10–20 μmol kg−1) (Regenberg et al.
2009; Johnstone et al. 2011) (Fig. 6b). The deepest site,
HR2 (1675 m water depth), showed that the non-
dissolution-corrected Mg/Ca-derived SST underesti-
mates the δ18Oc-derived SST by 1.8 °C (Fig. 6b), and the
dissolution-corrected Mg/Ca-derived SST agrees well
with the δ18Oc-derived SST (Fig. 6c). However, this dis-
solution correction induced a larger offset to the δ18Oc-
derived SSTs for other sites (1000 to ~1400 m water
depths) (Fig. 6c).
The Mg/Ca–temperature calibration equation of

Hastings et al. (2001) was developed for G. ruber from
SCS core-top samples recovered from depths above
2000 m. As in the ECS, the deep waters in the SCS are
characterized by low Δ[CO3

2−] with the CSH at a water
depth of 2500 m (Regenberg et al. 2009). Presumably,
samples recovered from depths of 1500 to 2000 m
(<15 μmol kg−1 Δ[CO3

2−]) for the calibration equation
might have been influenced by partial dissolution under
low Δ[CO3

2−]. Therefore, we consider that the SCS cali-
bration equation potentially involves a correction for
calcite dissolution under low Δ[CO3

2−]. Consequently,
the correction for calcite dissolution is required only
for samples obtained below the CSH in the ECS.
Thus, in this study, we integrated data of dissolution-
corrected (for HR2 from below the CSH) and non-
dissolution-corrected (for other cores above the CSH)
Mg/Ca values to obtain Mg/Ca-derived SSTs (Fig. 6d).
Although HR11 and 403 are still offset from the δ18Oc-de-
rived SST by 1 °C, the other core-top data showed good
agreement with both SST estimates (r2 = 0.83, p < 0.001,
except HR11 and 403) (Fig. 6d). This SCS calibration
equation reconciles Mg/Ca-derived and δ18Oc-derived
SSTs in the ECS, both of which reflect SSTs in the warmer
season months. However, other calibration equations (Lea
et al. 2000; Anand et al. 2003; McConnell and Thunell
2005) do not yield temperatures corresponding to the
warmer season months and do not agree well with δ18Oc-
derived SSTs (Table 2).

δ18Osw estimate for G. ruber in core-top sediments
Core-top δ18Osw values were calculated from Mg/Ca-de-
rived SSTs and core-top δ18Oc values using Eq. (2). The
core-top data of the shell-derived δ18Osw and the salinity,
including the published data from KY, A7, 404, and 403
(Sun et al. 2005; Lin et al. 2006; Chen et al. 2010; Kubota
et al. 2010), are plotted in Fig. 7a. Since the estimation of
the shell-derived δ18Osw is affected by the uncertainty in
the δ18Oc (±0.11‰) and the Mg/Ca-derived temperature
(±1 °C, corresponding to approximately ±0.26‰)
(Schmidt 1999; Rohling 2007), the reconstructed δ18Osw

introduces a large propagation error of ±0.28‰ (1σ). Al-
though the regression line of the core-top δ18Osw data has
a steeper gradient and a lower y-intercept, given 1σ error
bars of δ18Osw estimates the data points fall primarily on
the local δ18Osw–salinity regression line of the eastern part
of the ECS (Fig. 7a). Indeed, sites KY and HR11 in the
northern Okinawa Trough were marked by the lowest
shell-derived δ18Osw values, whereas St.1 and A7 in the
central Okinawa Trough showed the highest shell-derived
δ18Osw values. Sites HR9 and MT5 had intermediate
δ18Osw values between the above two datasets (Fig. 7a).
The core-top δ18Osw values were roughly distributed as
expected from the peak summer SSS at each site.
Although site MT5 is in an area with a lower summer

SSS than that of site HR9, the shell-derived δ18Osw value
at MT5 (0.17‰) was higher than that at HR9 (0.01‰)
(Fig. 7a). One potential explanation is that G. ruber
shells at HR9 were formed in the surface waters during
the peak summer season when SSS decreases distinctly,
whereas G. ruber at MT5 was not abundant in the peak
summer season, as inferred from the δ18Oc data (Fig. 5).
These data tell us that the difference of 0.16‰ in the
shell-derived δ18Osw may be caused by changes in the
seasonal habitat of G. ruber.
This core-top investigation shows that realistic δ18Osw

values can be reconstructed by the Mg/Ca–temperature
calibration of Hastings et al. (2001) and the δ18Oc–
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Fig. 7 Salinity, shell-derived δ18Osw, and Ba/Ca ratios of core-top G. ruber tests. a Shell-derived δ18Osw and calcification salinity plot of core-top samples
in this study and the literature. Shell-derived δ18Osw values are calculated using the Mg/Ca-derived temperature and core-top δ18Oc of G. ruber. The
data from KY, A7, 403, and 404 (gray squares) are from Kubota et al. (2010), Sun et al. (2005), Lin et al. (2006), and Chen et al. (2010), respectively. Error
bars show the propagation error of ±0.28‰ (1σ). Seawater data (green circles) and their regression line (green broken line, Fig. 4) are also shown with the
core-top data. Core-top data fall close to the local δ18Osw–salinity regression line. b Ba/CaG. ruber ratios and calcification salinity plot of all core-top samples
in this study. The replicated analyses of Ba/CaG. ruber ratios at each core site show high variability, resulting in the range from 0.66 to 2.82 μmol mol−1. The
calculated shell Ba/Ca ratio in equilibrium with the Kuroshio water is 0.5–0.72 μmol mol−1. Lower values at HR2 and HR6 are within this range. Higher
shell Ba/Ca ratios than this Kuroshio water range might be attributable to barite contamination or calcification in low saline, Ba-enriched CDW
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temperature equation of Bemis et al. (1998), although
δ18Osw estimates introduce a large error. Furthermore,
this finding indicates that robust reconstruction of EASM-
related variability in SSS might be possible by conducting
multiple replicates of paired δ18Oc and Mg/Ca analyses to
decrease the large uncertainty. In addition, the utility of
potential paleo-salinity proxies, such as the foraminiferal
Ba/Ca ratio and the organic compound-specific δD,
should be investigated further (Rohling 2007).

Possibility of using Ba/Ca ratios of G. ruber as a proxy for
surface salinity
In general, the desorption of Ba2+ from suspended sedi-
ments in rivers results in a very high riverine [Ba2+]
relative to seawater. If there is a single river source, con-
servative mixing of river water and ambient seawater
produces a linear inverse correlation between salinity
and [Ba2+] (Bahr et al. 2013). Ba2+ incorporation into liv-
ing planktonic foraminifera shells is linearly dependent
on the [Ba2+] of the water, with a constant partition
coefficient for Ba (DBa = 0.15) (Lea and Spero 1994;
Hönisch et al. 2011). G. ruber populations can thrive in
low-salinity surface water influenced by river discharge
(Schmuker and Schiebel 2002; Arnold and Parker 2003).
This ecological preference of G. ruber and the incorpor-
ation of Ba into foraminifera shells makes Ba/Ca ratios
in fossil G. ruber a proxy for the influence of river dis-
charge on salinity (Weldeab et al. 2007; Schmidt and
Lynch-Stieglitz 2011).
In the case of the ECS, the Changjiang River accounts

for approximately 90 % of the total river discharge into
the ECS, with large quantities of Ba2+ (~360 nmol L−1)
(Beardsley et al. 1985; Qu et al. 1993; Yanagi 1994).
Based on our preliminary [Ba2+] data in the ECS mea-
sured by an isotope dilution method (Klinkhammer and
Chan 1990), the surface water at SSW8 (30.80 salinity)
showed a high [Ba2+] of 57.0 nmol L−1 (Ba/Ca ratio of
6.31 μmol mol−1), and the Kuroshio surface water
(SSW14–17, average 34.2) showed a low [Ba2+] of
32.9 nmol L−1 (Ba/Ca of 3.27 μmol mol−1). The [Ba2+]
data for the Kuroshio water were consistent with previ-
ously reported data from Kuroshio waters (29.9–
33.5 nmol L−1) (Sugiyama et al. 1984). Other surface
samples from the northern Okinawa Trough fall within
these [Ba2+] and Ba/Ca ranges, showing a linear relation-
ship between Ba/Caseawater and salinity (Horikawa et al.,
personal communication).
Our Ba/Ca ratios in G. ruber (hereafter Ba/CaG. ruber)

from core-top sediments ranged from 0.66 to
2.82 μmol mol−1 (Fig. 7b). The lowest Ba/Ca value of
0.66 μmol mol−1 was observed at sites HR2 and HR6 in
the central Okinawa Trough. Given the Ba/Caseawater ra-
tio of 3.27 μmol mol−1 in the Kuroshio surface water
and the likely DBa of 0.15–0.22 (Hall and Chan 2004;
Hönisch et al. 2011), the calculated shell Ba/Ca ratio in
equilibrium with the Kuroshio water should be 0.5 to
0.72 μmol mol−1. Indeed, HR2 and HR6 values were
within the expected range for Kuroshio surface water. In
contrast, HR11, where the lowest SSS among the studied
sites was observed, had relatively higher Ba/CaG. ruber ra-
tios (0.80–0.89 μmol mol−1) (Fig. 7b). Given the Ba/
Caseawater ratio of 3.8 μmol mol−1 (at HR10, 0 m) and
the DBa of 0.15 to 0.22, the shell Ba/Ca ratio in equilib-
rium should be 0.57 to 0.84 μmol mol−1. The core-top
Ba/CaG. ruber ratios observed at HR11 were consistent
with the upper range of expected values, probably reflect-
ing the influence of the Ba-enriched CDW (i.e., low-
salinity waters).
However, all core-top Ba/CaG. ruber data at six sites do

not show a significant relationship with the salinity, but
replicate data at each site showed highly variable Ba/
CaG. ruber ratios, some of which exceeded the values at
site HR11 (Fig. 7b). Although we are unable to ad-
equately explain such highly variable Ba/CaG. ruber ratios
at this time, one likely reason is sample heterogeneity. In
this study, to obtain averaged Ba/CaG. ruber ratios for
each site, we re-picked 20–30 shells of G. ruber more
than twice after picking the samples labeled run #1
(Table 2). Although the samples from run #1 gave rea-
sonable Ba/CaG. ruber ratios (0.66–0.89 μmol mol−1) at
each site except HR6, the samples from runs #2 to #4
yielded anomalously high Ba/CaG. ruber ratios compared
with the samples from run #1. Given that there were few
well-preserved, clean G. ruber tests for these sites and
that replicate measurements of Mn/Ca and Mg/Ca ratios
were within an acceptable range, we argue that samples
from runs #2 to #4 may have involved impure G. ruber
tests in which barite crystallized on fossil shell surfaces.
Finally, based on the available dataset of Ba/Caseawater

in the ECS, we propose that pristine Ba/CaG. ruber ratios
at northern Okinawa Trough sites would be less than
0.84 μmol mol−1. A possible reason for higher core-top
Ba/CaG. ruber ratios (>0.84 μmol mol−1) is contamination
by sedimentary barite adherent on fossil shells. Our pre-
liminary data suggest that Ba/CaG. ruber data as a paleo-
salinity proxy should be derived from well-preserved,
clean G. ruber tests or diethylene triamine pentaacetic
acid (DTPA)-cleaned G. ruber tests that can minimize
the influence of barite contamination (Lea and Boyle
1991; Hall and Chan 2004). Since the Ba/CaG. ruber re-
cords from the northern Okinawa Trough sediments
may potentially identify high river discharge events re-
lated to stronger EASMs, assessment of foraminiferal
Ba/Ca should be continued in the ECS.
Conclusions
The main findings of this study are as follows:
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(1)Shallow seawater samples (0–100 m) taken from the
ECS in early July showed a strong correlation
between δ18Osw and salinity. The T–S diagram in the
surface waters in the ECS shows that the eastward-
flowing CDW mixes with the saline Kuroshio waters.
Based on this finding, we derived the following
δ18Osw–salinity equation from the Yellow Sea–ECS
shelf and Kuroshio site data:

δ18Osw ¼ −7:74 �0:4ð Þ þ 0:23 �0:01ð Þ
� salinity r2 ¼ 0:97; p < 0:001; n ¼ 40

� �
:

This local δ18Osw–salinity equation might be

representative of the northern Okinawa Trough
during the EASM season.

(2)We found that the dominant habitat depth of G.
ruber is within the top 0 to 30 m in the ECS. The
calcification season of G. ruber is mainly during the
warm summer months (May–October) but may not
necessarily be uniform across the ECS. We
confirmed that the Mg/Ca–temperature calibration
by Hastings et al. (2001) yields temperatures
corresponding to the warmer season months, as
expected from sediment trap data. The Mg/Ca-
derived SSTs agreed with calcification temperatures
calculated by Bemis et al. (1998). Site HR2, where
the bottom water is undersaturated with calcite,
required a correction for calcite dissolution.

(3)We found that core-top data for shell-derived
δ18Osw and salinity fall primarily on our local
δ18Osw–salinity regression line giving 1σ error
of δ18Osw estimates. The Mg/Ca–temperature
calibration by Hastings et al. (2001) and the δ18Oc–
temperature equation by Bemis et al. (1998) should
be appropriate for calculating δ18Osw in the ECS.

(4)Ba/CaG. ruber from core-top sediments ranged from
0.66 to 2.82 μmol mol−1. There was not a significant
relationship between salinity and Ba/CaG. ruber due
to the highly variable Ba/CaG. ruber data. Given the
seawater Ba/Ca data and the published partition
coefficient for Ba (DBa = 0.15–0.22), pristine Ba/CaG.
ruber ratios at northern Okinawa Trough sites should
be less than 0.84 μmol mol−1. One possible reason
for higher Ba/CaG. ruber ratios (>0.84 μmol mol−1) is
contamination by sedimentary barite adherent on
fossil shells. Further evaluation of the Ba/CaG. ruber
ratio as a paleo-salinity proxy requires DTPA-
cleaned Ba/Ca data that can minimize the influence
of barite contamination.
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