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Abstract 

Earthquake-induced crustal deformation provides valuable insights into the mechanisms of tectonic processes. Dislo-
cation models offer a fundamental framework for comprehending such deformation, and two-dimensional antiplane 
dislocations are used to describe strike-slip faults. Previous earthquake deformation analyses observed that antiplane 
dislocations due to uniform fault slips are influenced predominantly by fault tips. Here, we state a general principle 
of fault geometry invariance in antiplane dislocations and exploit its theoretical consequence to define dislocation 
potentials that enable a streamlined crustal deformation analysis. To demonstrate the benefits of this theory, we 
present an analytical example and construct a rapid numerical solver for crustal deformation caused by variable fault 
slip scenarios using physics-informed neural networks, whose mesh-free property is suitable for modeling disloca-
tion potentials. Fault geometry invariance and the dislocation potential may further the analysis of antiplane crustal 
deformation, particularly for uncertainty quantification and inversion analysis regarding unknown fault geometries 
in realistic crustal structures.

Keywords  Crustal deformation, Antiplane dislocation, Fault geometry invariance, Dislocation potential, Physics-
informed neural network

1  Introduction
Large earthquakes and associated processes cause sub-
stantial crustal deformation that reaches the Earth’s sur-
face, and their observation and modeling elucidate the 
source mechanisms and underlying physical processes 
(Pollitz et al. 2001; Freed and Bürgmann 2004; Sun et al. 
2014). Crustal deformation has been analyzed using dis-
location models that treat fault motions as displacement 
discontinuities in the continuum (Steketee 1958; Maruy-
ama 1964; Segall 2010). Different model structures have 
been assumed depending on the target phenomena: 
2-D antiplane dislocations to model long (or vicinity of ) 

strike-slip faults (Savage and Burford 1973), 2-D inplane 
dislocations to model long dip-slip faults like subduc-
tion zones (Savage 1983), and 3-D dislocations for gen-
eral finite faults (Okada 1992). Progress in analytical and 
numerical solutions has succeeded in explaining various 
earthquake processes (Smith and Sandwell 2004; Kyri-
akopoulos et al. 2013) and clarifying the effects of crustal 
structures such as surface topography and elastic proper-
ties (Masterlark 2003; Williams and Wallace 2015; Langer 
et al. 2019).

It has been known that antiplane deformation due 
to uniform slips on earthquake faults is not primarily 
controlled by the shape of fault surfaces but rather by 
the location of fault tips. Based on the analytical solu-
tions, Segall (2010) noted that surface deformation is 
independent of the dip of the fault for infinitely long 
buried faults in the homogeneous half-space, suggest-
ing difficulty in inferring the dip angle from surface 

*Correspondence:
Tomohisa Okazaki
tomohisa.okazaki@riken.jp
1 RIKEN Center for Advanced Intelligence Project, 2‑2‑2 Hikaridai, Seika, 
Kyoto 619‑0237, Japan

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40645-024-00654-7&domain=pdf
http://orcid.org/0000-0002-9688-9195


Page 2 of 9Okazaki et al. Progress in Earth and Planetary Science           (2024) 11:52 

observations. Based on the numerical modeling, Okazaki 
et  al. (2022) extended it including internal deformation 
due to curved surface faults in a heterogeneous elastic 
medium with surface topography, implying the universal-
ity of this property. However, these were limited to indi-
vidual observations and their implications were not fully 
explored.

In this study, we precisely state these findings as the 
general principle of fault geometry invariance in anti-
plane dislocations. This is verified in a simple and 
intuitive manner for curved earthquake faults, surface 
topographies, and underground structures. Furthermore, 
as a theoretical consequence of invariance, we introduce 
a field-valued function of the location of fault tips, which 
we call the dislocation potential. We show that the dislo-
cation potential contains complete information on crus-
tal deformation due to arbitrary fault slips with lower 
degrees of freedom than the commonly used Green’s 
functions and slip response functions (Okada 1992; Pan 
2019). Therefore, the use of the dislocation potential can 
advance the crustal deformation analysis of general anti-
plane dislocations.

We present an analytical example to illustrate fault 
geometry invariance in explicit forms. We also present a 
numerical example of physics-informed neural networks 
(PINNs), which can solve partial differential equations 
using deep learning without supervised data (Raissi et al. 
2019; Karniadakis et al. 2021). PINNs serve as mesh-free 
numerical solvers that are applicable to complex geom-
etries and exhibit promising performances in seismol-
ogy (Smith et  al. 2020; Rasht-Behesht et  al. 2022; Ren 
et  al. 2024), including fault slips (Okazaki et  al. 2022; 
Fukushima et al. 2023). We discuss PINNs because their 
continuous representations are suitable for modeling 
with dislocation potentials (Table 1). PINN forward solv-
ers can only address one specific problem and must be 
retrained if any condition is altered; heavy training costs 
hamper simulations at many conditions. Here, we use 
a PINN to solve the dislocation potential and leverage 
fault geometry invariance to obtain crustal deformation 
resulting from variable fault slips; rapid inferences enable 
simulations at many conditions. This combination makes 
use of the characteristics of theory (fault geometry invar-
iance) and method (neural networks).

The framework with the dislocation potential would 
be effective for uncertainty quantification and inversion 
analysis of unknown fault geometries. Because iterative 
forward calculations are required owing to the nonlinear 
dependence on fault shapes, analytical Green’s functions 
available only for simple crustal structures have been 
used to avoid remeshing costs in discretization methods. 
Fault geometry invariance and the dislocation potential 
would enable these analyses for antiplane dislocations in 
realistic crustal structures.

2 � Fault geometry invariance
We suppose antiplane dislocations in isotropic linear 
elastic media, where the crustal structure is uniform 
along one horizontal direction and the displacement field 
is parallel to it. The fault surfaces and their endpoints 
are termed dislocation surfaces and dislocation lines, 
respectively.

First, we formally state the principle of fault geometry 
invariance in antiplane dislocations. In a general under-
ground structure with surface topography, uniform slips 
s on faults �1 and �2 with common dislocation lines pro-
duce displacement fields that are identical except for the 
constant difference s in a region D enclosed by �1 and �2 
(Fig. 1a):

Here, �1 and �2 can be surface faults (Fig. 1a, top) or 
buried faults (Fig. 1a, bottom), as long as all the disloca-
tions lines are common. This indicates that dislocation 
lines essentially determine crustal deformation, and that 
dislocation surfaces only change the position of the dis-
placement discontinuity. This implies that the strain is 
independent of the dislocation surfaces and is thus con-
tinuous across them.

This statement can be deduced as follows: Suppose 
a combined fault slip (�2 −�1) , where the minus sign 
represents a slip in the opposite direction (Fig. 1b). This 
corresponds to a boundary condition imposing displace-
ment discontinuity s on �1 and �2 at the side toward D. 
Because s is constant throughout the boundary, its solu-
tion is given by a relative rigid motion s between D and 
the outer region without internal deformation:

The linearity of deformation leads to Eq. (1). This deri-
vation clarifies that fault geometry invariance holds only 
for a uniform slip in antiplane dislocations. For instance, 
in inplane problems, a uniform relative motion causes 

(1)u�2 =

{

u�1 + s inD
u�1 elsewhere

(2)u�2−�1 =

{

s inD
0 elsewhere

Table 1  Comparison of solution methods for crustal 
deformation

Method Representation Crustal structure

Analytical Continuous Limited

Physics-informed neural network Continuous General

Discretization methods Discrete General
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deformation unless the boundary has a constant curva-
ture (Fukahata and Matsu’ura 2016). See supplementary 
information Text S1 for a formal derivation based on the 
governing equations.

Fault geometry invariance unveils an intrinsic prop-
erty of antiplane dislocations but does not have a direct 
implication for distributed slips. We now introduce a 
novel physical quantity, the dislocation potential, that 
leads to a streamlined crustal deformation analysis of 
distributed slips. The logic is analogous to the potential 
energy in classical mechanics (Goldstein et  al. 2002): if 
the total work depends only on initial and final states but 
is independent of intermediate paths (i.e., conservative 
force), we can define a potential energy from which the 
work over arbitrary paths can be evaluated. The potential 
energy plays an essential role in various physical systems 
such as the gravitational and electrostatic forces.

Fault geometry invariance states that the displace-
ment field depends only on dislocation lines (fault tips) 
but is independent of dislocation surfaces (intermediate 
shapes). Therefore, we can define a dislocation poten-
tial from which the displacement field caused by arbi-
trary fault shapes can be evaluated: by fixing a reference 
point O in the medium, the dislocation potential φP at a 

point P is defined by the displacement field due to the 
unit slip on a dislocation surface connecting the dislo-
cation lines O and P. Because the displacement field is 
independent of intermediate shapes connecting O and 
P owing to the invariance, we choose a linear fault for 
clarity (Fig. 1c, top). We note that the gravitational and 
electrostatic potentials have a value on a scalar, whereas 
the dislocation potential has a value on a field. The dis-
placement field due to the unit slip on a general fault � 
with dislocation lines A and B is represented by the dif-
ference in φ (Fig. 1c, bottom):

This formula can be extended to the distributed fault 
slips; by taking the arc-length parameter ξ on � , the 
displacement field due to a slip s(ξ) is represented by a 
line integral of the directional differential of φ along �:

Therefore, for a given crustal structure, the disloca-
tion potential φ contains all information on crustal 
deformation. See supplementary information Text S2 
for detailed discussion and derivations.

(3)u� = φB − φA

(4)u� = ∫
�

s(ξ)∇ξφP(ξ)dξ

Fig. 1  Fault geometry invariance and dislocation potential. a Fault geometry invariance. Displacement fields due to uniform slips on two faults �1 
and �2 with common dislocation lines are identical except for a constant difference in the region D enclosed by the two faults. The top and bottom 
panels illustrate surface and buried faults, respectively. Symbols ⊙ and ⊗ represent movements toward and away from the paper, respectively. 
b Derivation of the fault geometry invariance. The dislocation (�2 −�1) yields a relative rigid motion between D and the outer region. c The 
dislocation potential. Top: For a fixed reference point O, the dislocation potential φP is defined as the displacement field due to the unit slip on linear 
faults connecting O and dislocation lines P. Bottom: Crustal deformation due to the unit slip on a general curved fault with dislocation lines A and B 
is given by the difference in φ between its endpoints.
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3 � Analytical example
We presented a simple but abstract derivation of fault 
geometry invariance. Here, we illustrate it through 
explicit calculations. Internal deformation caused by 
a uniform slip b on a dipping fault in a homogeneous 
half-space is given by (Singh and Rani 1996)

where δ is the dip angle, s is the radial coordinate, and x2 
and x3 are the horizontal and vertical (downward posi-
tive) coordinates, respectively (Fig.  2). Fault geometry 
invariance indicates that Eq. (5) does not depend on δ 
(i.e., inclination of the dislocation surface) but depends 
only on the position of the dislocation lines. In fact, a 
straightforward calculation yields (supplementary infor-
mation Text S3)

This coincides with deformation due to two verti-
cal faults (Fig.  2a): the first and second terms repre-
sent deformation fields due to dislocation and image 
sources with slip b at (a2, d2) , respectively, whereas the 
third and fourth terms represent those due to disloca-
tion and image source with slip −b at (a1, d1) , respec-
tively (Segall 2010). This reduction suggests that the 
derivation of analytical solutions can be considerably 
simplified by appropriately considering fault geom-
etry invariance. Although we treated a linear fault for 

(5)u1 =
b

2π

[

tan
−1

(

s − x2 cos δ − x3 sin δ

x3 cos δ − x2 sin δ

)

− tan
−1

(

s − x2 cos δ + x3 sin δ

x3 cos δ + x2 sin δ

)]s2

s1

(6)
u1 =

b

2π

[{

tan
−1

(

x3 − d2

x2 − a2

)

− tan
−1

(

x3 + d2

x2 − a2

)}

−

{

tan
−1

(

x3 − d1

x2 − a1

)

− tan
−1

(

x3 + d1

x2 − a1

)}]

explicit calculations, fault geometry invariance ensures 
that Eq. (6) holds for curved faults.

4 � Physics‑informed learning application
We now demonstrate the utility of φ through a numeri-
cal example using PINNs, whose mesh-free property 

is suitable for modeling φ . As previously mentioned, 
PINN forward modeling addresses one specific problem 
and must be retrained when some of the parameters are 
altered, which incurs additional computational costs. In 
general, this limitation can be resolved by adding param-
eters that specify model structures to the input variables. 
This is called surrogate modeling and straightforward for 
finite-dimensional quantities such as strength and posi-

tion (Sun et  al. 2020; Song and Wang 2023). However, 
adding infinite-dimensional quantities such as func-
tions and shapes requires representations in parametric 
forms (Ren et  al. 2024; Sun et  al. 2020), which incurs a 
trade-off between the expressive power and the training 
tractability.

Based on fault geometry invariance, we can con-
struct a PINN surrogate model for crustal deformation 
due to infinite-dimensional fault geometry (curve) and 
slip distribution (function) without finite-dimensional 
parametric forms. The PINN approximates the dis-
location potential φ(X , Y )

(

x, y
)

 , which represents the 

Fig. 2  Fault geometry invariance for linear faults in a homogeneous half-space. a Internal deformation due to a uniform slip on a dipping fault 
(orange line) is identical to that on two vertical faults (blue lines) owing to fault geometry invariance. b Coordinate transformation that relates 
the dipping and vertical faults
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displacement at 
(

x, y
)

 due to a unit slip on a fault con-
necting a reference point O and (X , Y ) . The input vari-
ables are 

(

x, y, X , Y
)

 and the output variable is φ . 
Because of the singularity at dislocation lines, care must 
be taken to approximate φ using neural networks. We fix 
a reference point O at the ground surface to avoid sin-
gularity at O. To remove the singularity at the disloca-
tion line (X , Y ) , we introduce a polar coordinate system 
whose pole and branch cut coincide with the dislocation 
line and surface, respectively (Fig.  3a). Because infinite 
fault planes with variable dislocation lines are solved 
simultaneously, the pole location varies with the input 
variables. We define a fixed coordinate transformation 
T :

(

x, y, X , Y
)

→ (r, θ , X , Y ) by

We then construct a neural network 
fNN : (r, θ , X , Y ) → φ , which is regular in the whole 
input domain. Consequently, the dislocation potential 
can be expressed as a composite function (Fig. 3b):

The loss function is the same as that of the forward 
modeling (Okazaki et  al. 2022). By simply adding the 
2-D position (X , Y ) of dislocation lines to the input var-
iables of the PINN forward model (Okazaki et al. 2022), 
the resultant PINN can solve the dislocation potential 
φ(X , Y )

(

x, y
)

 and can be used to estimate crustal defor-
mation resulting from arbitrary fault slips using Eq. (4). 

(7)

r =

√

(x − X)2 +
(

y − Y
)2
, θ = tan

−1

(

x − X

y − Y

)

(8)φ(X , Y )

(

x, y
)

=
(

fNN ◦ T
)(

x, y, X , Y
)

In essence, fault geometry invariance reduces the infi-
nite-dimensional space of curves and functions to the 
2-D space of positions. See supplementary information 
Text S4 for the implementation of PINNs.

Figure  4 shows the results in a homogeneous half-
space (examples of the learned dislocation potentials 
are shown in Fig. S1), which are in good agreement with 
analytical solutions (Singh and Rani 1996); the errors 
are shown in Fig.  S2. Figure  5 shows the results in a 
heterogeneous medium with a surface topography for 
which analytical solutions are unavailable (examples of 
the learned dislocation potentials are shown in Fig. S3). 
PINNs can represent continuous geometric shapes and 
changes in elastic properties without discretization. 
Supposing that a fault slip reaches the surface, but its 
distribution in depth is uncertain, we present the esti-
mations for different fault slips. The estimated surface 
displacements for variable faults are shown in Fig.  5c 
(faults in Fig.  5a with the coolest color slip in Fig.  5b) 
and variable slips in Fig. 5d (white fault in Fig. 5a with 
slip distributions in Fig.  5b). Although only five mod-
els are plotted in each panel for visibility, hundreds or 
thousands of estimations can be performed in a reason-
able time owing to the rapid forward computation of 
neural networks. Additional calculations of the combi-
nation of different fault shapes and slip amounts would 
clarify their relationship and trade-off. If we solve 
deformation separately, computational time will range 
10 min–5 h for each fault slip (Okazaki et al. 2022). By 
modeling the dislocation potential, it reduces to −0.4 s 
for each fault slip. The PINN solver shows full poten-
tial for calculating the deformation fields resulting from 
many possible rupture scenarios.

Fig. 3  Physics-informed neural networks (PINNs) for dislocation potential modeling. a The coordinate system for the modeling. The reference 
point O of the dislocation potential is set at the ground surface. The Cartesian coordinates (X , Y) and (x , y) denote the dislocation line 
P and the evaluation point of the displacement field, respectively. The polar coordinates (r , θ) are introduced so that the pole coincides 
with the dislocation line. b The PINN structure. The input variables (x , y , X , Y) are transformed to (r , θ , X , Y) and a neural network converts it 
to the dislocation potential φ(X , Y)(x , y) . The loss function is identical to that in the forward modeling (see supplementary information Text S4 
for the individual terms)
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5 � Discussion
We introduced the dislocation potential as a consequence 
of fault geometry invariance. Green’s function, the dis-
placement field due to a point force, is the most general 
element of crustal deformation, including explosive and 
shear sources. Its analytical expressions enable rapid cal-
culations of deformation due to arbitrary finite sources, 
but are limited to relatively simple structures, such as 
homogeneous/layered flat/spherical media (Okada 1992; 
Pollitz 1996; Nikkhoo and Walter 2015). For complex 
structures, numerical methods have difficulty in treat-
ing point forces for Green’s functions, and thus calculate 
the slip response function, the displacement field due to 
a dislocation source (Ohtani and Hirahara 2015; Hori 
et al. 2021). The set of dislocation potentials constitutes 
a subset of that of slip response functions; the latter is an 
infinite-dimensional space consisting of arbitrary disloca-
tion surfaces (curves in a 2-D space), whereas the former 
is a 2-D space consisting of linear faults connecting a ref-
erence point and arbitrary dislocation lines (points in a 
2-D space). Notably, the dislocation potential possesses 

the same information of crustal deformation as the slip 
response function owing to fault geometry invariance.

We presented analytical and PINN examples, 
because they represent solutions as continuous func-
tions (Table  1). This property is suitable for modeling 
the dislocation potential, whose derivatives are used 
for subsequent calculations. In contrast, conventional 
numerical solvers represent solutions at discrete grids 
or meshes, which complicates the direct use of the dis-
location potential. Nevertheless, the theory also applies 
to these methods and can be useful by using appropriate 
interpolations.

There is a limitation that fault geometry invariance 
holds in antiplane dislocations but cannot be generalized 
to inplane and 3-D dislocations, as understood from the 
derivation. The principle of superposition holds for lin-
ear elastic and viscoelastic materials, but not for nonlin-
ear rheology. The possibility of simultaneous solutions 
is summarized in Table  2. This shows how theoretical 
insights can improve the efficiency of modeling of spe-
cific problems.

Fig. 4  Physics-informed modeling results in the homogeneous half-space. a Fault geometries. b Slip distributions on the faults. c Surface 
displacements due to a tapered slip (black line in b). Colors represent the fault geometries in a. The vertical line indicates the fault location 
at the ground surface. d Surface displacements due to a buried fault (black line in a). Colors represent slip distributions in b. In c and d, Solid 
and dashed lines indicate physics-informed neural network and analytical solutions, respectively
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Fault geometry invariance elucidates a fundamen-
tal nature of antiplane crustal deformation with a clear 
derivation. Its theoretical consequence, the dislocation 
potential, enables a streamlined analysis with straight-
forward extensions of existing methods, as exemplified 
by the PINN modeling. The dislocation potential can be 
used to quantify the uncertainty of surface deformation 
resulting from the limited knowledge of fault ruptures 
in depth. Another promising application is inversion 
analysis of earthquake source processes, especially the 
simultaneous estimation of fault geometry and slip dis-
tribution. Owing to the nonlinear dependence on fault 
shapes, analytical Green’s functions in simple structures 
have been used to perform iterative estimations (Ragon 

et  al. 2018; Dutta et  al. 2021; Shimizu et  al. 2021). The 
presented PINN model can be incorporated as a for-
ward subroutine into sampling-based inversion analyses 
in complex structures, and may be developed to directly 
perform inverse modeling (Rasht-Behesht et  al. 2022; 
Chen et  al. 2022; Agata et  al. 2023). Modeling with the 
dislocation potential in other solution methods can also 
be explored. Fault geometry invariance and dislocation 
potential would broaden the scope of antiplane deforma-
tion analysis involving uncertain fault slips in complex 
crustal structures.

Scientific machine learning (SciML) is a new research 
trend that uses deep learning techniques for mode-
ling physical systems, including those in solid and fluid 

Fig. 5  Physics-informed modeling results in the heterogeneous structure. a Crustal structure and fault geometries. b Slip distributions on the faults. 
c Surface displacement due to a tapered slip (the coolest color line in b). Colors represent the fault geometries in a. d Surface displacement due 
to a vertical fault (white line in a). Colors represent slip distributions in b. In c and d, vertical lines indicate the fault location at the ground surface

Table 2  Possibility of simultaneous solutions for crustal deformation

Problem Topography Elastic property Fault geometry Slip distribution

General Fixed Fixed Fixed Fixed

Linear material Fixed Fixed Fixed Simultaneous

Linear antiplane Fixed Fixed Simultaneous Simultaneous
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Earth sciences (Baker et al. 2019). PINNs are representa-
tive methods capable of forward and finite-dimensional 
surrogate modeling with continuous representations 
(Sect.  4). Moreover, some physical conditions, such as 
initial states and spatial variations of material properties, 
have infinite dimensions. To learn operators between 
infinite-dimensional spaces, neural operators have been 
investigated (Lu et  al. 2021; Kovachki et  al. 2023) and 
applied to various scientific tasks such as numerical 
weather forecasts (Pathak et  al. 2022) and seismic wave 
simulations (Yang et  al. 2021). However, training costs 
and model complexity with discrete representations are 
limitations of neural operators (Table  3). In this study, 
we constructed a PINN surrogate model of the disloca-
tion potential and leveraged fault geometry invariance 
to calculate crustal deformation for infinite-dimensional 
fault slip conditions. In other words, an operator learn-
ing problem (the right column in Table  3) was solved 
with PINNs (the middle column in Table  3) owing to a 
theory. This construction illustrates how a theoretical 
insight into target phenomena can sophisticate geophysi-
cal modeling with SciML approaches.
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