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Abstract

Flame structures found in sedimentary rocks may have formed from liquefaction and gravitational instability when the
sediments were still unconsolidated and were subject to shaking caused by earthquakes. However, the details of the
process that leads to the formation of the flame structure, and the conditions required for the instability to initiate and
grow remain unclear. Here, we conduct a series of small-scale laboratory experiments by vertically shaking a case
containing a water-immersed layered granular medium. The upper granular layer consists of finer particles and forms
a permeability barrier against the interstitial water which percolates upwards. We shake the case sinusoidally at
different combinations of acceleration and frequency. We find that there is a critical acceleration above which the
instability develops at the two-layer interface. This is because the upward percolating water temporarily accumulates
beneath the permeability barrier. For larger acceleration, the instability grows faster and the plumes grow to form a
flame structure, which however do not completely penetrate through the upper layer. We classify the experimental
results according to the final amplitude of the instability and construct a regime diagram in the parameter space of
acceleration and frequency. We find that above a critical acceleration, the instability grows and its amplitude increases.
Moreover, we find that the critical acceleration is frequency dependent and is smallest at approximately 100 Hz. The
frequency dependence of the critical acceleration can be interpreted from the combined conditions of energy and jerk
(i.e., the time derivative of acceleration) of shaking, exceeding their respective critical values. These results suggest that
flame structures observed in sedimentary rocks may be used to constrain the shaking conditions of past earthquakes.
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Background

Liquefaction and related phenomena, such as the outflow
of ground water, sand boils, mud volcanism, and ground
subsidence, are commonly observed after earthquakes
(Manga and Wang 2007). These phenomena reflect the
consequences of loosening of particle contacts, pore pres-
sure increase, upward percolation of pore water, and
subsequent compaction of particles. When a layer con-
sisting of fine particles (e.g., clay, mud) exists above a
coarse particle (e.g., sand) layer, it forms a permeability
barrier. This can help increase pore pressure and result in
liquefaction because the expelled water temporarily accu-
mulates at the barrier (Allen 1985). These phenomena
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can occur whenever liquid is present; indeed, topographic
features which suggest mud volcanism have even been
discovered on Mars (Oehler and Allen 2010; Pondrelli
et al. 2011). Evidence of past earthquake-induced lique-
faction may also be preserved in sedimentary rocks, and
the resulting structures are commonly known as seismites
(e.g., Montenat et al. 2007). One possible example is the
flame structure (see Figure 1), which may have formed
from liquefaction and subsequent gravitational instability
when the sediments were still at the ocean floor.

There is considerable evidence which indicate that there
is a critical condition for liquefaction and subsequent
instability to occur. Compilation of liquefaction-related
phenomena shows that there is a minimum seismic mag-
nitude, which increases with epicentral distance, required
for these phenomena to occur (Manga and Brodsky 2006;
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Figure 1 Flame structure in a sedimentary rock. Flame structure
in a tuff layer (layer 2) observed in an outcrop on Jogashima Island,
Kanagawa, Japan. The thickness of the layer 2 is approximately

60 mm, and the wavelength of the flame structure is A ~ 40 mm.
The measured densities of the particles comprising these layers are
as follows: layer 1 = 2,340; layer 2 = 2,140; layer 3 = 2,050; layer
4=12230 (kg/m°).

Manga and Wang 2007). The threshold at which lique-
faction occurs has also been investigated using laboratory
experiments. For example, oscillatory deformation exper-
iments of water-saturated granular matter and simul-
taneous pore-water pressure measurements have been
conducted to constrain the strain needed for liquefaction
(e.g., Vucetic 1994). Experiments for the situation in which
a permeability barrier exists have also been conducted to
study the formation process of water film and sand boils.
In these studies, a one-dimensional tube test, to which
an instant shock is applied (Kokusho 1999; Kokusho and
Kojima 2002), or horizontal shake tables (Kokusho 1999;
Yamaguchi et al. 2008) were used. Experiments more
closely simulating natural conditions have also shown that
a variety of structures can form as a consequence of
shaking (Moretti et al. 1999).

On the other hand, the response of a dry granular
matter under vertical shaking has intrigued physicists
for a long time. Experiments have revealed instabilities
such as surface waves, the Brazil nut effect, and gran-
ular convection (Duran 2000). Detailed parameter stud-
ies have shown that a variety of instabilities can occur,
depending on the combination of acceleration and fre-
quency of shaking (Burtally et al. 2002). Recently, shaking
conditions required for granular convection have been
investigated (Hejmandy et al. 2012). Experiments for
liquid-saturated cases have also been conducted and have
revealed that a number of novel phenomena can occur
(e.g., Schleier-Smith and Stone 2001; Voth et al. 2002;
Leaper et al. 2005; Clement et al. 2009, 2010).

Here, we consider the situation observed in Figure 1 and
attempt to explain how the observed structures may have
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formed, and consider constraining the required shaking
conditions. In order to answer these questions, we con-
duct a series of experiments in which a water-immersed
granular medium with a permeability barrier is shaken
vertically under a range of accelerations and frequencies.

Methods

Figure 2 shows the experimental setup. We use a styrol
case with a width of 99.4 mm, a height of H = 107.6 mm,
and a thickness of 22.0 mm, which is filled with a mix-
ture of glass beads and water. We add 0.25 ml of surfactant
to the water so that the glass beads do not form clusters.
The lowermost 33.8 & 0.5 mm of the cell consists of a
glass beads layer comprised of two size-graded layers. The
upper layer (thickness 9.8 & 0.3 mm) consists of fine par-
ticles (white) with a diameter of 4 = 0.05 & 0.01 mm,
a density of p = 2,500 kg/m?3, and a volumetric parti-
cle packing fraction of ¢ = 0.60 £ 0.02. The lower layer
(thickness 24.0 £ 0.4 mm) consists of coarse particles
(red) with d = 0.22 + 0.04 mm, p = 2,500 kg/m>, and
¢ = 0.49 £ 0.01. The thicknesses of the upper and lower
layers scaled by the particle diameters are Nypper ~ 200
and Nijower ~ 110, respectively. The values of ¢ for the
upper and lower layers are smaller than ¢ ~ 0.64 for dense
random close packing of spheres (Mavko et al. 1998), indi-
cating that the particles are loosely packed. After shaking
for 5's, compaction occurs and the packing fraction of the
glass bead layer as a whole increases from ¢ = 0.52 + 0.01
att =0sto¢p =0.54+0.02att=99s.
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Figure 2 Experimental setup. Initial condition is such that the
bottom granular layer is size-graded. The upper and lower granular
layers consist of fine (diameter d = 0.05 mm) white particles, and
coarse (d = 0.22 mm) red particles, respectively.
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The above particle size ratio is chosen so that it is suf-
ficiently large to result in an efficient size grading from
settling, but not so large that the small (4 = 0.05 mm)
particles do not fit into the pore space of the large
(d = 0.22 mm) particles. Particle settling velocity Vs can
be estimated from the Stokes settling formula

_ Apgd?
T 18y

1)

where Ap is the particle-water density difference, g is the
gravitational acceleration, and 7 is the viscosity of water.
An efficient size grading occurs for a mixture of 0.05 mm
and 0.22 mm particles, which can be understood as fol-
lows. The approximate fraction F of the small particles
that can be included in the lower layer (consisting pri-
marily of large particles) can be estimated using the time
scale for a particle to settle ~ H/Vs. Assuming that the
particles are initially homogeneously distributed, the frac-
tion F of the small particles that have settled during the
time needed for all of the large particles to settle is F ~
(H/Vsa))/(H/Vgsm)) =~ 0.06, where the subscripts sm
and la indicate small and large particles, respectively. A
small F(« 1) value indicates an efficient size grading.
We also note that, since permeability scales as o d* (e.g.,
Andreotti et al. 2013), this particle size ratio results in a
permeability ratio of 19, and the upper layer becomes a
low permeability layer.

The experimental procedure is as follows. We first thor-
oughly shake the cell by hand and allow the particles to
settle for 300 s, which is 5.7 times longer than the set-
tling time of the 0.05 mm particles (H/Vs; = 53 s). The
cell is then attached to a shake table (Big Wave, Asahi
Seisakusyo, Tokyo, Japan) and is shaken vertically for 5 s.
The vertical displacement z changes with time ¢ as

z = Asin (27ft) (2)

where A is the amplitude and f is the frequency. An
accelerometer (352A24, PCB Piezotronics, New York,
USA) is attached to the case, and the signal is amplified
(482C, PCB Piezotronics, New York, USA) and recorded
by a digital oscilloscope (ZR-RX70, Omron, Kyoto, Japan).
We use a high-speed camera (EX-F1, Casio, Tokyo, Japan)
at 300 fps to record the motion within the cell. An LED
lamp is used to synchronize the acceleration and image
data.

We calculate the acceleration from the voltage output
of the accelerometer. Here, we calculate the +/2x root-
mean-square of the acceleration data to obtain the average
peak acceleration. This gives the exact peak acceleration
for a sinusoidal shaking.

We conduct experiments under a peak acceleration
range of 1.4 to 78.3 m/s? and a frequency range of 10 to
5,000 Hz. For comparison, this frequency range extends
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beyond the typical high frequency response limit (approx-
imately 10 Hz) of seismometers (Shearer 1999). Digital
images are analyzed using MATLAB. The spatial resolu-
tion of the images is 0.118 + 0.002 mm per pixel. We
binarized the images for the time interval of ¢ = 0 to
9.9 s to obtain the heights of the granular layer surface and
the two-layer interface, and analyzed how these heights
change with time.

Results

Growth of an instability

Figure 3 and Additional file 1 show a typical example of
an experiment in which the instability develops at the
two-layer interface and a flame structure forms. We start
shaking the case at £ = 0 s and find that the heights of
the lower and upper layers decrease with time. Initially
the two-layer interface remains flat. This indicates that
the interstitial water is percolating upwards in a laterally
uniform manner, and the granular medium is compact-
ing. After t ~ 0.5 s, undulations start to develop. The
photo at £ = 1.6 s in Figure 3a shows the occurrence of
sand boils at the surface of the granular layer, indicating
an upward channelized flow. Figure 3b is a close-up image
at t = 1.6 s, indicating the formation of an instability
with a wavelength of A ~ 2.7 mm. Since this instability
forms at the permeability barrier, we interpret this as the
onset of a Rayleigh-Taylor type instability, which occurred
as a consequence of the formation of a thin buoyant lig-
uefied layer at the two-layer interface. The amplitude of
the instability increases with time (Figure 3d), and undu-
lations merge to form plumes (Figure 3c). However, the
amplitude growth is suppressed and the plumes do not
fully penetrate through the upper layer, in contrast to
the Rayleigh-Taylor type instability of superimposed vis-
cous fluids (Whitehead and Luther 1975). Here, we note
that the shape of the flame structure deviates from the
sinusoidal shape and is characterized by upward pointing
cusps.

Figure 4a shows how the heights of the granular layer
surface and the two-layer interface evolve with time for
the same experiment shown in Figure 3. Here, thin verti-
cal sections of the images, which are separated by a time
interval of 0.033 s, are aligned horizontally as a function
of time. The figure shows that in the initial stage, both
the heights of the granular layer surface and the two-layer
interface decrease with time as a result of compaction.
The instability starts to grow at ¢ ~ 0.5 s, but the height
of the two-layer interface starts to increase at a later time,
t ~ 1.8 s. This is because the instability growth and com-
paction occur simultaneously, and the height increase of
the two-layer interface does not commence until the for-
mer exceeds the latter. Figure 4b shows the growth of
the interfacial amplitude (§z) with time which was calcu-
lated as follows. We define the height at t = 0 as the
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Figure 3 An experiment showing the formation of a flame structure. (a) The experimental cell is shaken for 5 s at an acceleration of 40.5 m/s?,
a frequency of 40 Hz, and an amplitude of 0.64 mm. The two yellow lines trace the surface of the granular layer and the two-layer interface. The two
light blue reference lines at 5 s indicate these heights at t = 0's. (b) A close-up of the two-layer interface at t = 1.6 s indicated by a rectangle in (a).
The measured wavelength of the instability is A = 3 & 1 mm (average and standard deviation for three wavelengths). (c) Same as (b) butatt = 5s

with & = 21 & 6 mm (average of three wavelengths). (d) Time evolution of the two-layer interface topography with time. The stars indicate the
same timing as shown in (a). Note that the amplitude and the wavelength increase with time.

reference and subtract it from each height data. We then
subtract the linear fit to the data and define the ampli-
tude by its standard deviation. The figure shows that the
initial amplitude is §z ~ 0.068 mm, which is intermedi-
ate between the particle sizes which comprise the upper
and lower layers. The amplitude initially increases expo-
nentially with time, but its growth stops at ¢ ~ 4.3 s. The
flame structure remains after we stop shaking at 5 s. Here,
we define the relative amplitude §z' = 8z — 8zp, where 8z
is the amplitude at ¢ = 0.1 s. Using 8z/, we define the fol-
lowing stages I to III: stage I for 8z’ < 0.1 mm, stage II for
0.1 < 87 < 0.6 mm, and stage III for §z' > 0.6 mm. The
threshold of §z = 0.1 mm is close to the spatial resolution
limit of the images (~ 0.12 mm). For §z’ > 0.6 mm, a fully
developed flame structure forms. We consider these flame
structures fully developed because a peak amplitude can
be identified in the amplitude vs time plot during shaking,
for most (14 out of 15) of the experiments which transit to

stage III. Examples of such peaks are indicated by arrows
in Figures 4b, 5b, and 6.

Acceleration and frequency dependence

We next show how the resulting instability changes when
the peak acceleration and frequency of shaking are var-
ied. Figure 5a and Additional file 2 show the acceler-
ation dependence at a fixed frequency of 50 Hz. The
figure shows that for a small acceleration of 2.1 m/s?, the
interstitial water percolates upwards, the granular layer
compacts, and the instability ends in stage I. However, for
the acceleration of 19.3 m/s?, the instability evolves from
stage I to stage II. Finally, for 40.5 m/s%, the instability
evolves through stages I and II, and ends in stage III. The
growth of amplitudes for the three experiments shown in
Figure 5a and two additional experiments at the same fre-
quency is shown in Figure 5b. The figure shows that as
peak acceleration increases, both the growth rate (initial
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Figure 4 Time evolution of the height of the two-layer interface
and the amplitude of the instability. (a) Growth of the interfacial
heights with time for the same experiment shown in Figure 3. Here, a
vertical section whose location is indicated in the left photo is cut
from each image. The images are aligned horizontally at an interval of
0.033 s as a function of time. Yellow and pink lines trace the upper
surface of the granular layer and the two-layer interface, respectively.
I, Il and Il indicate the three stages which are defined according to
the relative amplitude 87’ (see text for the details). Stars correspond to
the same timing as shown in Figure 3a. (b) Growth of the amplitude
(82) with time for the same experiment shown in (a). The three stages
are defined according to the relative amplitude (82) values of 0.1 and
0.6 mm. Diameters of the red and white particles which comprise the
lower and upper layers, respectively, are indicated for comparison.
The amplitude initially increases exponentially with time. At t ~ 4.3's,
the upper tip of the flame structure detaches and the amplitude
slightly decreases. A red arrow indicates the peak amplitude. This
amplitude remains after the shaking stops at 5 s.

slope of the curves in Figure 5b) and the amplitude of the
instability increase.

Figure 6 shows the frequency dependence at a fixed
acceleration of 5.1 + 0.3 m/s?, where the error is
given by the standard deviation. Additional file 3 shows
four selected examples from the experiments shown in
Figure 6. Here, we note that at a constant acceleration,
the amplitude (A) of shaking decreases with frequency
(f) as A o f~2. Figure 6 shows that at a frequency of
150 Hz, the instability growth is fastest and attains the
largest amplitude.

We conducted a total of 73 experiments with different
combinations of shaking acceleration and frequency, and
classified the results into the following four regimes using
the relative amplitude 8z’ and the total compaction of the
whole granular layer 6/ at £ = 9.9 s (i.e., 4.9 s after the
shaking stops): regime Ia (no change), when §z' < 0.1 mm
and 84 < 0.1 mm; regime Ib (percolation), when 8z <
0.1 mm and 87 > 0.1 mm; regime II (transition), when
0.1 < 87 < 0.6 mm; and regime III (flame), when 8z’ >
0.6 mm. Here, regimes I to III are defined using the same
threshold values of 87" used to define stages I to III, but at
t = 9.9 s. 8k is used to subdivide regime I into regimes
Ia and Ib. For all experiments in regimes II to III, 6/ >
0.1 mm, and therefore, we do not use 8/ to classify these
regimes. For the amplitude data shown in Figures 5b and
6, the different resulting regimes are indicated by the line
thicknesses.

In Figure 7a, we plot the classified regimes using differ-
ent marker shapes and 8z’ ranges using different marker
sizes (colors), in the parameter space of acceleration and
frequency. The figure shows that there is a critical accel-
eration above which the instability grows and regime
Ib (percolation, in square markers) transits to regime
II (transition, in triangle markers). In addition, we find
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Figure 5 Acceleration dependence of the instability growth at a fixed frequency of 50 Hz. (a) Time evolution of the instability and the stage
transitions at three different accelerations. Yellow lines trace the surface of the granular layer and the two-layer interface. Blue linesat t = 5 s
indicate these heights at t = 0 s and are shown for reference. (b) Growth of amplitude §z with time. The thin, medium, and thick lines indicate the
experiments in the percolation, transition, and flame regimes, respectively, and are classified using the relative amplitude 87" at t = 9.9 s. A red
arrow indicates a peak amplitude for the case in which a flame structure forms. Diameters of red and white particles which comprise the lower and
upper layers, respectively, are indicated for comparison.

that the critical acceleration is frequency dependent and _ Zpeak _ A@rf) 3)
is minimum (3.4 m/s?) at a frequency of approximately Apg/p Apg/p
100 Hz.

where Zpeak = A2 )2 is the peak acceleration. Similarly,

In Figure 7b, we show the same regime diagram Wenon- dimensionalize frequency by V5 /dy(sm) to obtain a
using the dimensionless parameters. Here, we non- dimensionless frequency
dimensionalize acceleration by the reduced gravity - d

(Apg/p) to obtain a dimensionless acceleration "~ Vism)

f- (4)
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Figure 6 Frequency (f) dependence of amplitude (§z) growth in
the range of f = 10-5,000 Hz at fixed acceleration of 5.1 £+ 0.3
m/s2. The thin, medium, and thick lines correspond to the
percolation, transition, and flame regimes, which are classified using
the relative amplitude 82’ at t = 9.9 s. The growth of the instability is
fastest and attains the largest amplitude at an intermediate frequency
of 150 Hz. A red arrow indicates a peak amplitude for the case in
which a flame structure forms. Diameters of red and white particles
which comprise the lower and upper layers, respectively, are
indicated for comparison. Here, the amplitude data are smoothed
(five-point running average) for the ease of visualization.

Similar non-dimensionalizations have been used pre-
viously (e.g., Pak and Behringer 1993; Melo et al. 1995;
Duran 2000; Schleier-Smith and Stone 2001; Burtally et al.
2002; Voth et al. 2002; Leaper et al. 2005; Eshuis et al. 2005,
2007). Here, we define the onset of instability when the
relative amplitude is 6z' > 0.1 mm (i.e., onset of the tran-
sitional regime). Figure 7b indicates that the minimum
acceleration for the instability to occur is I' = 0.58 at a
frequency of /' = 2.5.

In Figure 8, we plot the relative amplitudes §z" at ¢t =
9.9 s, which were used to classify the regimes, as a func-
tion of acceleration Zeqi for five selected frequencies in
the range of 40 to 200 Hz. The figure shows that the tran-
sition from percolation to flame regime is continuous. In
particular, for the 100 Hz data, we obtain 8z (ipeak)lm,
with an exponent close to a linear dependence.

Effects of other parameters
In addition to the shaking conditions, there are many
other changeable parameters in our experiments. Here,
we briefly describe the effects of other parameters which
help to better understand the dynamics occurring in our
experiments. Here, we define the experiments for the
parameters shown in Figure 2 as the reference case.

First, we describe the results of two dry experiments
(i.e., without water) and otherwise the same as the reference
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Figure 7 Regime diagram of the experiments. (a) Plotted in the
parameter space of acceleration and frequency. The four regimes

(in different marker shapes) are as follows: la, no change (crosses);

Ib, percolation (squares); Il, transition (triangles); and Ill, flame
(circles). These are classified according to the relative amplitude §7’
(see text for details). The marker sizes (and colors) correspond to

the magnitude of 82’ (in mm) at t = 9.9 s and are classified as
follows. Squares and crosses in black §z/ < 0.01. Squares in blue

001 < 87 < 0.05andin purple 0.05 < 82/ < 0.1. Triangles in light
blue 0.1 < 87 < 0.15and in green 0.15 < 87/ < 0.6. Circles in orange
06 <87 <13,inpink1.3 <87 < 20,andinred §7 > 2.0.The
black, blue, and red broken lines indicate the critical acceleration of
3.4 m/s? (corresponds to a dimensionless acceleration I'c = 0.58,
where T is defined by Equation 3), the critical shaking strength

Sc = 0.01 (corresponds to Equation 6 where S is defined in

Equation 5), and the critical jerk strength J- = 290 (corresponds to
Equation 8 with J defined in Equation 7), respectively. The red colored
domain indicates the conditions under which these three
dimensionless parameters are supercritical (i.e, I’ > I'¢, S > S,

J > Jo). (b) Same as (@) but using dimensionless parameters I" and f/
(Equation 4).

case. We find that the results are strikingly different. Most
importantly, flame structure does not form in the dry
experiments. At Zpeak = 20.7 m/s®> and f = 50 Hz, the
small particles comprising the upper layer settle into the
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Figure 8 Acceleration dependence of the relative amplitude §z’
att =9.9s. Here, the data for five different frequencies in the range of
40 to 200 Hz are plotted with different sizes (colors). Squares, triangles,
and circles indicate regimes Ib (percolation), Il (transition), and lll
(flame), respectively. Horizontal broken lines at 82/ = 0.1 and 0.6 mm
indicate the threshold values of regimes Il and Ill, respectively. A
power-law fit to the 100 Hz data (87 = OAO42(§peak)1'°4) is also shown.

pore space of the large particles comprising the lower layer
and formed a mixture layer whose thickness increased
with time. Furthermore, the granular layer as a whole
gradually tilts. At Zyeax = 39.6 m/s? and f = 50 Hz, in
addition to tilting, a large-scale whole layer granular con-
vection with a length scale comparable to the case width
occurs.

Second, we describe the results of experiments using
a wider case (width 194 mm, height 104 mm, thickness
26 mm) and otherwise the same as the reference case.
From a series of experiments at fixed accelerations of
Zpeak = 5.0 and 8.8 m/s® and different frequencies, we
find that the final amplitude reached a maximum at a fre-
quency of approximately 100 Hz, the same as the reference
case. We also find a similar frequency dependence of the
critical acceleration and a similar wavelength of the insta-
bility of A ~ 10 mm, indicating that the effects of width
dimension are not evident.

Third, we describe the results of different layer thick-
nesses. When there is no permeability barrier (i.e., one
layer consisting of a particle size d = 0.22 mm with a
thickness 21.9 mm), neither sand boil nor flame structure
formation occurs. We also compare three experiments
with the same thickness 33.8 + 2.0 mm of the granular
layer but with different thickness fractions of the upper
layer: 0.19, 0.28, and 0.78. For Zyeax = 40.0 = 0.8 m/s?
and f = 50 Hz, for all three cases, a similar flame struc-
ture forms. However, we find that the relative amplitude
at t = 9.9 s decreases by 35% as the upper layer becomes
thicker.
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Discussion

The origin of the flame structure

We consider that the flame structure in our experiments
forms as a consequence of Rayleigh-Taylor type instabil-
ity and not from surface instability, resonance, or granular
convection. There seem to be at least three requirements
for Rayleigh-Taylor instability to occur: the presence of
a permeability barrier, a large fluid viscosity, and granu-
lar matter being dense. We explain each of these in detail
below.

First, whenever a flame structure developed, it always
formed at the permeability barrier. This indicates that the
accumulation of water at the permeability barrier is neces-
sary for the flame structure to form, from which we infer
that the instability is of Rayleigh-Taylor type.

Second, granular convection did not occur in the water-
immersed experiments, whereas it did occur in the dry
experiments. On the other hand, in the dry experiments,
the small particles comprising the upper layer settled
downwards and the flame structure did not form. Here, we
evaluate the importance of viscosity by comparing the ter-
minal velocity given by the Stokes velocity V (Equation 1)
and the free fall velocity V; = /2(Ap/p)gd where the
particle diameter scale d is taken as the height scale. The
ratio of these two velocity scales is the Stokes number
St = Vs/Vt (e.g., Andreotti et al. 2013). If St < 1, viscous
drag is large such that the terminal velocity is attained
within a particle diameter scale (viscous regime), and vice
versa for St > 1 (free-fall regime). If we use the particle
size d of the upper layer (d = 0.05 mm), for the water-
immersed case, we obtain St ~ 0.08 < 1. In contrast for
the dry case, we obtain St ~ 6 > 1. This suggests that
the suppression of particle motions by viscosity played
a role for the accumulation of water at the permeability
barrier.

Third, in our experiments, the particles were initially
closely packed, and even when they were shaken, we did
not observe any standing surface waves indicating that the
particles remained close to a close packed state. Even for
the dry experiments, granular matter did not detach from
the bottom of the case or bounce (e.g., Eshuis et al. 2007).
The thickness of the whole layer scaled by the particle size
is N ~ 270. A large value of N results in a larger frictional
dissipation (Eshuis et al. 2007), which causes the granular
matter to remain dense even when shaken.

An interpretation of a regime diagram

Here, we consider the origin of the critical acceleration
and its frequency dependence. Our experiments indi-
cate that the instability occurs when I' > I'c = 0.58,
which we indicate by vertical lines in Figure 7a,b. The
critical value I'c = 0.58 can be understood in terms of
the force balance. The inertial stress of a granular layer
is ~ phZpeak = pARQ2Tf )2 where / is the thickness scale.
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Frictional stress is ~ wApgh, where p is the friction coef-
ficient. u estimated from the angle repose 6, of a pile
of glass beads is © = tanf;, ~ 0.4 to 0.5 (Samadani
and Kudrolli 2001; Higashi and Sumita 2009). It follows
that the ratio of the inertial stress to the frictional stress

is ~ I/, where we used the definition for I' (Equation 3).
Inertial stress must exceed the frictional stress to displace
a particle from which we expect I' > pu is required for
instability to occur. Our experimental result of I' > 0.58
for instability to occur is consistent with I' > u ~ 0.4
to 0.5.

Next, we consider the frequency dependence. Here, we
show that the high frequency limit can be understood in
terms of energy balance, which is the integrated form of
the force balance equation. For liquefaction to occur, the
energy of shaking must be sufficiently large so that a par-
ticle can be lifted against gravity. If we use the particle
diameter d for the height scale, the ratio of the energy of
shaking to the work needed to lift a particle against gravity
is expressed by the dimensionless shaking strength S (Pak
and Behringer 1993; Eshuis et al. 2005, 2007):

o Ak _ A2Qnf) _( 1 )(ipeak)z
Apgd/p — Apgd/p Apgd/p ) \ 2nf )

(5)

A criterion can then be defined as S > S; where S is the
critical value, which can be rewritten using Equation 5 as

12 s
Y Zpeak
/= <Apgdsc) ( 21 > ©

We use Equation 6 and draw a critical line in Figure 7a,b
for S = 0.01, which separates regimes Ib and II fairly well.
We note however that the high frequency limit may alter-
natively be interpreted in terms of critical shaking velocity
vc (Hejmandy et al. 2012), since the critical velocity line
also scales as f* o Zpeak/Ve-

The low frequency limit can be understood in terms
of jerk, which is a time derivative of acceleration. In
the limit of very low frequency, the acceleration can be
approximated as constant. We propose that the change of
acceleration (i.e., @°z/dt> oc A(2rf)3) is important for lig-
uefaction because it causes relative motion between the
particles. On the other hand, in the absence of shaking,
the characteristic scale for the change of acceleration of
a particle settling in a viscous fluid is ~ V2/d%. We use
this scale to non-dimensionalize jerk and define the jerk
strength J

J= (a'?’:z) (dz) _AQ@nf)* _ ( 2nf )
“\as peak \ V2 T ovye T \V3d? Zpeak-

(7)
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A criterion J > J. can then be rewritten as

3
f> (Zjﬂ ZZ) (Zpeak) - ®)
In Figure 7a,b, we draw a line for J. = 290, which sepa-
rates regimes Ib and II fairly well. The conditions under
which these three dimensionless parameters are super-
critical, i.e, ' > T'(, S > S¢, and J > J, correspond
to the colored domain bounded by the three lines in
Figure 7a,b.

Finally, we derive the frequency of approximately 100 Hz
at which the critical acceleration is minimum. From com-
bining the conditions S¢ ~ 0.01, Jc ~ 290, and I" ~ 0.22,
which is the value of I" at the intersection of the critical
S, J lines (see Figure 7b), we obtain f' = f - d/Vs ~ 3,
which corresponds to approximately 100 Hz. We also
obtain A ~ 0.05d which is the amplitude of shaking rela-
tive to the particle size comprising the upper layer under
this condition.

Comparison with the sedimentary rocks

Our experimental parameters (particle size pair, densi-
ties, layer thickness ratios) were not chosen to closely
match or scale those of the sedimentary rocks in Figure 1.
Therefore, our regime diagram (Figure 7) cannot be
directly applied to these outcrops. If one wishes to con-
strain the exact shaking condition required for the flame
structure in these outcrops to form, a similar set of
experiments using the same particles from these out-
crops need to be conducted. Nevertheless, we consider
that the basic features of the regime diagram will remain
unchanged.

Here, we point out several features which are common
with the flame structures in Figure 1 and in Figure 3.
First is that they both have upward pointing cusps. Sim-
ilar cusps have been previously observed in Rayleigh-
Taylor instability of a liquid-immersed granular medium
(e.g., Michioka and Sumita 2005; Shibano et al. 2012).
In addition, for both cases, the preserved flame struc-
tures do not fully penetrate through the upper layer. Sec-
ond is that in the experiments, even when liquefaction
occurs, only the uppermost part of the lower layer seems
to be fluidized. We may approximate the situation in
which water accumulates beneath the permeability barrier
as a thin low viscosity layer with a thickness § underly-
ing a thick high viscosity layer. Here, we use the results
of linear stability analysis (Whitehead and Luther 1975),
from which we can constrain § from the wavelength
of instability A as § < A/m. It follows that for
A ~ 21 mm, § < 7 mm, implying that only the upper-
most part of the coarse lower layer is fluidized. Similarly,
for the outcrops, using the wavelength of A ~ 40 mm,
we obtain § < 13 mm, suggesting that only the upper-
most one fifth or less of the tuff layer (layer 2 in Figure 1)
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became fluidized. Field observations indicate that the
thickness of the tuff layer varies in the range of 20 to
80 mm, whereas the wavelength is found to be around
A ~ 40 mm. The constancy of the wavelength suggests
that the thickness of the fluidized layer is also approx-
imately constant, regardless of the thickness of the tuff
layer.

Conclusions

We conducted a series of experiments in which a two-
layered water-immersed granular medium, where the
upper layer forms a permeability barrier, is shaken
vertically at different combinations of accelerations and
frequencies. We find that above a critical accelera-
tion, the instability develops at the two-layer interface
and grows. For a sufficiently large acceleration, a flame
structure which is similar to those observed in sedimen-
tary rocks forms. We also find that the critical accelera-
tion is frequency dependent and is minimum at approx-
imately 100 Hz. In other words, there is an optimum
frequency band in which the flame structure most easily
develops. These results were interpreted by combined
conditions of inertial stress, energy, and jerk of shak-
ing exceeding their critical values. Although further
work is needed to clarify how the optimum frequency
band depends on the parameters such as fluid vis-
cosity and particle size, our experiments suggest that
the occurrence of a flame structure may be used to
constrain the shaking conditions when these structures
formed.

Additional files

Additional file 1: Movie 1 in QuickTime. An example of an experiment
in which a flame structure forms at an acceleration of 40.5 m/sz, a
frequency of 40 Hz, and an amplitude of 0.64 mm, replayed at x0.2 speed.
This is the same experiment which was shown in Figures 3 and 4.

Additional file 2: Movie 2 in QuickTime. Acceleration dependence

at a fixed frequency of 50 Hz replayed at x0.4 speed. These are four
selected examples from those shown in Figure 5b. Accelerations in m/s?
(and the resulting regime) are 2.1 (Ib: percolation), 7.9 (II: transition),

19.3 (II: transition), and 40.5 (IlI: flame), respectively.

Additional file 3: Movie 3 in QuickTime. Frequency dependence at a
fixed acceleration of 5.0 = 0.4 m/s” replayed at x0.4 speed. These are four
selected examples from those shown in Figure 6b. Frequencies in Hz (and
resulting regime) are 10 (Ib: percolation), 100 (Il transition), 150 (IlI: flame),
and 3,000 (Ib: percolation), respectively. Note that the flame structure
forms at the intermediate frequency of 150 Hz.
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