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Water-melt interaction in hydrous magmatic
systems at high temperature and pressure
Bjorn Mysen
Abstract

Experimental data on the structure and properties of melts and fluids relevant to water-melt interaction in hydrous
magmatic systems in the Earth's interior have been reviewed. Complex relationships between water solubility in
melts and their bulk composition [Al/Si-ratio, metal oxide/(Al + Si) and electron properties of metal cations] explain
why water solubility in felsic magmas such as those of rhyolite and andesite composition is significantly greater
than the water solubility in basalt melts. The silicate solubility in aqueous fluid is also significantly dependent on
composition with metal oxide/(Al + Si) and electron properties of the metal cations, the dominant variables.
Hydrogen bonding is not important in hydrous fluids and melts at temperatures above 500°C to 550°C and does
not, therefore, play a role in hydrous magmatic systems. The properties of hydrous melts and aqueous solutions are
governed by how the silicate speciation (Qn species, where n is the number of bridging oxygen in an individual
species) varies with bulk composition, silicate composition, temperature, and pressure. The reactions that describe
the interactions are similar in melts, fluids, and supercritical fluids. The degree of melt polymerization caused by
dissolved water varies with melt composition and total water content. Silicate- and alkali-rich felsic magmatic melts
are more sensitive to water content than more mafic magmas. Transport and configurational properties of hydrous
magmatic melts can be modeled with the aid of the Qn speciation variations. Liquidus and melting phase relations
of hydrous systems also can be described in such terms, as can minor and trace element partition coefficients.
Stable isotope fractionation (e.g., D/H) can also be rationalized in this manner. Critical to these latter observations is
the high silicate concentration in aqueous fluids. These components can enhance solubility of minor and trace
elements by orders of magnitude and change the speciation of H and D complexes so that their fractionation
factors change quite significantly. Data from pure silicate-H2O systems cannot be employed for these purposes.

Keywords: Hydrous magma; Aqueous fluid; Melt structure; Viscosity; Isotope partitioning; Partial melting; Water
solubility; Silicate solubility; Glass transition; Solution mechanism
Review
Introduction
The principal mass and energy transport agents in the
Earth are magmatic melts and water-rich fluids. Their
transport properties are sensitive to their water and silicate
content. Experimental characterization of solubility and
solution mechanisms of water and silicate components is,
therefore, central to our understanding of magmatic and
metasomatic processes in the Earth’s interior.
Properties of magmatic melts are sensitive to their water

content as first noted by Spallanzani (1798). Perhaps the
most well-known among these effects is a several hundred
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degree centigrade temperature depression at high pressure
of solidii and liquidii of silicate phase assemblages (in-
cluding natural mineral assemblages) (e.g., Kushiro et al.
1968a, b; Grove et al. 2012). Liquidus phase relations (in-
cluding partial melt compositions), transport, and volume
properties of hydrous melts also vary in important ways
with variations in water content (Kushiro 1972; Richet
et al. 1996; Ochs and Lange 1999; Grove et al. 2003).
Aqueous solutions in the Earth's interior are efficient

solvents of oxide components (Zhang and Frantz 2000;
Manning 2004). Several mol% of silicate components
dissolve under conditions corresponding to those of the
deep continental crust and upper mantle. In the upper
mantle, there can be complete miscibility between H2O
and silicate (Bureau and Keppler 1999; Mibe et al. 2007).
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Major element solutes in aqueous fluids (silicate compo-
nents) can also enhance the solubility of other compo-
nents by up to orders of magnitude (Pascal and Anderson
1989; Antignano and Manning 2008; Mysen 2012a, b;
Ayers and Watson 1993). Transport, volume, and mixing
properties of silicate-rich aqueous fluids differ in import-
ant ways from those of pure H2O (Audetat and Keppler
2004; Hunt and Manning 2012; Hack and Thompson
2012; Foustoukos and Mysen 2013).
The property behavior of melts and fluids in hydrous

silicate systems at the high temperatures and pressures
can be traced to the relationships between fluid and melt
structure and their properties. Most experimental and
theoretical studies have focused on the behavior in
chemically simpler systems in order to isolate the effects
of individual intensive and extensive variables. With the
information from chemically simpler systems, we can
model melt and fluid behavior in systems relevant to nat-
ural processes. In this review, these relationships will be
presented and their applications to natural systems will be
discussed.

Water and properties of hydrous magma
Melting phase relations
The solidus temperature depression of mantle peridotite
caused by H2O ranges between approximately 1200°C and
approximately 1600°C at the upper mantle pressures
(Figure 1A). The water solubility in partial melts from a
peridotite parent in this pressure range is 20 to 40 wt%
(Hamilton et al. 1964; Holloway and Jakobsson 1986).
Furthermore, the extent of the solidus temperature
0

1

2

3

4

5

6

300 600 900 1200 1500 1800
Temperature, ˚C

P
re

ss
ur

e,
 G

P
a

granite-H
2 O

peridotite-H
2 O

anhydrous peridotite

anhydrous granite

A

Figure 1 Pressure/temperature trajectories. (A) Granite with and withou
without H2O (peridotite-H2O and anhydrous peridotite) solidi (Stern et al. 1
and without H2O (cristobalite-H2O, enstatite-H2O, anhydrous cristobalite, an
1976; Boettcher 1984).
depression depends on silicate composition and increases,
for example, with increasing silica content (Figure 1B). In
natural systems, this effect helps explain why the liquidus
depression caused by H2O of a felsic composition (e.g.,
granitic composition) is greater than that of peridotite
(Figure 1A). An implication of these observations is that
in a subduction zone water has a greater effect on solidus
temperature of descending crustal material near the slab/
peridotite interface than in an overlying peridotite wedge
or in an underlying depleted oceanic lithosphere (200°C to
300°C temperature difference; Kushiro et al. 1968b; Grove
et al. 2012).
The composition of a melt in equilibrium with silicate

mineral assemblages at high pressure is affected by H2O
(Figure 2). For example, at 2 to 3 GPa, in equilibrium
with enstatite + diopside + forsterite in the CaMg2O6-
Mg2SiO4-SiO2 system, the melt is quartz normative in the
presence of H2O and olivine normative under volatile-free
conditions (Kushiro 1969). In natural peridotite systems,
this difference persists so that partial melting of hydrous
peridotite at least to 2 GPa is quartz normative (andesite
or quartz tholeiite), whereas anhydrous peridotite melting
under these conditions results in olivine tholeliite (Kushiro
1990). The silica content of partial melts is not, however,
the only compositional variable affected by H2O at high
pressure and temperature. This is evident in the system
NaAlSi3O8-KAlSi3O8-SiO2 system (Figure 2B). Here, in-
creasing water pressure (which means increasing concen-
tration of H2O in the melt) leads to a rapid expansion of
the quartz liquidus volume relative to that of feldspar
components. This evolution means increasing alumina/
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silica ratio in hydrous melts derived from partial melting
of pelagic sediments compared with melting products of
hydrous oceanic basaltic crust in the upper portion of
subducting plates the higher the water content (see, for
example, Poli and Schmidt 2002).

Properties of hydrous silicate melts
Transport properties of silicate melts (e.g., viscosity, dif-
fusion, conductivity) are quite sensitive to their water
content. For example, melt viscosity decreases by several
orders of magnitude by a solution of as little as 1 wt%
H2O (Richet et al. 1996). This effect, however, is strongly
non-linear and diminishes with increasing water content
(Figure 3A). Furthermore, deviation of melt viscosity
from Ahrrenian behavior is increasingly pronounced the
higher the water content (Figure 3B). Water effects on
viscosity are more pronounced the more felsic the melt.
Water effects also are more pronounced the higher the
alkali/alkaline earth ratio. This means that the viscosity
of rhyolitic melts is more sensitive to water content than
basalt and that alkali basalt is more sensitive to water
content than olivine tholeiite.
Most other physical properties of silicate melts show

analogous relations with water content and silicate com-
position. Examples include cation and water diffusion in
melts (Watson 1994; Behrens and Nowak 1997), effects
of water on glass transition temperature (Richet et al.
1996, 1997; Whittington et al. 2000), and electrical con-
ductivity (e.g., Takata et al. 1981; Satherley and Smedley
1985). These effects exist because of the functional
relationships that exist between these transport properties
(Nernst 1888; Einstein 1905; Eyring 1935a, b).
Water solubility in magmatic melts
In order to understand better the solubility behavior of
H2O in silicate melts and the silicate solubility in aqueous
solutions, examination of schematic phase relations in
silicate-H2O systems can be helpful (Figure 4). There
exists a range of pressures and temperatures where
H2O-saturated silicate melts and silicate-saturated aque-
ous fluids coexist (‘melt + fluid’ field in Figure 4). This
boundary defines the water solubility in the silicate melts.
The boundary between ‘aqueous fluid’ and ‘silicate melt +
aqueous fluid’ describes the silicate solubility in aqueous
fluid. At temperatures above the solvus (above the critical
point (c.p.) in Figure 4), there is complete miscibility be-
tween silicate melt and aqueous fluid. The temperature/
pressure coordinates of the critical point ranges from
about 1 GPa near 1,200°C for granitic compositions to
nearly 4 GPa near 1,200°C for peridotite-H2O (Bureau and
Keppler 1999; Mibe et al. 2007). The slope of the phase
boundaries at lower temperatures depends on pressure
and temperature itself (Holtz et al. 1995).
It follows that water solubility in magmatic melts is

temperature, pressure, and silicate composition dependent.
The water solubility in melts in the simplest of silicate sys-
tems, SiO2-H2O, at low pressures is a linear function of the
square root of water fugacity, √f H2O (Moulson and Roberts
1961; see Figure 5A). However, with increasing pressure



Silicate H2O

T
em

pe
ra

tu
re

melt+fluid

crystal(s)+fluid

crystal(s)

+m
elt

fluid

supercritical fluid

melt

c.p.
P1>P2

P1

P2

Figure 4 Schematic and simplified phase relations in silicate-H2O
systems at two different pressures, P1 and P2, where P1 > P2.

8
H2O concentration, wt%

6420

18

10

14

6

2

lo
g 

vi
sc

os
ity

 (
P

as
)

1800 K

1000 K

8 14 2 16
1/T•104 (K-1)

13

11

9

7

5

3

1

lo
g 

vi
sc

os
ity

 (
P

as
)

8 
wt%

 H
2O

an
hy

dr
ou

s

A B 1600 1200 1000 800 600
Temperature, K

Figure 3 Viscosity of silicate melts as a function of their total H2O content and temperature. (A) Hydrous andesite melt viscosity from Richet
et al. (1996) recorded at ambient pressure by using a sample synthesized at 400 MPa and 1400˚C before viscosity measurement at ambient pressure
and temperatures indicated. (B) Temperature-dependence of melt viscosity of granite composition with (8 wt%) and without H2O as indicated on
curves from Hess and Dingwell (1996).

Mysen Progress in Earth and Planetary Science 2014, 1:4 Page 4 of 18
http://www.progearthplanetsci.com/content/1/1/4
(and f H2O), the solubility is a non-linear function of √f H2O

(Figure 5) and where the pressure dependence itself is
pressure dependent (Kennedy et al. 1962; see Figure 5B).
The features in Figure 5 notwithstanding, the pressure

dependence of water solubility in more complex melts,
including natural basalt and other aluminosilicate com-
positions, shows no simple solubility relationship with
pressure (or f H2O ) (Figure 5C). These complex relations
likely reflect several effects on the solubility of H2O of in-
dividual silicate components. For example, in ternary
metal oxide aluminosilicate systems, water solubility is
correlated with metal/Si and Al/Si ratios and electronic
properties of the metal cation (Kurkjian and Russell 1958;
Behrens et al. 2001; Mysen and Cody 2004; see also
Figure 6). At high metal oxide/silica ratio, the water solu-
bility decreases as this ratio increases, but this relationship
reverses near composition where alkali metal/Si ratio is
near 1 (Kurkjian and Russell 1958). Furthermore, whereas
water solubility in peralkaline silicate melts decreases with
increasing Al/Si ratio (Figure 6B), the reverse relationships
have been observed for melts along SiO2-NaAlO2 (meta-
aluminosilicate) joins (McMillan and Holloway 1987).
Given the complex relationships between melt com-

position and water solubility, it is not surprising that
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the solubility varies significantly in different magmatic
systems. In general, water solubility in felsic magmas
such as those of rhyolite and andesite composition is
significantly greater than the solubility in basalt melts
(Hamilton et al. 1964; Dixon and Stolper 1995; Behrens
and Jantos 2001; Zhang 1999). This would be expected
because of the higher alkali/alkaline earth and Si/Al ra-
tios in rhyolite and andesite melt compared with melts
of basaltic composition. These solubility relationships
have been modeled with a variety of empirical models
(e.g., Spera 1974; Burnham 1975; Dixon and Stolper
1995; Behrens and Jantos 2001). However, quantitative
linkage between solubility behavior in chemically simple
melts and more complex natural magma compositions
await detailed structural characterization of the water
solution mechanisms in simple and complex magmatic
melts.

Silicate solubility in aqueous fluids
In the schematic phase diagram in Figure 4, the boundar-
ies silicate melt + aqueous fluid/aqueous fluid and silicate
crystals + aqueous fluid/aqueous fluid define the silicate
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solubility in the fluid above and below the solidus of the
system. The solubility of SiO2 in H2O has been the sub-
ject of more extensive experimental study than other
chemically more complex silicates. From a compilation
of available high-pressure/high-temperature solubility
data, an effective way to describe solubility is in terms
of temperature and the density of pure H2O at the
temperature (and pressure) of interest (Manning 1994;
see also Figure 7). It must be emphasized, however, that
the empirical relationship used for this purpose,

Log mSiO2 mol=kgð Þ ¼ 4:262−ð5764:2=T Kð Þ
þ 1:7513•106=T2
� �

− 2:2868•108=T3
� �

þ½2:8454− 1006:9=Tð Þ
þ 3:5689•105=T2
� ��• log ρH2O;

ð1Þ

uses the density of pure H2O to describe the silica
solubility, and it is known that silicate components in
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the solution affects the density of the solution (Mysen
2010a, b).
Additional components affect the silicate solubility

in aqueous fluid. For example, addition of MgO to SiO2

reduces the SiO2 solubility (Zhang and Frantz 2000; Kawa-
moto et al. 2004; see also Figure 8). The Mg/Si ratio of the
fluid increases with pressure (Kawamoto et al. 2004).
Below about 3 GPa, MgO cannot be detected in the fluid
(Zhang and Frantz 2000; Kawamoto et al. 2004). The de-
creased Mg/Si ratio of fluid with increasing pressure likely
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Figure 8 Solubility of silica (SiO2) in fluid. Coexisting with
enstatite + forsterite (0.49 to 1.7 GPa pressure, closed symbols) and
with enstatite (3.6 GPa pressure, closed symbols) in MgO-SiO2-H2O
fluid calculated with the algorithm of Newton and Manning (2002)
(results from Mysen et al. 2013).
reflects the interaction between dissolved silica and MgO
- perhaps similar to the solubility behavior of Al2O3 in
fluids in the system SiO2-Al2O3-H2O-NaCl where increas-
ing SiO2 content in the fluid enhances the Al2O3 solubility
(Figure 9). In the latter system, there is also a pronounced
positive effect of increasing NaCl in the fluid (Newton and
Manning 2008).
Oxides that are essentially insoluble in pure H2O also

can be affected quite strongly by other solutes such as
silicate and aluminosilicate components. As an example,
the solubility if Ti4+ in fluid in equilibrium with melt in
the Na2O-Al2O3-SiO2-TiO2-H2O is a strong positive
function of concentration of aluminosilicate component
in addition to temperature and pressure (Antignano and
Manning 2008; Mysen 2012a; see Figure 10). This is a
very different solution behavior than that of TiO2 in the
simple system, TiO2-H2O; here, the Ti solubility is in the
parts per million range (Audetat and Keppler 2005;
Antignano and Manning 2008). Similar effects have been
observed for P5+ and other high field strength cations
(Mysen 2011; Bernini et al. 2013). It follows, therefore,
that during dehydration of subducting slabs where the
fluid is quite silicate rich, it will likely carry significantly
greater proportions of nominally refractory oxides than
that expected from solubility measurements with pure
H2O as the solute (see also Manning 2004).

Melt and glass
Glass transition
Most of the experimental data on solubility and solution
behavior of water in silicate melts at high temperature
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have been obtained by analysis of the glass formed by
temperature quenching from a high-temperature/high-
pressure hydrous melt. Temperature-dependent structure
may change during such a cooling process and eventually
gets frozen in at the temperature of the glass transition
(Dingwell and Webb 1990). By definition, the glass tran-
sition temperature (actually a small temperature range),
therefore, is that below which the material is not relaxed
on the time scale of a measurement (glass), whereas
above that temperature, the material is relaxed (liquid).
In the temperature interval between a liquidus and glass
transition temperature, the material is a supercooled
liquid with the same property behavior as that of the
melt above the melting temperature. These distinctions
are important when a property measured on a glass is
applied to the property behavior of its melt.
Principles of silicate melt structure
Characterization of water solution mechanisms in sili-
cate melts, including magmatic melts, requires under-
standing of the principles of silicate melt structure. A
basic structure concept is a degree of polymerization of
the silicate network of oxygen tetrahedra with their cen-
trally located tetrahedrally coordinated cation (T-cation)
(Figure 11). The dominant T-cations in magmatic melts
and glasses are Si4+ and Al3+ provided that the pressure
is less than that where these cations may undergo coord-
ination transformations (coordination transformations
begin to take place ≥5 to 6 GPa depending on whether it
is Al3+ or Si4+ and depending on the overall melt
composition; see, for example, Ohtani et al. 1985; Lee
et al. 2004). There are two types of oxygen forming the
corners of these tetrahedra. An oxygen shared by neigh-
boring tetrahedra is termed a bridging oxygen (BO), and
the one shared between a tetrahedron and a neighboring
polyhedron that does not form tetrahedral network is
termed nonbridging oxygen (NBO) (see Figure 11).
The degree of melt polymerization is defined as the pro-

portion of nonbridging oxygen per tetrahedrally coordi-
nated cations, NBO/T. The NBO/T of a silicate melt and
glass can be calculated from its bulk composition provided
that the type and proportion of T-cations are known. This
can be done by keeping in mind that electrical neutrality
requires T-cations to be assigned a formal charge of 4+
and oxygen 2− so that

NBO=T ¼ 4•XT−2•XOð Þ=XT; ð2Þ

where XT and XO are the atomic proportions of tetrahe-
drally coordinated cations and oxygen, respectively.
The distribution of NBO/T of major rock-forming mag-

matic melts suggests a general correlation between alu-
minosilicate concentration in the magma and their degree
of polymerization, NBO/T (Figure 12). The NBO/T of
common magmatic melts is the 0 to 1 range (Figure 12). It
is for this reason that most studies of simple system melt
structure have focused on melt compositions in this NBO/
T range.
Silicate glasses and melts, including those of natural

magma and many commercial glasses, can be described in
terms of a small number of discrete silicate polymers with
integer values for their average NBO and BO (BO = 4 −
NBO) between 0 and 4 (Virgo et al. 1980; Stebbins 1987;
Maekawa et al. 1991; Buckermann et al. 1992). These en-
tities sometimes have been described in terms of their sili-
cate stoichiometries (TO4, T2O7, TO3, T2O5, and TO2)
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and sometimes by using the Qn species notation, Q0, Q1,
Q2, Q3, and Q4, where the superscript indicates the num-
ber of BO. Consequently, Q0 = TO4, Q

1 = 0.5T2O7, Q
2 =

TO3, Q
3 = 0.5T2O5, and Q4 = TO2. The proportion of

these species, but not their stoichiometry, varies as a func-
tion of melt composition (metal oxide/Si and Si/Al ratios).
For any melt composition, its degree of polymerization,
NBO/T, can be calculated from the proportion of the
Qn species:

NBO=T ¼
Xn¼4

n¼0

4−nð Þ•XQn ð3Þ

where n is the number of bridging oxygen and XQn mol
fraction of individual Qn species. However, Qn species
abundance obviously cannot be calculated from NBO/T
values alone.

Solution mechanisms of silicate and water in fluids and
melts in hydrous magmatic systems
Most structural data from hydrous silicate melts have
been obtained from analysis of samples quenched from
high temperature and pressure to ambient conditions
prior to chemical and structural analysis. These data
reflect, therefore, the melt structural environment near
the glass transition temperature. Temperature-dependent
structural features cannot be captured in such studies.
That notwithstanding, many important principles have
been derived from studies of quenched melt.
The behavior of an aqueous fluid in equilibrium with
molten or crystalline silicates at high temperature and pres-
sure may not be addressed by examination of quenched
materials because most, perhaps all, of their properties (in-
cluding the structure itself) cannot be determined by
examination of the high-temperature/high-pressure fluid
after quenching to ambient conditions. Fluid structure
studies require, therefore, examination while the sample
is at the temperature and pressure of interest. However,
before addressing such experimental environments,
structural data from quenched melts will be discussed.

Hydrous melts quenched from high temperature at high
pressure
Water is dissolved in silicate melts in the form of water
molecules, H2O

0, and structurally bound hydroxyl groups,
OH. The OH groups can form bonds with Si4+ and Al3+

as well as with other metal cations (Mysen and Virgo
1986; Xue and Kanzaki 2004; Cody et al. 2005). In either
case, water dissolved in the form of OH groups in silicate
melts affects their structure.
In the simplest of silicates, SiO2, the OH formation is

via breakage of bridging oxygen bonds (Wasserburg 1957;
Farnan et al. 1987):

Si−O−SiþH2O ¼ 2Si−OH; ð4Þ

where Si-O-Si represents an oxygen bridge and Si-OH a
broken bridge terminated with H+. Formulated in terms of
Qn species and supported by 29Si and 1H-29Si CP MAS
NMR (cross-polarization magic angle spinning nuclear
magnetic resonance) data for SiO2-H2O (Farnan et al. 1987;
Cody et al. 2005), this reaction can be written as

2Q4 þ nH2O ¼ 2Q4−n Hð Þ; ð5Þ

In chemically more complex systems, the OH-forming
process also is more complex as will be discussed further
below.
From the experimental studies of temperature-quenched

hydrous glasses, the proportion, XOH=XH2O0 , varies with
total water concentration and with bulk chemical compos-
ition of the melt (Stolper 1982; Dixon and Stolper 1995;
Zotov and Keppler 1998; see also Figure 13). Above the
glass transition temperature, the XOH=XH2O0 is positively
correlated with temperature so that a simple water speci-
ation reaction,

H2O
0 þO2− ¼ 2OH−; ð6Þ

shifts to the right with temperature (Nowak and Behrens
1995; see also Figure 13B). From the temperature-
dependent equilibrium, an enthalpy change, ΔH, of about
30 kJ/mol has often been reported (Nowak and Behrens
1995).

http://Earthchem.org
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Data such as those in Figure 13 do not provide in-
formation about how the OH groups form bonding
with the silicate melt structure. In the simple form of
Equation 4 whereby Si-OH bonding is formed, there is
depolymerization of the melt (NBO/T increases). By
adding one or more alkali metal or alkaline earth to
SiO2, bridging oxygen bond breakage also takes place
and an increase in NBO/Si as water is dissolved. The rate
of NBO/Si change at constant total water concentration
decreases with increasing metal oxide/silicon ratio (Na/Si
in the case of the data in Figure 14; see also Cody et al.
2005). The rate of change also decreases with increasing
total water content (Figure 15).
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of NBO/Si caused by dissolved water. Samples were quenched at
100°C/s from 1,400°C at 1.5 GPa. In this system, the Na/Si ratio is equal
to the NBO/Si of the anhydrous melt (data from Cody et al. 2005).
The NBO/Si decrease caused by increasing metal/
silicon ratio (Figure 14) could occur either because the
XOH=XH2O0 decreases with increasing metal/Si or it is be-
cause some of the OH groups form bonding with a
network-modifying metal cation instead of breaking oxy-
gen bridges to form Si-OH bonds. A simple example is
what might be expected in an Na2O-SiO2 melt, where Na+

in the anhydrous melt forms bonding with nonbridging
oxygen. Here, in addition to a reaction such as shown
schematically in Equation 4, a structural interaction with
Na+ can be written as
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2Q3 Nað Þ þH2O ¼ Q4 þ 2NaOH: ð7Þ
In this example, the network-modifying Na+ bonding

with nonbridging oxygen in a Q3 species (with NBO/Si = 1)
in an anhydrous melt reacts with H2O to form NaOH
complexes in hydrous Na2O-SiO2 melts. This interaction
causes the nonbridging oxygens bonded to Na+ in anhyd-
rous Q3 to be transformed to bridging oxygens resulting
in the formation of the more polymerized Q4 species.
Silicon-29 MAS NMR data from melts quenched from
1,400°C along the Na2O-SiO2 join show that this is exactly
the situation and that the abundance of NaOH complexes
increases with increasing Na/Si (Cody et al. 2005). Similar
conclusions have been reported for alkaline earth silicate
glasses wherein Ca..OH and Mg..OH groups were formed
in CaO-MgO-SiO2 melts (Xue and Kanzaki 2004).
From a compositional perspective, aluminosilicate melts

are more akin to natural magmatic melts than metal oxide
silicate melts. At pressures less than 5 to 6 GPa, Al3+ is in
tetrahedral coordination where it is charge-balanced with
alkalis or alkaline earths in a manner conceptually similar
to that observed in crystalline aluminosilicates such as
feldspars (see Lee et al. 2004; for high-pressure structural
data). The aluminate groups (AlO2

−) in aluminosilicate
melts can interact with dissolved water to form either Al-
OH or metal-OH bonding (metal can be alkali metal or al-
kaline earth), or both, in addition to Si-OH bonding
(Mysen and Virgo 1986; Schmidt et al. 2001). The extent
to which aluminate interaction takes place is correlated
with the Si/Al ratio of the melt (Mysen and Virgo 1986).
The nature of the Al3+ charge balance probably also af-
fects the solution mechanism because the Al-O bond
strength depends on the electronic properties of the
charge-balancing cation (Roy and Navrotsky 1984).
The formation of Al-OH bonding can be illustrated

schematically by using aluminate complexes, denoted as
Mm +

1/mAlmO2m, to describe the silicate speciation, and
Al(OH)3 as a representation of Al-OH formation in the
melt:

2Mmþ
1=mAlmO2m þ 3

mH2= Oþ 2Qn⇌2
mAl OHð Þ3

�
þ2Qn−1 1=mMmþð Þ;

ð8Þ
Additional complexity may exist because in melts with

mixed Mm+ cations and H+, the H+, because of its size for
steric reasons, exhibits preference for forming OH groups
in the silicate portion of the network by reacting with the
nonbridging oxygen in Qn species with the largest number
of nonbridging oxygens (Cody et al. 2005).
Transformation of tetrahedrally coordinated Al3+ OH-

bearing complexes, therefore, results in silicate depolyme-
rization wherein the rate of depolymerization with H2O
increases the more aluminous the melt (Figure 15). This
depolymerization (increasing NBO/T) takes place because
as the tetrahedrally coordinated Al3+ interacts with H2O
to form Al-OH bonds, an equivalent proportion of the
charge-balancing cation becomes a network-modifier, or
charge-balancing Na+ for Na-OH bonds leading to
network-modifying Al3+, or both. This depolymerization is
also reflected in water concentration-dependent Qn abun-
dance as a function of total water content (Figure 16)
where the abundance of individual Qn species at a given
total water content also varies with the Al/(Al + Si) of the
melt (Mysen 2007). The example from the Na2O-Al2O3-
SiO2-H2O system shows how depolymerized species, Q3

and Q2, become more important as more polymerized
species, Q4, abundance decreases (Figure 16).
The decreasing ∂(NBO/T)/∂XH2O with increasing water

content, XH2O, reflects the decreasing rate of change of
the abundance ratio, XOH=XH2O0, as the total water
content increases. This evolution, in turn, reflects the
diminishing rate by which the Qn species changes with in-
creasing concentration of water in the melt (Figure 16).
These composition-dependent solution mechanisms of
water in aluminosilicate melts also explain why the solu-
bility of water in silicate melt at any temperature and pres-
sure is significantly dependent on the bulk chemical
composition of the melt itself.
Hydrous melts and aqueous fluids at high temperature and
pressure
Experimental protocols have recently been implemented
for examination of fluids and melts in hydrous silicate
systems at deep crustal and mantle pressures and tem-
peratures in situ while the sample is at the desired
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pressure and temperature conditions. Structural data ob-
tained under such conditions are, therefore, increasingly
available from all regions of silicate-H2O phase diagrams
(Figure 4). In considering such data, commonly obtained
in so-called hydrothermal diamond anvil cells (e.g., Bassett
et al. 1994), the experiments usually are conducted in such
a manner that pressure is a variable dependent on
temperature. This means that increasing temperature nor-
mally is associated with increasing pressure. In the follow-
ing discussion, this is the case unless otherwise indicated.
High-temperature/high-pressure in situ examination

of hydrous silicate systems includes characterization of
pure H2O, characterization of the silicate components,
and mixtures between the two. For the H2O component
itself, the diminishing extent of hydrogen bonding with
temperature is the only structure observable. There are,
however, differences between hydrogen bonding of water
dissolved in melts (typically supercooled liquids), of
silicate-saturated aqueous fluid, and pure H2O. The ΔH
for hydrogen bond formation in such melts is near 10
and about 22 kJ/mol for silicate-saturated aqueous
fluid (Figure 17). The ΔH for pure H2O is slightly
above 25 kJ/mol (Walrafen et al. 1986). Hydrogen bonding
cannot be detected spectroscopically at temperatures
above 500°C to 550°C (Foustoukos and Mysen 2012;
Mysen 2013).
In hydrous silicate systems, the ratio of mol fraction of

water species, XOH=XH2O0, in fluid, melt, and supercrit-
ical fluid varies with temperature (Mysen 2010b; see also
Figure 18). The XOH=XH2O0 ratio of water in fluid and
Figure 17 Evolution of ratio of hydrogen bonded to isolated OH
bonds. In hydrous Na-aluminosilicate melts and in silicate-saturated
aqueous fluids as a function of temperature (and pressure) (data
from Mysen 2012a, b.)
melt converges at the second c.p. (Figure 18). The existence
of OH groups in all three phases (melt, fluid, supercritical
fluid) implies structural interaction between water and sili-
cate components. In fact, structural data obtained from vi-
brational spectroscopy indicate that in any silicate systems,
the types of Qn species in fluids, melts, and supercritical
fluids resemble one another (Mysen 2009) although their
concentration at any temperature and pressure depends
on the silicate composition and whether in fluids or melts.
The latter differences are evident in the NBO/T of the sili-
cate melt being considerably lower (the melt is more poly-
merized) than coexisting fluid (Figure 19). The NBO/T
values approach each other with increasing temperature
and pressure until they merge at c.p. Interestingly, at
higher temperature and pressure above those that de-
fine the c.p., the silicate in supercritical aqueous fluids
becomes further depolymerized (NBO/T increases) (see
Figure 19).
The NBO/T variations illustrated in Figure 19 reflect

temperature- and pressure-dependent Qn species in
fluids and melts. Their partition coefficients, KQn

fluid/melt,
at any temperature and pressure are sensitive functions
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of the degree of polymerization of the species (Figure 20).
The KQn

fluid/melt of the least polymerized Qn species is
the largest and then decreases systematically as the n
value increases. Moreover, this effect becomes increas-
ingly pronounced as the temperature and pressure de-
creases. The latter effect results from two factors. First,
the aluminosilicate solubility in aqueous fluid decreases
with decreasing pressure and temperature. The lowered
silicate concentration leads to increasing abundance of
less polymerized Qn species in the fluid (Mysen 2010a).
Second, the extent to which the silicate species in the hy-
drous melts are affected by dissolved water is a positive
function of water content (Figure 16) and water solubility
decreases with decreasing pressure (and temperature).
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in a hydrous Na-aluminosilicate system (data from Mysen 2012a, b).
Both effects would cause the KQn
fluid/melt partition coeffi-

cients to increase.
In the compositionally simple silica-H2O system in the

400°C to 900°C temperature range at pressures at and
below about 1.4 GPa, only Q0 and Q1 species in the
fluid can be detected. The equilibrium constant for the
polymerization equilibrium in fluids is

K ¼ XQ1=XQo; ð9Þ

with ΔH = 13.3 ± 1.5 kJ/mol (Mysen 2010b) if it is as-
sumed that ΔV = 0 for this equilibrium, and, therefore,
that the increasing pressure governed by increasing
temperature does not affect the equilibrium. However,
the partial molar volume of Q0 species is smaller than
that of Q1 species (Bottinga and Richet 1995) so that
with the likelihood of ΔV > 0, the ΔH = 13.3 kJ/mol is a
minimum value. At higher pressures (≥1.8 ± 0.2 GPa;
see Mysen et al. 2013), the positive pressure- and
temperature-dependent total silica concentration in fluid
leads to further polymerization of the silicate species,
Figure 21 Temperature (1/T) vs. ln K relationship for the
equilibrium, 2Q1⇌Q0 +Q2, (Equation 10). From the system
SiO2-H2O with aqueous fluid in equilibrium with quartz (lower
pressure) or coesite (higher pressure). Data from Mysen et al. (2013).
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and Q2 species are also observed (Mysen et al. 2013)
with the Qn species equilibrium,

2Q1⇌Q0 þ Q2; ð10Þ
for which the ΔH clearly is pressure dependent (Figure 21).
The pressure/ΔH relationship reflects the fact the ΔV of
reaction (10) is between −1 and −2 cm3/mol (Mysen et al.
2013).
The system SiO2-H2O is too simple for modeling nat-

ural processes because neither Al2O3 nor alkali metals
and alkaline earths are involved. The system Na2O-
Al2O3-SiO2 is more realistic even though alkaline earths,
in particular, have not yet been addressed. The Na2O-
Al2O3-SiO2 system is also useful for characterization of
the chemical interaction between nonbridging oxygen
and important network-modifying cation (Na+) and pro-
tons (H+).
From NMR spectroscopy of quenched melts in this

system, there is a strong preference of H+ for nonbrid-
ging oxygen in the least polymerized of the Qn species
(Q0), whereas Na+ forms bonds with nonbridging oxygen
in the more polymerized Qn species (Cody et al. 2005;
see also Equation 7). From the in situ structural charac-
terization in alkali aluminosilicate systems, a more com-
plex reaction (Mysen 2010a)

12Q3 Mð Þ þ 13H2O⇌2Q2 Mð Þ þ 6Q1 Mð Þ þ 4Q0 Hð Þ;
ð11Þ

describes the equilibrium. Here, M denotes an alkali
metal and where (M) and (H) indicate where alkali metals
and protons form bonding with the relevant nonbridging
oxygens, respectively. The tetrahedrally coordinated
cations forming the Qn species can be either Al3+ or Si4+.
The ΔH for this equilibrium (350 to 400 kJ/mol) is the
same, within uncertainty for melt fluids and supercritical
fluids (Mysen 2010a). With increasing Al/(Al + Si), equi-
librium (11) likely shifts to the left (ΔH decreases) because
Al3+ will preferably occupy the most polymerized of
available Qn species (Merzbacher and White 1991). In
Equation 11, that species is Q3, but for other more
polymerization melt compositions, Q4 species likely also
would be involved. The principles outlined in equilibrium
(11) may also be applied to alkaline earths, but quantita-
tive information awaits further experiments. These are all
considerations necessary for the application of the experi-
mental data to hydrous magmatic systems. However, the
necessary experimental data are at present insufficiently
comprehensive for quantitative application.

Discussion
Dissolved water and melt properties
The evolution of Qn species abundance of a melt with
water content can be used to characterize how dissolved
water governs phase relations and mixing properties of
melts. For example, the rapid abundance increase of
depolymerized species at the expense of polymerized
species with water content of the melt enhances the sta-
bility of depolymerized relative to more polymerized
liquidus phases. An example of this effect can be seen in
the silica/pyroxene liquidus boundary of the Mg2SiO4-
CaMgSi2O6-SiO2 system where the silica polymorph is
more polymerized than pyroxene (their NBO/Si are
0 and 2, respectively) (Figure 2A). The magnitude of
liquidus boundary shifts will reflect the size of the
NBO/Si difference between the minerals coexisting
along a liquidus boundary. The greater the NBO/Si dif-
ference, the greater is the effect of water on the shift of
the boundary as illustrated, for example, by the different
shifts of olivine/pyroxene and pyroxene/silica liquidus
boundaries (Kushiro 1969). Effects such as these also ex-
plain why hydrous melts in equilibrium with peridotite
mineral assemblages is more silica rich (quartz nor-
mative andesitic melts) than under anhydrous conditions
(olivine normative tholeiitic melts) during melting and
crystallization in the upper mantle.
Configurational properties of melts can be linked to

transport and thermodynamic properties of melts (Adam
and Gibbs 1965; Richet 1984; Lee and Stebbins 1999).
For example, melt viscosity, η, is a function of configur-
ational entropy:

η ¼ Ae exp Be=TS
conf

� � ð12Þ

where Ae and Be are constants, T is temperature, and
Sconf is configurational entropy. The Sconf is described in
terms of configurational heat capacity:

Sconf Tð Þ ¼ Cconf
p Tg

� �
=Tg

h i
þ

ZT

Tg

Cconf
p =T

� �
dT ;

ð13Þ

where Tg is glass transition temperature, T is the
temperature of interest (T > Tg), and Cp

conf(Tg) is the
configurational heat capacity at the glass transition
temperature. This configurational heat capacity of hy-
drous magmatic melts is a systematic function of the
water content of the melt (Richet et al. 1996; Bouhifd
et al. 2006).
Changes in configurational heat capacity resulting

from H2O dissolved in the melt can be calculated from
the experimental data on Qn species abundance in hy-
drous melts combined with the knowledge of the partial
molar heat capacity of individual species (Richet and
Neuville 1992; see also Mysen 2007). For example, with
such information, the effects of water on the heat cap-
acity change across the glass transition measured for a
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phonolite melt can be modeled quite precisely from a
hydrous haplophonolitic composition in the Na2O-Al2O3-
SiO2 system (Figure 22). The NBO/T and Al/(Al + Si) of
this haplophonolite melt resemble that of the natural
phonolite melt composition. The good match between
calculated and observed configurational heat capacity
changes with water content illustrates how those com-
positional parameters are central to characterization of
configurational properties of melts.
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figure. (B) Resulting calculated change in Mg partition coefficients as a fun
Water and fluid-melt equilibria
Trace and minor element partitioning is also sensitive to
melt polymerization (Mysen and Virgo 1980; Kohn and
Schofield 1994; Jaeger and Drake 2000; Toplis and Corgne
2002). From the relationship between NBO/T and water
contents of such melts

NBO=T ¼ 1:10−0:57•e−0:068XH2O ; ð14Þ

and NBO/T and KMg
ol-melt (Kushiro and Mysen 2002;

see also Figure 23A), changes in the olivine/melt parti-
tion coefficient with water content can be calculated
(Figure 23B). In the calculation in Figure 23, it is as-
sumed that there is no structural interaction between
the silicate components and the element in question
(Mg). Under such circumstances, the NBO/T changes in
melt have effects on partition coefficients in ways analo-
gous to NBO/T changes affected by adding other oxide
components. The 25% change in the Mg partition, which
reached with near 20 mol% H2O, is not an unreasonable
situation during island arc melting and crystallization
(see, for example, Grove et al. 2012, for review of data).

Stable isotope fractionation
Vibrational spectroscopy has also been used to determine
D/H ratios in fluids and melts in equilibrium during ex-
periments in diamond anvil cells at the high temperatures
and pressures of interest (Foustoukos and Mysen 2012;
Mysen 2013). In silicate-saturated fluids and hydrous sili-
cate melts, D+ and H+ forms bonding with nonbridging
oxygen in the Qn species. From deuterium and proton
MAS NMR of silicate melts, a D/H fractionation between
the different structural positions has been found (Wang
et al. 2011). This means that if the proportion and/or type
of Qn species vary with temperature and/or pressure so
that the D/H fractionation within and between fluids and
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melts also become temperature and pressure dependent
(Figures 24 and 25).
The temperature and pressure effects in Figure 24 re-

flect the changes in silicate concentration and speciation
in the coexisting aqueous fluid and silicate melts. Further-
more, different D/H values for different fluid densities
again reflect the concentration and type of Qn species
Figure 25 (D/H) fluid-melt partition coefficients for coexisting
fluid and melt (Figure 24). For low- and high-density aqueous fluid
from the data in Figure 24.
because the different density trajectories reflect pressure/
temperature trajectories of the diamond cell experiments
that followed different pressure paths (Mysen 2013). It fol-
lows from the different trajectories of D/H ratios in fluids
and melts that the D/H partitioning between fluids and
melts will also be dependent on temperature and pressure
(Figure 25). Finally, in silicate mineral/aqueous fluid or
silicate mineral/hydrous melt environments, temperature-
and pressure-dependent partitioning will also take place
because of the temperature/pressure dependence of the
D/H fractionation with the fluid and melt phases.
Conclusions
Understanding the role of hydrous melts and silicate-
rich fluids in transport processes depends sensitively on
how chemical composition, temperature, and pressure
govern the physicochemical properties of these materials
(viscosity, diffusion, thermodynamics of mixing, element
partitioning between phases, phase relations, etc.; see, for
example, Mysen and Richet 2005, for review of experi-
mental and theoretical information of structure-property
relations of silicate glasses and melts). Attainment of this
objective requires well-determined solubilities in and par-
titioning between melts, fluids, and crystalline phases, de-
tailed understanding of the oxide solution mechanisms in
melts and fluids, and determination of how fluid and melt
structure governs those properties.
Structural information cannot be obtained directly on

chemically complex natural systems because the resolv-
ing power of spectroscopic methods employed for such
purposes diminishes rapidly with increasing chemical
complexity. However, structural data from simpler binary
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and ternary systems can be used to describe the more
complex systems. This objective requires, however, de-
tailed characterization of silicate speciation in fluids and
melts as a function of Al/Si ratio, the type of charge bal-
ance for tetrahedrally coordinated cations, and the type
and proportion of network-modifying metals (alkali metals
and alkaline earths). Currently, a combination of structural
information and empirical relationships can be applied to
describe liquidus phase relations and fluid/mineral/melt
element and stable isotope partitioning. Transport proper-
ties can be understood and sometimes quantified in terms
of configurational properties of individual Qn species.
However, the experimental database used for these
purposes dominantly is from alkali silicate and alkali
aluminosilicate systems. This permits application to
felsic magmatic systems. However, the lack of much in-
formation in alkaline earth aluminosilicate system
makes quantitative application to hydrous basaltic less
quantitative.
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