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Abstract

regime related to an arc-arc collision.

sedimentation; Geochemistry; Maturation; Hokkaido

The basin-forming process along a convergent margin off the eastern coast of Eurasia was pursued on the basis of
geological, geochemical, and geophysical approaches. Central Hokkaido has been a site of vigorous tectonic events
throughout the Cenozoic reflecting the long-standing subduction of oceanic plates in the region. Geochemical
modeling provided an estimate of the eroded Paleogene unit in the study area. Data on the considerable thickness
of the missing unit implied continued subsidence of the forearc region and its subsequent exhumation under the
emergence of a compressive regime synchronous with the back-arc opening stage. Spatially large facies variety in
the Paleogene system suggests that basin compartmentalization occurred as a result of the trench-parallel
component of the plate convergence. Right-lateral motion seems to have been the dominant type in Hokkaido and
the forearc of northeast Japan since the Late Cretaceous, except for a left-lateral episode during rapid subsidence of
the Izanagi Plate around 110 Ma. Numerical modeling demonstrated that dextral slip on a bunch of longitudinal
strike-slip faults restored the Neogenedepocenters in central Hokkaido, together with an east-west compressive

Keywords: Basin subsidence; Foreland basin; Modeling; Strike-slip basin; Subduction-related basin; Tectonics and

Background

Hokkaido is an island presently located at a junction of
the Kurile arc and northeast Japan arc (Figure 1).
Reflecting active deformation on the Eurasian margin,
voluminous and various types of sedimentary basins
have emerged in the island through the Cenozoic. This
region is an example of basin evolution controlled by
the transition of tectonic regimes. The authors aim to
better understand the causal relationship between dom-
inant tectonic modes and styles of sedimentary basins,
and such work is pursued by utilization of geological,
geophysical, and geochemical information. Our main
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focus here and elsewhere was on the central N-S elon-
gated depression adjacent to the arc-arc collision front
of the Hidaka Mountains, which is collectively named
as the Ishikari-Teshio Belt.

Cenozoic strata in the Ishikari-Teshio Belt, which
roughly coincides with the Sorachi-Yezo Belt in the
Mesozoic tectonic architecture (Figure 1), are underlain
by the Cretaceous Yezo Group that is regarded as a typ-
ical sequence in a forearc basin setting (Ando 2003).
Compared to monotonous fine sediments of the Yezo
Group, the Paleogene system has a large variety of sedi-
mentary facies. We interpret this diversity as being re-
lated to the deformation of the forearc by transcurrent
fault motions, which has been described on the basis of
seismic interpretations. Intricate tectonic events since
the Neogene, such as backarc spreading, arc-arc colli-
sions, and hypothetical differential rotation of crustal
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Figure 1 An index map of tectonics and the basin configuration a
by a dotted gray line on the forearc of northeast Japan.

round Hokkaido. The location of the seismic profile in Figure 5 is shown

blocks, should affect the basin-forming process in the
Ishikari-Teshio Belt and regional mass balance on the east
Eurasian convergent margin. In this paper, we describe
significant geological events in the study area, which in-
cludes the Ishikari-Teshio Belt and forearc region of
northeast Japan (Figure 1), under the same tectonic regime
through the Cenozoic. Together with integrated review of
basin analyses, our original geochemical data and basin

modeling pave a path to the most probable tectonic
history of the study area.

Methods

Spatio-temporal distribution of Paleogene sediments
Paleogene central Hokkaido was a site of vigorous basin
formation. Although geologic studies have shown the
spatio-temporal distribution of these basins (Figure 2),
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Figure 2 Configuration of the Paleogene Ishikari sedimentary basin. Numbers attached on basins show sediment thickness in meters, which
were compiled after surface information and borehole stratigraphic data (Kusumoto et al. 2013). Tectonic map around California as a recent
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later erosion during the remarkable contraction regime
of the Neogene may have obscured the total volume of
sediments. Hence, we examined maturation profiles of or-
ganic matter derived from sedimentary rocks and
attempted to reconstruct the burial history based on kin-
etic models. On the coast of the Japan Sea, a geochemical
database derived from two exploration boreholes (Figure 1)
was adopted for use in the present study. From the south-
ernmost tip of the Ishikari-Teshio Belt, geochemical
samples were taken from surface outcrops with datum
planes (Gradstein et al. 2012). Our analytical procedures
are presented in the following sections.

Geochemical analyses

In order to determine the total history of basin burial,
we executed one-dimensional modeling of maturation
levels of organic matter contained in the Cretaceous
Yezo Group. On the trench side of the Paleogene fore-
arc region, samples were taken along the Chinomigawa
River route in the Urakawa area (Figures 1 and 3). On
the continental side of the coeval forearc region, matur-
ation data of deep boreholes (Kitakawaguchi SK-1 and
MITI Rumoi; see Figure 1) were utilized. As for the
samples from the Chinomigawa route, geochemical ana-
lyses were performed in the Research Center of JAPEX
(Japan Petroleum Exploration Co., Ltd.), the procedures
of which are explained in sections ‘Rock-eval pyrolysis’,
‘Total organic carbon’, and ‘Vitrinite reflectance’.

Rock-eval pyrolysis

Bulk rock pyrolysis analysis was carried out using the
VINCI Rock-Eval 6 to obtain T,,, values for each sample.
Samples were crushed to a powder in an auto-mill and
dried overnight at 60°C in a desiccator. After weighing out
about 100 mg of powdered sample in a container, the
dried samples were heated under nitrogen gas at 300°C
for 3 min, and then the temperature was increased by
25°C/min up to 650°C and held isothermally for 1 min.
The generated organic compounds and CO, were mea-
sured with a flame ionization detector and thermal con-
ductivity detector, respectively. Samples were analyzed
using an apparatus that was calibrated with an IFP
Energies nouvelles standard. All T, S, S5, and S3
values are listed in Table 1, and typical pyrograms are
presented in Figure 3a.

Total organic carbon

As for bulk analysis samples, total organic carbon (TOC)
was measured using a CHN determinator (J-Science LAB
JM10, Kyoto, Japan). Samples were powdered and dried as
mentioned before. After weighing out about 3 mg of the
samples, they were treated with 6 N HCI for an hour to
remove carbonate minerals. Decalcified samples were
then dried in an oven at 60°C for 2 days and stored in a
desiccator. Dried samples were poured into tin containers
and analyzed with the CHN determinator. The TOC data
are listed in Table 1.
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Figure 3 Results of geochemical analyses in the Urakawa area. Typical pyrograms of Rock-Eval pyrolysis (a) and histograms of vitrinite reflectance
(b) for the Cretaceous sedimentary rocks in the Urakawa area (geologic map and columnar section are shown in parts (c) and (d) of the figure).
Darkened bars in histograms represent data adopted for mean calculations. Sample numbers (CH-series) are identical with the paleomagnetic
sampling sites of Tamaki et al. (2008).

Table 1 Rock-eval pyrolysis, total organic carbon (TOC), and vitrinite reflectance data for the study areas

Sample ID Depth (m) Timax (°C) S, (mg/qg) S, (mg/g) S3 (mg/g) TOC (wt.%) % Ro

Chinomi-gawa section
CH26 533 442 0.05 0.89 033 0.96 0.69
CHo1 535 443 0.02 061 032 1.00 0.78
CHO2 590 434 0.02 027 0.14 062 0.83
CHO3 613 437 0.02 0.23 023 0.57 0.83
CHO5 738 436 0.02 033 0.21 063 0.73
CHO6 741 439 0.05 0.54 021 0.90 0.86
CHoO7 773 440 0.02 0.38 0.19 0.93 0.89
CHo8 792 440 0.02 026 0.24 0.70 0.82

CH10 802 438 0.02 031 0.22 0.74 0.84
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Vitrinite reflectance

Visual kerogen analyses were conducted on selected sam-
ples using a Carl Zeiss MPM-03 microspectrophotometry
system (Oberkochen, Germany). Coarsely crushed samples
(25 g) were first treated with HCI for 2 h to remove car-
bonates and HF and HCI for 4 h on a hot plate at 97°C
twice to remove silicate minerals. After 1 week, the solu-
tion was centrifuged with heavy liquid to separate kerogen.
The kerogen was embedded in a resin plug and polished
to a flat shiny surface. Measurements of the percentage of
incident light reflected from vitrinite particles under oil
immersion were conducted using Carl Zeiss MPM-03 at a
magnification of x500. Reflectance with a digital indicator
was calibrated on a glass standard in oil. Vitrinite reflect-
ance data (% Ro) are listed in Table 1, and typical histo-
grams are shown in Figure 3b.

Basin modeling
To understand burial and exhumation histories of the
studied sections, thermal and kinetic modeling was per-
formed using BasinMod 1-D° software at the Technology
Research Center of JOGMEC (Japan Oil, Gas and Metals
National Corporation, Tokyo, Japan). Additionally, JAPEX
in-house basin modeling software BSS® was used. The
Tmax data of the Rock-Eval pyrolysis were converted to
vitrinite reflectance (% Ro) data by referring to a built-in
conversion table, and then these data were utilized for
the maturation modeling. Kinetic models of % Ro data
adopted for the programs are after Suzuki et al. (1993;
Simple-Ro) and Sweeney and Burnham (1990; Easy-Ro).
At the present time, we do not have clear geologic evi-
dence to adopt a variable heat-flow model. Therefore, we
adopted a constant heat-flow model for the whole model-
ing period, which extended from the Cretaceous to the
present, as the first step of the modeling process. Scarce
volcanic material in the sedimentary units in Urakawa im-
plies that the geothermal province of the inner arc was far
from our study area during the analyzed period; hence,
present-day data of 40 mW/m? that were calculated on
the basis of temperature logging and thermal conductivity
records at a drilling site in central Hokkaido (Tamaki et al.
2009) were adopted for use in this study. As for the
Kitakawaguchi SK-1 and MITI Rumoi, a constant value
of 48 mW/m? (20% higher than Urakawa) was adopted
through the consideration of prolonged igneous activ-
ities within the adjacent Rebun-Kabato Belt.

Results

Results of one-dimensional thermal and kinetic modeling
are shown in Figure 4. As for the trench side of the forearc
region, modeling results clearly indicate that subsurface
temperatures determined for the present thickness of the
analyzed rock units did not match those of the measured
maturation levels. An eroded younger unit overlying the
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existing strata is, then, necessary to fit the calculated and
observed maturation levels. First, we assumed that the
Maastrichtian Hakobuchi Formation, the stratigraphic age
of which is based on the unit distributed to the south of
the study area (Sakai and Kanie 1986), was deposited on
the studied section because it was the uppermost member
of the Yezo forearc basin described by Ando (2003). The
Hakobuchi Formation shows upward-coarsening facies
successions formed by progradation of the inner shelf to
delta plain systems (Ando 2003), and these were catego-
rized to be outer to inner shelf, shoreface, subordinate
estuary, incised valley, river-channel, back-marsh, and
floodplain after Takashima et al. (2004). Next, the fore-
arc basin was probably uplifted in the early Paleocene as
a result of voluminous accretion beneath the subduc-
tion zone (e.g., Ueda et al. 2000). Burial history of the
Hakobuchi Formation (Figure 4a) optimized on the
basis of maturation profiles of Ro and T),,, (Figure 4b)
within the upper part of the Yezo Group indicates an
extremely high sedimentation rate (1.57 m/1,000 years),
which seems to be unrealistic considering the above-
mentioned sedimentary facies. Therefore, we introduced
a missing Paleogene-to-Neogene unit as presented in
Figure 4c. This model includes moderate burial/erosion
around the end of the Cretaceous, which was practically
ineffective at matching the observed maturity and sub-
sequent long-standing subsidence. As the exhumation
process was not obvious, the hypothetical strata is as-
sumed to have been removed at a constant rate since
the collision and contraction scheme emerged around
central Hokkaido at around 15 Ma (Miyasaka et al.
1986). Optimization of the maturation trend (Figure 4d)
required an enormous amount of sediment (thickness is
ca. 3,300 m) accumulation around the Urakawa area
during the Paleogene and early Neogene. This result is
quite similar to previous modeling in an adjacent area
(Tamaki et al. 2009).

In sharp contrast, the one-dimensional modeling for the
continental side of the forearc region (Figure 4efgh) sug-
gests that basin subsidence had been stagnant throughout
the late Paleogene, whereas the Neogene period was
characterized by drastic subsidence at around 15 Ma.
This result is concordant with seismic interpretation data
of the Japan Sea side of northern Hokkaido (Itoh et al.
2009), which showed an episode of regional subsidence
and change in the basin configuration related to Miocene
back-arc spreading. Therefore, our geochemical approach
has confirmed the presence of a tectonic episode of exten-
sive longitudinal basin formation during the Paleogene.

Discussion

Our geochemical analysis has revealed a dynamic process
of burial and exhumation in the study area. The authors
present a chronicle of the Cenozoic basin formation and
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Figure 4 Results of one-dimensional thermal and kinetic modeling. Models for the trench side (a, b, ¢, d) and continental side (e, f, g, h) of
the paleo-forearc region in Hokkaido. (a) Burial history assuming drastic burial (deposition of the Hakobuchi Formation) and exhumation (development
of the Horobetsugawa Complex) around the end of Cretaceous and early Paleocene, respectively (Model 1). (b) Measured (dots) and calculated (lines)
maturation trends optimized for Model 1. (c) Burial history assuming Paleogene persistent subsidence and Neogene exhumation (Model 2).

(d) Measured (dots) and calculated (lines) maturation trends optimized for Model 2. (e) Burial history for the Kitakawaguchi SK-1 borehole.

(f) Measured (dots) and calculated (line) maturation trends optimized for the Kitakawaguchi SK-1. (g) Burial history for the MITI Rumoi borehole.




Itoh et al. Progress in Earth and Planetary Science 2014, 1:6
http://www.progearthplanetsci.com/content/1/1/6

related tectonic episodes in the following sections. Then,
we evaluate tectonic models for the development of the
convergent margin in the light of re-examination of the
paleomagnetic data and numerical modeling of basin
formation.

Early Paleogene setting

We divided the Paleogene into two stages based on the
tectonic context. The middle Eocene setting consists of an
initiation of sedimentary basins, and the late Oligocene
setting represents a transition to a remarkable transpres-
sional regime on the convergent margin. Sedimentary
units in between periods (e.g., Poronai and Momijiyama
Formations) have significance for the construction of a
paleoenvironmental overview, and numerical modeling of
basin formation has been conducted for the Poronai stage
(Kusumoto et al. 2013). However, their subsurface distri-
bution needs to be reassessed on the basis of updated bio-
stratigraphic information; hence, we excluded these units
from the basin analysis in the present study.

After sporadic basin formation during the Paleocene,
the Eocene Ishikari Group in a bay-to-fluvial environ-
ment was deposited extensively in the Ishikari-Teshio
Belt. Based on the mineral assemblage, lijima (1959)
showed that sand grains of the Ishikari Group were de-
rived from the Kamuikotan metamorphic rocks on the
trench side (east) of the depositional areas, a fact which
is suggestive of uplift and erosion of the trench slope
break on the forearc. The isolated basin of the Ishikari
Group was probably connected with the open marine
environment by narrow inlets, a recent analogue of which
can be seen in the present Sacramento Valley that con-
nects with the Pacific Ocean at San Francisco Bay in
California (inset map of Figure 2). It represents the
‘shelved (shallow marine)’” or ‘benched (terrestrial)’ type
of forearc after Dickinson (1995). Takano et al. (2013)
presented a schematic and conceptual forearc setting
model for the Eocene Ishikari basin.

It should be noted here that the sedimentary basin of
the Ishikari Group was differentially subsided and can be
divided into several compartments (Takano and Waseda
2003). Figure 2 delineates a plan view of the Ishikari sub-
basins. As a modern analogue, similar compartmentalization
can be observed on the Sunda forearc, where an oblique
subduction setting is prevalent (Dickinson 1995). To the
south of our study area, the contemporaneous forearc
basin of northeast Japan seems to have suffered similar
segmentation, and wrench deformation on this region was
inferred from paleomagnetic data. Itoh and Tsuru (2006)
reported paleomagnetic directions from a borehole on the
forearc (MITI Sanriku-oki in Figure 1), which are suggest-
ive of clockwise rotation since the Eocene, and proposed a
tectonic model of forearc slivers divided by dextral faults.
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Another characteristic of the Eocene basin is acceler-
ation of subsidence. Based on a detailed sedimentological
study, Takano and Waseda (2003) pointed out that the
rate of subsidence had accelerated during deposition of
the Ishikari Group. A contractional regime may have been
coexistent during this stage, as was suggested by Takano
et al. (2013) and Kusumoto et al. (2013). Kawakami et al.
(2002) found fragments of metamorphic rocks from acidic
tuff intercalated in a lower Oligocene unit in the Ishikari-
Teshio Belt. A low-pressure and high-temperature type of
metamorphic material implies considerable uplift and ex-
humation of the Hidaka Mountains. Existence of acidic
tuff layers also suggests that subduction-related volcanism
was still active. An Eocene geologic unit linked to an
accretion episode was described by Kawakami et al.
(2008). Thus, formation/deformation processes of the early
Paleogene basins were probably governed by active sub-
duction and transpressional motion on the N-S margin.

Late Paleogene setting

Regional unconformity: seismic interpretation

As predicted by Fitch (1972), prevailing oblique subduc-
tion upon the ancient forearc region may have provoked
the development of a bisecting transcurrent fault parallel
to the trench axis. Its modern analogue can be seen in the
Barisan fault in the Sunda arc (Dickinson 1995). The
southern part of the possible bisecting fault system was
described by Itoh and Tsuru (2006). They found strike-slip
faults within the northeast Japan forearc based on seismic
interpretations. In this area, a remarkable Oligocene un-
conformity was found and named as ‘Ounc’ by Osawa
et al. (2002). Because the angular unconformity is recog-
nized along the most conspicuous fault on the forearc, this
regional uplift and erosion event was probably linked to
activation of dextral motions on the fault system.

Figure 5 shows an E-W seismic profile acquired in a
MITI survey (JNOC 1974), which crossed the modern
forearc of northeast Japan. The profile is characterized by
numerous high-angle faults, on which transcurrent mo-
tions can be assumed from the viewpoint of regional
structural architecture. Recent seismic investigations have
visualized intensive deformation of the early Paleogene
units cut by the ‘Ounc’ unconformity. Osawa et al. (2002)
and Takano et al. (2013) assigned the ‘Ounc’ to the base of
the Minaminaganuma Formation, which deposited in a
large pull-apart sag in Hokkaido as described in the next
section. The presence of several regional unconformities
implies recurrent activities of the arc-bisecting fault sys-
tem and progressive deformation of the forearc region.

Description of pull-apart basins

The late Paleogene structural style around Hokkaido is
different from that in the northeast Japan forearc. Depo-
centers are aligned on the transcurrent fault system in
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(JNOC 1974). See Figure 1 for line location. Geologic interpretation is after Takano et al. (2013).

conjunction with stepover portions of fault trace. From
north to south, Itoh et al. (2009), Tamaki et al. (2010),
and Itoh and Tsuru (2005) described synchronously de-
veloped pull-apart basins in the Ishikari-Teshio Belt.
Among them, the Minaminaganuma basin, which is bur-
ied by the late Oligocene Minaminaganuma Formation
(Kurita and Yokoi 2000) that is intercalated with numer-
ous volcaniclastic layers (T2 and T3 zones in Figure 6),
is the largest depression (Figure 7; southern basin in
Minaminaganuma stage with maximum thickness of
2,000 m). Tamaki et al. (2010) executed dislocation mod-
eling of the pull-apart basin and clarified that a 30-km
right-lateral strike slip is required to restore the actual
distribution and volume of the basin. As the northernmost
member of a series of tectonic basins, the Oligocene
Magaribuchi Formation developed in a wedge-shaped
depression (maximum thickness 1,500 m; Figure 7) under
transcurrent motions of faults on the basin margins
(Kurita 2010). Therefore, the pull-apart basin formation
was a regional tectonic episode along the eastern Eurasian
margin.

Unique forearc volcanism

Kurita and Yokoi (2000) showed that the Minaminaganuma
Formation consists of a lower volcanic unit and an
upper clastic unit. Figure 6 (top) depicts the radiometric

age histogram obtained from late Oligocene and early
Miocene volcanic/volcaniclastic rocks in the southern
part of the Ishikari-Teshio Belt. The presence of vol-
canic material in central Hokkaido is an anomalous
phenomenon because the coeval (approximately 30 Ma)
volcanic front of northeast Japan was located on the
eastern margin of the Japan Sea (Tatsumi et al. 1989).
Based on a geochemical study of Takinoue volcanic
rocks, which are included in the Takinoue Formation
and Minaminaganuma Formation (Figure 1), Okamura
et al. (2010) argued that the anomalous volcanism was
related to the opening event of the Japan Sea. They also
pointed out a linkage between the distribution of vol-
canic rocks and N-S trending coeval transcurrent faults.
Niida (1992) noted that alkali igneous rocks with a high
Na,O/K,O ratio occur in restricted areas along transform
boundaries, as exemplified by the modern Andaman arc
setting. Figure 6 (lower) depicts the geochemical plot
for the Mesozoic (Niida 1992) and Oligocene-Miocene
(Okamura et al. 2010) volcanic rocks in southern central
Hokkaido. The compositional trend of the Oligocene-
Miocene (Takinoue) volcanic rocks is in accord with
that observed in Grenada, which is located in the vicin-
ity of a major transform plate boundary (Niida 1992).
Therefore, activation of the dextral strike-slip move-
ment and formation of a pull-apart basin may have
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Figure 6 Characteristics of the volcanism in central Hokkaido.
Top: histogram of radiometric ages (courtesy of JAPEX, the Japan
Petroleum Exploration Co. Ltd, using the relevant subsurface data
set) obtained from the late Oligocene and early Miocene volcanic/
volcaniclastic rocks in the southern part of the Ishikari-Teshio Belt.
Bottom: geochemical trends of the Mesozoic Sorachi Group (Niida
1992) and the Oligocene-Miocene volcanic rocks (Takinoue; Okamura
et al. 2010) in central Hokkaido.

resulted in the formation of a deep crustal rupture and
episodic volcanism.

Neogene setting

Sedimentary environment during opening of the Japan Sea
backarc basin

The Neogene of Japan was heralded by the opening event
of the Japan Sea back-arc basin. There are two kinematic
models of back-arc opening. One is a ‘double-door’ model
based upon paleomagnetism (Otofuji and Matsuda 1983;
Otofuji et al. 1994), and the other is a ‘pull-apart’ model
deduced from regional tectonics (Lallemand and Jolivet
1985). The former model requires counterclockwise ro-
tation and extensional deformation of Hokkaido adja-
cent to a pivot of the northern ‘door’ (a drifted coherent
landmass). The latter model causes clockwise rotation
of domino-style crustal blocks (Takeuchi et al. 1999) in
Hokkaido that are situated on a dextral margin of the
large rhomboidal back-arc basin. A paleomagnetic study
by Tamaki et al. (2010) indicates that these simplistic
models cannot account for complicated deformation in
Hokkaido. Furthermore, seismic data (e.g., Itoh et al.
2005) indicate intensive deformation and detachment in
the upper crust of the Ishikari-Teshio Belt.
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Among the Neogene sedimentary units in Hokkaido,
lithology of the Takinoue Formation seems to reflect en-
vironmental changes during the regional back-arc open-
ing. The lower part of the Takinoue Formation consists of
marine sediments in a transgression/regression cycle ac-
companied with voluminous volcanic material, whereas
the upper part was deposited in a transgressive episode
and gradually changed into turbidite facies of the overlying
Kawabata Formation. Although the lower (ca. 18 to 19
Ma) and upper (<18 Ma) parts of the formation may rep-
resent rifting under a transtensional regime and develop-
ment of elongate basins along the large strike-slip fault
system, respectively, further investigations of the stratig-
raphy and sedimentary facies will be necessary to elucidate
the tectonic context of this intriguing unit.

Prevalence of foreland basin setting
Miyasaka et al. (1986) proposed that uplift and massive
sediment supplies had commenced in the middle Miocene
when large amounts of clastic Hidaka metamorphic rocks
appeared in sedimentary basins in the southern part of
the Ishikari-Teshio Belt. Kawakami et al. (2008) showed
that a part of the strong contraction was accommodated
by thrusting of the Paleogene forearc unit, the Niseu
Formation. Not only was the onshore sedimentary basin
buried, the southern offshore Hidaka-oki basin was buried
rapidly as well with the contemporaneous sediments. Itoh
and Tsuru (2005) estimated that the rate of burial (equal
to the erosion rate of the Hidaka Mountains) was compar-
able with that of the recent burial episode linked with in-
tensive arc-arc collision tectonics. As stated by Jolivet and
Huchon (1989), the geological structure of Hokkaido sug-
gests that the long-standing transcurrent regime had di-
minished by the late Miocene. As for the northern part of
the Ishikari-Teshio Belt, the timing of the remarkable con-
traction seems to have been later than that of the southern
sector. Itoh et al. (2009) showed that an offshore basin on
the eastern margin of the Japan Sea accelerated the subsid-
ence rate during the Quaternary, and a half-graben
morphology developed. This is an indication of the emer-
gence of the foreland basin setting (Allen and Allen 2005).
Notwithstanding the prevailing compressive regime, our
geological review has clarified that the transcurrent com-
ponent was still significant in the Neogene basin-forming
process. As shown in Figure 7 (right), the Kawabata
sedimentary basin in the middle Miocene consists of
elongate depocenters aligned in an en echelon shape,
which implies that there was an effect of right-lateral
wrench deformation.

Sense of lateral motion since the Cretaceous

As mentioned before, the structural architecture of the
forearc of northeast Japan and the Paleogene basin con-
figuration in central Hokkaido have a tendency towards
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dextral motion on the major arc-parallel faults. This
seems, however, contradictory with reconstruction stud-
ies of old terranes in the arc that imply a remarkable
Cretaceous sinistral displacement and deformation (e.g.,
Sasaki 2003), and the tectonic model of Otsuki (1992)
that adopted left-lateral transportation of crust blocks
along the continental margin.

Based on paleomagnetism and thermochronology of the
subsurface Cretaceous granodiorite obtained from the
Kamaishi Mine (Figure 1), Itoh et al. (2000) stated that a
part of northeast Japan had experienced episodic counter-
clockwise (CCW) rotation during the mid-Cretaceous.
Figure 8 presents their paleomagnetic results. Multi-
component remanent magnetization was acquired during
slow cooling of an enormous plutonic body, and the re-
corded CCW rotation (Figure 8a) was closely related to
the contemporaneous rapid northerly Izanagi Plate mo-
tion (Figure 8b) and the strong left-lateral shearing on the
Eurasian margin. Although such an episodic governance
of the Izanagi Plate may range from 130 to 85 Ma at
the maximum duration (Engebretson et al. 1985), a
realistic estimate needs to be based on paleorecon-
struction of the continental margin through further
tectonic investigations.

On comparison with the east Eurasian paleomagnetic
reference in Sikhote Alin (Figure 8a; Otofuji et al. 2003),

Itoh and Amano (2004) pointed out the presence of
clockwise (CW) rotation in later periods (Figure 8a).
They performed detailed paleomagnetic and structural
analyses along the sampling route and found that com-
plicated block rotation since the Cretaceous was gov-
erned by a north-trending dextral shear (Figure 8c).
Thus, dextral deformation and CW rotation dominantly
occurred on the forearc after the demise of the Izanagi
Plate. Itoh and Tsuru (2006) inferred a similar rotation
sequence (CCW to CW) in the offshore basin of north-
east Japan based on remanence directions of the late
Cretaceous and Eocene oriented core samples in a deep
borehole (MITI Sanriku-oki in Figure 1).

Duration of strike-slip motion: dislocation modeling of
basin formation
Our basin study has shown that a wrench deformation
occurred in central Hokkaido even under the emergence
of the compressive regime in the Miocene. Hence, for
semi-quantitative evaluation of the transition of regional
tectonic regimes, we attempted to restore the Kawabata
sedimentary basin in the middle Miocene on the basis of
numerical modeling.

In this study, we used dislocation modeling to restore
the vertical displacement pattern formed by a bunch of
strike-slip faults. Dislocation modeling is a superposition
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of an analytical solution for dislocation planes embedded
in an elastic isotropic half space (Rodgers 1980), and it is
advantageous in that the simple calculation represents
the essential characteristics of the structural pattern
without the assumption of a dynamic frictional constant
over the fault plane (Kusumoto et al. 1999, 2001). For
the calculation, Okada's dislocation plane (Okada 1985)
was adopted. Optimized modeling parameters of the
present study are shown in Table 2. The Poisson's ratio
and Young's modulus of the medium were taken to be
0.4 and 75 GPa, respectively. In Okada's formula (Okada
1985), the Poisson's ratio is included as the only elastic
constant, and we employed 0.4 as its magnitude. When

numerical simulations based on the elastic theory are ap-
plied to geological problems, high Poisson's ratio such as
0.4 to 0.5 has been employed frequently (e.g., Katzman
et al. 1995; Tamaki et al. 2010). In this study, we expressed
fault motion in the geological timescale by fault motions
and propagations of 100 times. We modeled fault propa-
gations as migration of fault terminations, and its migra-
tion rate was given by 1/100 of the total dislocation shown
in Table 2.

Figure 9 presents the results of numerical modeling.
For comparison, the generally conceived compressional
model (Figure 9a,b) and our hybrid transpressional model
(Figure 9c) are juxtaposed in the figure. It is obvious that

Table 2 Fault parameters of each fault for the Kawabata stage

Fault zone (ID in Figure 9)

Components of dislocation (km)

Fault parameters

Strike-slip Dip slip Tensile L (km) W (km) d (km) 6 (°)
Early stage (transpression)
T2 (a) 2298 0.0 0.0 500.00 150 15.0 90.0
T2 (b) 4873 0.0 0.0 500.00 150 15.0 90.0
Rumoi-Shintotsu (c) 4873 0.0 0.0 63.13 15.0 15.0 90.0
Chikubetsu (d) 21.96 0.0 0.0 29.09 150 15.0 90.0
Horonobe (e) 35.34 0.0 0.0 70.69 150 15.0 90.0
Tenpoku (f) 35.34 0.0 0.0 30.84 15.0 15.0 90.0
Late stage (compression)
Hidaka-north (g) 0.00 25 0.0 500.00 1732 15.0 60.0
Hidaka-south (h) 0.00 25 0.0 216.72 1732 15.0 60.0

Nomenclature of fault zones is after Kusumoto et al. (2013). Positive strike-slip and dip slip components correspond to right-lateral slip and reverse slip,
respectively, with 0 < & < m/2. L, W, d, and 6 represent the length, width, depth, and dip of the fault, respectively.
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Figure 9 Results of dislocation modeling of the Kawabata sedimentary basin. (a) Simulation based on a simple compressive regime.
(b) Compressive model based on unrealistic fault distribution. (c) Simulation based on a transpressional regime assuming propagation of fault
terminations. Names of fault abbreviations and optimized fault parameters are given in Table 2. Fault names adopted for numerical modeling are

the simplest model (Figure 9a) that assumes uniform
reverse motion on the modeled faults (with a dip angle
of 60°) cannot restore the real basin morphology in the
Kawabata stage. In order to fit the pattern of vertical
deformation, an unrealistic distribution of reverse faults
has to be assumed as shown in Figure 9b. It is also noted
that the calculated size of the depression was too small
compared with that of the actual basins. On the contrary,
a hybrid model (Figure 9c¢; early dextral slip on the en
echelon faults and late reverse slip on the Hidaka faults)
that assumed propagation of fault terminations was able
to restore the complicated Neogene basin arrangement
successfully (see Figure 7).

Mass balance on the convergent margin

The Japan Trench is well-known as a typical consuming
plate margin governed by the subduction erosion process.
In previous studies, the rate of subduction erosion was es-
timated on the assumption that the Pacific Plate had been
steadily subducting underneath northeast Japan (e.g., von
Huene and Lallemand 1990; von Huene et al. 1994). How-
ever, our model of pull-apart basin formation indicates a
considerable amount of south-southeastward migration
of the forearc sliver. Itoh and Tsuru (2006) assumed
more than 200 km of total migration on the basis of a
reconstruction of the conspicuous geomagnetic anom-
aly on the forearc region. Such migration would have
caused thrusting sliver toward the plate boundary and
an increased rate of convergence between the oceanic

and continental plates. Remarkable forearc unconform-
ity linked with transcurrent faulting may be provoked
by such tectonism. Temporal change in subduction ero-
sion rate and mass balance on the Asian convergent
margin should be considered on the basis of further in-
tegrated basin analyses.

Conclusions

Based on geological, geochemical, and geophysical ap-
proaches, the complicated processes of the Cenozoic
basin formation in central Hokkaido have been eluci-
dated as follows:

(1) Long-standing subduction of an oceanic plate pro-
voked basin formation on the forearc region including
central Hokkaido throughout the Paleogene.

(2) The oblique mode of subduction resulted in com-
partmentalization of the Paleogene basins and occasional
erosion events.

(3) A compressive tectonic episode since the end of
Paleogene was reflected as exhumation of the Paleogene
basins and emergence of the foreland setting.

(4) Middle Miocene basin morphology in central
Hokkaido was successfully reproduced by assuming hybrid
fault motions; these included initially right-lateral and sub-
sequently reverse motions in the longitudinal fault zone.

(5) Except for an episodic left-lateral motion event
during the Cretaceous, dominant right-lateral slip upon
the northeastern Japanese forearc controlled the long-
standing basin-forming process until the middle Miocene.
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