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Abstract 

The Shuiluo River Catchment (SRC) is the front zone of the southeast compression and uplift of the Tibetan Plateau, 
with intense tectonic activity. In the basin, a series of regional large NW–SE trending active faults are developed. 
Studying clearly the geomorphic evolution of the SRC is conducive to further understanding the uplift and expansion 
mechanism of the SE edge of Tibetan Plateau. Our research was based on geographic information system, numerical 
analysis tool, and digital elevation model data, to extract six geomorpic parameters (hypsometric integral, asymmetry 
factor, basin shape ratio, valley floor width–valley height ratio, normalized channel steepness index and index of relative 
active tectonics) in SRC. After eliminating the impacts of climate, catchments area, and glacier, the geomorphic evolu-
tion of the SRC is mainly affected by geological structure and differential tectonic uplift movement; in the upstream 
and midstream (upper part), the shape of valleys and stream longitudinal profile shapes are affected by lithology; 
affected by geological structure and tectonic uplift, the tectonic activity in the midstream and downstream is rela-
tively strong, and the intensity of activity in the downstream is stronger than that in the midstream, which may 
suggest that the faults’ activity in the downstream is stronger; the index of relative active tectonics values of the SRC are 
consistent with the regional seismic intensity, field-work and low-temperature thermochronology which indicates it 
is reasonable to use the fluvial geomorphic parameters to study the regional geomorphic evolution. The morphologi-
cal parameters we extracted show different values in different regions of SRC, which may be the result of differential 
uplift in the southeastern of the Tibetan Plateau.
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1 Introduction
Since the Cenozoic, along with the collision of the 
Indian and Eurasian plates, and resulting compres-
sion, the highest in the world has been formed-Tibetan 
Plateau (Molnar and Tapponnier 1975; England 1997; 
Chen et  al. 2017; He et  al. 2023; Ma et  al. 2023a, b). 
The Tibetan Plateau has a profound impact on atmos-
pheric circulation and thus global climate, and is an 
ideal place for scientific research (Tapponnier 2001). 
Due to the uplift effect of the Tibetan Plateau, as well 
as the mutual compression of multiple sturdy and 
almost undeformed cratons such as the Tarim, North 
China Craton, and South China Block on its eastern 
and northeastern edges, some orogenic belts have been 
formed, resulting in the thickening of the crust around 
the plateau and the uplift of blocks that is still ongo-
ing (Tapponnier and Molnar 1977; Ding et al. 2022; Sun 
et al. 2023). Regional fault zones are widely developed 
around the Tibetan Plateau, such as Xianshuihe-Xiao-
jiang fault, Altun fault, Kunlun fault, and Yushu fault 
(Chen et al. 2016; Ji et al. 2020; Tian et al. 2021). These 
large faults are generally the result of strong tectonic 
activity (He et al. 2010; Li et al. 2021). Simultaneously 
triggering strong earthquakes, landslides and mudslides 
(Chen et al. 2023; Huang et al. 2023). The study of these 
fault zones can reveal the tectonic activity and orogenic 
belt information in the periphery of the Tibetan Pla-
teau, and then we can further analyze the uplift mecha-
nism of the plateau (Li et al. 2016; Wu et al. 2023a, b). 
These fault and orogenic belts have been studied by 
many scholars (Wang et  al. 2008, 2014; Li et  al. 2015, 
2021; Yan et  al. 2017; Chen et  al. 2020; Yin and Luo 
2021; Tian et al. 2023; Shi et al. 2023; Luo et al. 2023), 
which further enriched the research base of the Tibetan 
Plateau. Understanding the activity mechanisms and 
differential activity of these active faults is beneficial for 
understanding the characteristics of the Cenozoic tec-
tonic landforms around the Tibetan Plateau and even 
the tectonic movements of the entire it and theirs tec-
tonically implications.

In addition to the active fault and orogenic zone, the 
river, as a unique geomorphic unit, is also extremely 
sensitive to the response of tectonic activities. River 
morphology reflects tectonic activity and, in particular, 
river long profiles reflect uplift histories (Wang et  al. 
2021). The fluvial geomorphologic features, such as the 
terrace deposits on both sides of the river, and the shape 
of the horizontal and vertical sections of the river, can 
reflect rich information of tectonic activities (Ma et al. 
2023a, b). Fluvial geomorphology has become the most 
ideal carrier for recording tectonic activities (How-
ard and Kerby 1983; Burbank et al. 1996; Snyder et al. 
2000; Clark and Handy Royden 2000). Many studies 

use fluvial geomorphology to reveal regional differen-
tial tectonic activities, tectonic geomorphologic fea-
tures, and geological age (Partabian et al. 2016; Ahmad 
et al. 2018; Anand and Pradhan 2019; Wang et al. 2022). 
Some geomorphic parameters such as mountain front 
sinuosity (SMF) (Amine et al. 2020), fractal dimension 
(FD), normalized channel steepness index  (ksn) (Whip-
ple and Tucker 1999), valley floor width–valley height 
ratio (VF) (Cannon 1976; Bull and Mcfadden 1977), 
and hypsometric integral (HI) (Strahler 1952), which 
can be used to quantitatively explore the character-
istics of regional fluvial geomorphology, especially in 
some areas lacking ideal dating materials (Aier et  al. 
2011; Lahiri and Sinha 2014; Amine et  al. 2020; Buc-
zek and Górnik 2020; Ali et al. 2021; Wang et al. 2021; 
Yu et al. 2022). Because the rivers are very sensitive to 
the tectonic uplift at the edge of the Tibetan Plateau, 
the use of fluvial geomorphology to study neotectonics 
has become the main direction of the academic com-
munity, and then many researches have been carried 
out (Su et  al. 2016; Fan et  al. 2018; Luo et  al. 2023). 
The study of the tectonic evolution history around the 
Tibetan Plateau focuses on its northeast and southeast 
edges (Chang et  al. 2015; Chen et  al. 2018; Gao et  al. 
2019; Sun et  al. 2022; Wang et  al. 2022; Zhou et  al. 
2023a, 2023b; Tan et al. 2023; Wu et al. 2023a, b). Com-
pared with the northeastern edge of the plateau, which 
is widely used for dating techniques in the Quater-
nary system, there is relatively limited research on the 
chronology of eroded bedrock landforms in the south-
eastern edge, mainly characterized by high mountains 
and canyons, especially in some typical active tectonic 
basins (Williams 1987; Zhou et  al. 2005; Chang et  al. 
2015). Located at the SE of Tibetan Plateau and in 
the southern part of the Songpan-Ganzi fold belt, the 
Shuiluo River Catchment (SRC) is a large-scale basin 
(catchment area >10,000km2) in the southern part of 
the western Sichuan Plateau, and it is a primary tribu-
tary of the midstream of the Jinsha River; on the mean-
while, the catchment is in the transition area from the 
Zhongzan block to the Erlong block and the Yangtze 
paraplatform (Nie et al. 2015). And it is surrounded by 
the Ganzi Litang fault, Jinshajiang fault, Yulongxueshan 
fault and Lijiang fault, and some faults of northwest 
and northeast trend are also developed in the region, 
the regional tectonic condition is extremely complex. 
Previous studies on the tectonic evolution history of 
the region around the SRC (SE edge of the Tibetan Pla-
teau) have shown that there are significant spatial dif-
ferences in the rate of tectonic denudation and uplift 
time in southeastern Tibetan Plateau (Zhang et  al. 
2017). The response of the SRC to these differential tec-
tonic activities is an important area for understanding 
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the geomorphic evolution of southeastern Tibetan Pla-
teau, and the dense river network developed on the sur-
face of the SRC provides a research window. Therefore, 
the study of the fluvial geomorphology in the basin is 
conducive to interpret the characteristics of regional 
tectonic activities. Moreover, the evolution of the 
ancient Shuiluo River (~1.7 Ma) stream network sys-
tem is the key to unlocking the formation and evolution 
mechanism of the first bend of the Yangtze River (Kong 
et  al. 2012; Zhang et  al. 2022). Therefore, a systematic 
study of the river geomorphic evolution of Shuiluo 
River is conducive to further clarifying the compres-
sion and uplift mechanism of the southeastern edge of 
the Tibetan Plateau, as well as related scientific issues 
related to the formation and evolution of the first bend 
of the Yangtze River. The digital elevation model (DEM) 
is an important tool in quantitative study of geomor-
phic evolution, which is widely used in the research of 
digital geomorphology because it is easily accessible 
(Chang et al. 2015; Tang et al. 2017; Xiong et al. 2021).

In order to use fluvial geomorphic parameters to 
explain the differences of SRC tectonic activity and 
reveal its response to the uplift of the Tibetan Pla-
teau, we extracted six geomorphic parameters of the 
SRC through geographic information system (GIS) 
and numerical analysis tool based on DEM data in this 
work: hypsometric integral (HI), asymmetric factor (AF), 
shape basin ratio (BS), valley floor width–valley height 
ratio (VF) and Normalized Channel Steepness Index 
(ksn). We analyzed the fluvial geomorphic features of 
the studied basin by above-mentioned six geomorphic 
parameters and calculated the Index of Relative Active 
Tectonics (RIAT) of the SRC by the method of tectonic 
activity classification (Hamdouni et  al. 2008). Com-
bined with regional geological data, glacier distribution, 
earthquake, precipitation data and field work, we ana-
lyzed the main factors affecting the fluvial geomorphic 
evolution of the SRC, and then discuss the relative dif-
ferences in tectonic activity in the study area and their 
response to the compression and uplift mechanisms of 
the SE Tibetan Plateau margin. In order to clearly show 
the spatial differences in the activity tectonic of SRC 
based on our work results, and for ease of expression, 
we define the area from the catchment source to Maiwa 
as the upstream section of SRC, that is, the north, and 
the area (or river section) between Maiwa and Shuiluo 
as the midstream (that is, the center). The following 
areas are defined as downstream, i.e., southern (Fig. 2).

2  Study area
2.1  Fluvial network features
The Shuiluo River originates from the west side of 
Donglang mountain in the north of Daocheng, Sichuan 

Province, and flows southwestward through Sangdui 
and Maiwa, then flows southward through Mairui and 
Shuiluo, then flows southward through the southwest of 
Litang, and finally flows into the Jinshajiang River at the 
Sanjiangkou at the border of Ninglang, Yunnan Prov-
ince, which is a primary tributary of the left bank of the 
midstream of the Jinsha River (Fig.  1a–c). The latitude 
is 99.87–100.81°E, 27.62–29.57°N and the basin area is 
about 13,825  km2. we used the hydrology tool of ArcGIS 
10.2 to obtain the drainage basin network and catchment 
range of SRC, and to divide its 41 sub-catchments. We 
finally determined the spatial position of the main stream 
channels (primary tributary) of SRC and of 41 sub-catch-
ments. The area of the sub-catchment on the left bank 
of the mainstream is small, only No.3 sub-basin has a 
large area about 1,310km2 and the other sub-basins have 
small area. On the right bank, there are large sub-basins 
namely Nos. 22, 37 and 38, with an area of 1789  km2, 
2978  km2 and 1186  km2, respectively. The mainstream 
of Shuiluohe River is about 299km long, and shorter riv-
ers are developed along the east bank of the mainstream, 
with an average length of 16.94 km (Fig. 2, Table 1). The 
elevation drop of the basin is 4009 m, and the elevation 
of the northern part of the basin is high, followed by the 
central part. The elevation of sub-basins 38, 40 and 41 in 
the south is the lowest, with an altitude range of 2312–
3423 m (Fig. 2).

2.2  Geomorphology and geology
The swath topography profile shows that the valley in 
the midstream and downstream (central and south-
ern parts, A-A’; B-B’) of SRC is extremely deep, and the 
peaks are even steeper. In the midstream, there are also 
three snow capped mountains with an altitude of over 
5000 meters, including Yangmaiyong, XhanuoDuoji, 
and Senaichi in Daocheng Yading Scenic Area. There 
are many faults distributed in this region. This region 
stratum mainly consisting of Triassic limestone, sand-
stone, slate, etc. Upstream of SRC (north, C-C’), there 
are larger and higher altitude plateau surface developed, 
with fewer faults and more granite distributed. Quater-
nary sediments are developed in the central valley from 
Sangdui to Maiwa in upstream of SRC (Figs. 1c, 3). The 
strata and lithology of the SRC are complex, with strata 
exposed from Proterozoic to Cenozoic, mainly com-
posed of marine Triassic limestone and metasandstone. 
In the northern part of the basin, Triassic porphyry mon-
zogranite is distributed; the eastern part is dominated 
by limestone, sandstone and slate of the upper Triassic 
Yidundaochengqugasi Formation of the basin facies; the 
southern part is dominated by basalt with slate and tuf-
faceous rock; the southwestern part is dominated by slate 
with basalt and thin limestone of the lower and middle 
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Triassic Niru Formation of the basin facies; the south-
east is dominated by basaltic breccia of the Middle and 
Upper Permian Zhongdagai Formation (Figs. 1c, 3). The 
SRC is surrounded by Jinshajiang Fault, Yulongxueshan 
Fault, Ganzi-Litang Fault and Lijiang Fault. Ganzi-Litang 
Fault is about 600 km long, which is the boundary of 
Yidun and Songpan-Ganzi blocks, and its northwest end 
is connected with Jinshajiang Fault (Jackson et al. 2020). 
According to field structural observation, rock mass age 
and chemical characteristics, it is shown that Ganzi-
Litang Fault and Jinshajiang Fault are continuous struc-
tural elements across the eastern Tibetan Plateau (Reid 
et  al. 2007). The southeast end of Ganzi-Litang Fault is 
located in the transitional zone between the Yangtze par-
aplatform and the Qiangtang block (Burchfiel et al. 1995). 
The Ganzi-Litang Fault is one of the most important 
active fracture zones on the Western Sichuan Plateau and 
is also a major trigger of intense tectonic activity on the 
plateau (Zhang et al. 2017). The Jinshajiang Fault entered 
Yunnan from Derong, Sichuan, and went south along the 
valley of the middle section of the Jinshajiang River. This 
fault is a large strike slip fault that controls the south-
west edge of the Kangdian block (Duan and Tan 2000). 
The activity of the middle section of Jinshajiang Fault is 
stronger than that of the north section, and the activity 
of the north section is weaker since the late Pleistocene 
(Chang et al. 2019). Lijiang Fault is the SW-trend exten-
sion of the Mesozoic Longmenshan-Jinpinshan thrust 
nappe structural belt, and it is located in a strong erosion 
and deep cutting area, lacking Quaternary sediments. 
Since the Holocene, three ancient earthquakes in Lijiang-
Xiaojinhe Fault caused the complete rupture of the mid-
dle section of the fault, resulting in the development of 
the structural fracture zone in this section (Ding et  al. 
2018). In the studied catchment, a series of NW and NE 
faults are also developed.

3  Overview of DEM data and methodology
Our research was based on the global high-resolution 
DEM data (https:// www. earth data. nasa. gov/ esds/ compe 
titive- progr ams/ measu res/ nasad em) released by National 
Aeronautics and Space Administration (NASA) on Feb-
ruary 18, 2020, after reprocessing Shuttle Radar Topogra-
phy Mission (SRTM) data, which improves the elevation 

accuracy and fills the missing values. The spatial resolution 
of DEM data is 30m, covering from 60 ° N to 56° S. The 
spatial reference of DEM data we used is World Geodetic 
System (WGS) 1984, and we used geographic information 
system (GIS) to cut and project the DEM data (WGS 1984 
Universal Transverse Mercator Zone 47N). Then we used 
the hydrology tool of ArcGIS 10.2 software provided by 
Environmental Systems Research Institute (ESRI) to obtain 
the drainage basin network and basin range of SRC, and to 
divide its 41 sub-catchments. Finally determined the spatial 
position of the main stream channels of SRC and of 41 sub-
catchments. We used GIS, CaIHypso (an ArcGIS extension 
tool for calculating hypsometric integral curves) and MAT-
LAB (a mathematical software produced by MathWorks in 
the USA), combined with parameter model, to obtained six 
geomorphic parameters.

3.1  Hypsometric Integral (HI)
Hypsometric integral (HI) is a mathematical model that 
reflects the relationship between the development stages 
of catchment geomorphology and erosion. It displays the 
period (stage) of geomorphic development. Hypsometric 
curves display the stages of geomorphic evolution. When 
the curve is convex, it indicates that there is more mate-
rial to be eroded on the surface, and the topography on 
the surface is undulating greatly, which represents an early 
stage of geomorphic evolution. When the curve shows a 
concave shape, it represents the late stage of topography 
development, where the amount of eroded material on the 
surface increases and the surface relief decreases. The HI 
value directly reflects the stage of geomorphic develop-
ment. HI < 0.40, the geomorphic evolution reaches the 
maturity stage, and the intensity of tectonic activity is not 
strong; 0.40 ≤ HI < 0.50, the geomorphic evolution reaches 
the middle stage, and the tectonic activity is relatively 
strong; when HI ≥ 0.50, the geomorphic evolution reaches 
early stage, and has extremely strong tectonic activity 
(Strahler 1952). HI was proposed by Strahler, and the cal-
culation formula is:

(1)HI =
hmean − hmin

hmax − hmin

Fig. 1 Location, lithology and geological structure of SRC. a Location of the Tibetan Plateau in the world, b main faults and tectonic divisions 
developed in the Tibetan Plateau, and the SRC is located in the southeast of the Tibetan Plateau, c tectonic diagram of study area. Lithology 
and faults data are from https:// geocl oud. cgs. gov. cn/, and the resolution is 1:500000. F1. Zhongdian-Xiangcheng Fault. F2. Xisashi Fault. F3. 
Lide-Dewu Fault. F4. Shade Fault. F5. Hehaizi Fault. F6. Sanyanlong Fault F7. Mengzi Fault. F8. Chitu Fault. F9. Boke Fault. F10. Qiasi Fault. F11. 
Ranglang Fault. F12. Guaishaoti Fault. F13. Lagengwa Fault. F14. Yangta Fault. F15. Zhangke Fault. F16. Jinpingshan Fault. F17. Longpan Fault. Note: 
the swath topography profile see Fig. 3

(See figure on next page.)

https://www.earthdata.nasa.gov/esds/competitive-programs/measures/nasadem
https://www.earthdata.nasa.gov/esds/competitive-programs/measures/nasadem
https://geocloud.cgs.gov.cn/
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Fig. 1 (See legend on previous page.)
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where hmean indicates the value of the average elevation in 
a region, hmin indicates the minimum elevation, and hmax 
indicates the maximum elevation.

3.2  Asymmetry factor (AF)
Asymmetry factor (AF) is used to evaluate the degree 
of tectonic inclination in a certain basin. The AF index 
value could characterize the degree of tectonic tilt of a 
basin. The value of |AF-50| is generally defined to quan-
titatively reveal the tectonic activity in a catchment. In 

other words, the greater the absolute value, the greater 
the degree of tectonic tilt in a basin, and the greater the 
inclination of a basin trunk toward the left or right bank. 
Generally speaking, when AF < 7, the tectonic inclination 
is low; when 7 ≤ AF < 15, the tectonic inclination is mod-
erate; when AF ≥ 15, the tectonic inclination is large, and 

Fig. 2 Elevation reclassification and basic landform types of SRC. 
Elevation reclassification of SRC and name of these tributaries. Note: 
all tributaries’ names and informations see Table 1

Table 1 Informations of main streams in each sub-catchment

Stream no Name Stream length 
(km)

Catchment 
area(km2)

1 Riyong 26.24 133.22

2 Balongqu 18.48 415.79

3 Niqingqu 88.05 1309.78

4 Banghe 39.57 406.22

5 Nadingchuogou 18.49 53.01

6 Hecuogou 12.24 30.84

7 Zajiaogou 40.00 260.57

8 Zeyong 21.58 116.32

9 Reying 10.72 21.43

10 Nayingyongbao 15.10 46.75

11 Darongqu 12.79 33.92

12 Zhangjianyong 17.10 44.84

13 Gonggongyong 16.43 120.94

14 Gonggenggou 20.37 75.63

15 Morong 9.40 39.72

16 Cuohong 8.19 21.10

17 Zengdonggou 9.77 64.40

18 Xironghe 18.04 173.50

19 Lanyaohe 41.04 580.61

20 Dasigonggou 14.98 57.89

21 Zirong 14.90 40.40

22 Chituhe 98.91 1789.48

23 Watuogou 26.26 266.27

24 Gedehen 12.80 46.76

25 Baishuihe 22.16 276.26

26 Siwenggou 12.21 47.06

27 Luoduogou 14.91 80.46

28 Wolonggou 12.89 61.56

29 Yanmushudu 12.87 42.99

30 Luodouhe 11.00 46.18

31 Qunyinggou 22.29 143.63

32 Lapaigong 33.22 305.43

33 Rangjiegong 19.12 86.01

34 Shawabugou 13.38 67.62

35 Quanmaguaigou 20.58 146.05

36 Xiaqiaohe 10.22 36.49

37 Chongtianhe 126.14 2977.56

38 Niruhe 78.67 1186.45

39 Duocaihe 11.39 45.89

40 Yijigou 24.41 173.24

41 Saduogou 11.80 53.24
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a basin is strongly affected by tectonic activity (Hare and 
Gardner 1985; Pérez-Peña et al. 2010). And the calcula-
tion formula is:

where Ar indicates the area on the right side of a cer-
tain watershed flowing along the main stream and At is 
the total area (Hare and Gardner 1985; Cox 1994).

3.3  Basin Shape Ratio (BS)
Basin shape ratio (BS) is used to quantitatively evaluate 
the shape of a watershed. The BS index represents the 
development shape of a basin. The larger the BS value, 
the narrower basin shape. The smaller the BS value, the 
wider the basin shape. When BS ≥ 3, the basin shape 
is very narrow, and the intensity of tectonic activity is 
extremely strong, additionally, the surface uplift is in the 
initial stage. When 2 ≤ BS < 3, the basin shape is in the 
transition stage from narrow to broad, and the tectonic 
activity is relatively strong. When BS < 2, the basin shape 
gradually becomes wider, and it is in the stage of geomor-
phic evolution dominated by external force erosion, and 
the tectonic activity is relatively weak (Bull and Mcfad-
den 1977) the calculation formula is:

where Bl indicates the maximum length of the watershed, 
Bw indicates the maximum width of the watershed.

3.4  Valley floor width–valley height ratio (VF)
The VF value can reflect the shape of the valley. If the 
VF value is large, the valley shape is U-shaped. If the 
VF value is small, the valley shape is wide V-shaped 
or deep V-shaped. The VF value can generally indi-
cate the intensity of tectonic activity. The deep can-
yon (VF<0.50) shows that the tectonic uplift is intense 
and the erosion basis is decreased and the stream ero-
sion direction is mainly down-cutting. The river val-
ley becomes wider and the stream erosion direction 
is mainly lateral and the tectonic activity is moderate 

(2)AF =
Ar

At
× 100

(3)BS =
Bl

Bw

when 0.50 ≤ VF < 1.00. When VF>1.00, the river val-
ley is U-shaped or wide U-shaped, the stream gradu-
ally stopped cutting down and laterally eroded to both 
sides, which is a stage of weak tectonic activity (Bull 
and Mcfadden 1977). The formula is:

where Vfw is the width of the valley floor, Esc is the 
height of the valley floor, Eld is the elevation value of the 
left shoulder of the valley, and Erd is the elevation value 
of the right shoulder of the valley (facing downstream).

3.5  Normalized channel steepness index  (ksn)
Under natural conditions, the relationship between the 
slope of the stream channel (S) and the drainage area 
(A) follows a power-law function (Flint 1974; Sklar et al. 
1998; Snyder et al. 2000), namely:

where ks is the steepness index of the stream, indicat-
ing the degree of steepness of the stream channel; θ 
Represents the concavity coefficient of a river channel, 
reflecting the degree of concavity of the stream channel 
(Whipple 2004). In a steady state, using the hydraulic 
erosion model of bedrock rivers (Whipple and Tucker. 
1999):

The power-law function relationship can be obtained:

In Eqs. (6) and (7), E is the erosion rate of the river, Se is 
the slope of the stream in equilibrium state, U is the rate 
of rock uplift, K is the dimensional erosion coefficient, 
and K value mainly reflects the effects of climate, lithol-
ogy, structure and other factors (Whipple and Tucker 
1999; Snyder et  al. 2000). m and n are constants. Com-
paring Eqs. (5) and (7), when the river is in equilibrium 
state, there are:

(4)VF =
2Vfw

(ELd − Esc)+ (Erd − Esc)

(5)S = ks · A
−θ

(6)E = KAmSn

(7)Se = (U/K )1/nA−m/n

Fig. 3 The swath topography profile in the SRC. We try to select a range that spans as many stratigraphic units as possible to create swath 
topography profile. We have created three swath topography profile (A–A’, B–B’, and C–C’) spanning upstream, midstream, and downstream, 
displaying the maximum, minimum, and average elevation values of the swath coverage area, enabling the most intuitive observation and analysis 
of the terrain. The blue arrow refers to the stream, corresponding to its number. The red arrow indicates a fault. The green straight line represents 
the boundary of stratigraphic lithology. Note: T: Triassic limestone; E: Paleogene conglomerate; P: Permian limestone; H: clastic rocks with carbonate 
rocks in the Xiajiang Formation of the Cambrian-Ordovician; D: Devonian schist and marble; TH: Triassic granite; NHZ: moraine conglomerates 
and volcanic clastic rocks of Nanhua-Sinian Mulipingwumuzuo Formation; Q: Quaternary sediment; SRM: main stream of Shuiluo River; JSR: Jinshan 
River; SM: Snow mountain

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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and:

Due to the varying basin sizes of streams, in order to 
compare streams with different basin sizes, a reference 
depression value can be taken, i.e the θref=0.45 is used 
to calculate the standardized steepness coefficient of 
streams (Wobus et al. 2006):

In Eq. (10), the longitudinal profile of a stream in 
equilibrium presents a smooth concave state, and the 
degree of steepness of its longitudinal profile is repre-
sented by the normalized channel steepness index (ksn). 
The logarithmic relationship between the stream slope 
and the catchment area is a straight line, and its inter-
cept (a parameter representing the overall slope of the 
stream) can be used to reflect the tectonic-climate inter-
action (Howard and Kerby 1983; Howard et  al. 1994). 
In an instantaneous state, the stream longitudinal pro-
file is generally divided into sections of different steep-
ness by a knickpoint, which is the turning point at which 
the river section is divided into different slopes on the 
stream longitudinal profile (Kirby and Whipple. 2012). 
The steepness of a stream longitudinal profile can reflect 
rich information on tectonic. After site investigation, 
the study area developed bedrock channels or bedrock 
alluvial mixed channels, which met the ksn extraction 
requirements.

3.6  Index of relative active tectonics (RIAT)
The RIAT is obtained by calculating the geomor-
phic parameters value of each sub-catchment. Then 
we divided the RIAT following the classification of 
above six parameters of each sub-catchment (Table  2) 
(Alipoor et al. 2011; Hare and Gardner 1985; Bull and 
Mcfadden 1977). Grade 1 (1.0 ≤ RIAT< 1.5) represents 
that tectonic activity is very strong; grade 2 (1.5 ≤ RIAT 
< 2.0) represents that tectonic activity is strong; grade 
3 (2.0 ≤ RIAT< 2.5)represents that tectonic activity is 
moderate; grade 4 (RIAT ≥ 2.5) represents that tectonic 
activity is weak (Hamdouni et al. 2008). The classifica-
tion of various geomorphic parameters and the division 
of RIAT can see table  2, which also lists the reference 
and basis for division (Table  2). RIAT is calculated as 
follows:

(8)ks = (U/K )1/n

(9)θ = m/n

(10)S = ksn · A
−θref

(11)
RIAT = HIgrade + AFgrade + BSgrade + VFgrade + ksngrade /5

4  Results
4.1  HI and HI curve
The spatial distribution of HI index in SRC shows that 
the range of HI values in this basin is 0.41–0.71, and the 
spatial range varies greatly. For comparison, the HI val-
ues of SRC are divided into three grades. The first level 
is 0.61 ≤ HI ≤ 0.71; the second level is 0.51 ≤ HI ≤ 0.60; 
the third level is 0.41 ≤ HI ≤ 0.50. The spatial distribu-
tion map shows that the first level is mainly in the mid-
stream and downstream in the SRC, and north bank of 
the upstream. The second level occupies a large area of 
midstream and downstream. The third level is only dis-
tributed in a few sub-catchments on the south bank of 
the upstream of Shuiluo River’s mainstream (Fig.  4a). 
We used the CaIHypso (Pérez-Peña et  al. 2010) to 
obtain the HI curve of each sub-catchment in the SRC. 
The results show that most of the curves are convex or 
S-shaped, and only the HI curves of sub-catchments 1 
and 4 are concave (Fig. 4b). These two subcatcahments 
are also the regions with the lowest HI values in the 
SRC (No. 1 is 0.41; No. 4 is 0.45). The HI value of SRC 
is generally high and the average value is 0.59, and most 
sub-catchments landforms reach. This indicates that 
the SRC tectonically activity is generally strong.

4.2  AF and tectonic tilt direction
The spatial distribution of AF values in each sub-catch-
ment of SRC shows that the spatial variation range of 
AF value is 1.21–30.09. According to the inclination 
classification method constructed by AF index, we 
divided the AF value of SRC into 3 grades. The first 
grade is 15.00 ≤ AF < 30.09; the second grade is 7.00 < 
AF < 15.00; the third grade is 1.21 ≤ AF ≤ 7.00. Among 
them, the first level is mainly in SRC’s midstream and 
downstream, with a large area; the level 2 is mainly 
distributed in the upper reaches, while it in the mid-
dle and lower is scattered; the level 3 is mainly located 
in the intersection of the midstream and downstream 
of the studied basin, and the distribution area is very 
small. The degree of tectonic tilt in the upstream of the 
SRC varies irregularly (Fig. 5a). The sub-catchments in 
the midstream and downstream generally incline from 
south to north (most of the sub-catchments in the west 
bank tilt to the left bank, and the east bank mainly tilt 
to the right bank) (Fig. 5b). The squeezing effect of the 
Tibetan Plateau’s uplift results in the overall tilt uplift of 
its periphery from east to west or from south to north, 
which is consistent with the tectonic uplift of the SRC.

4.3  BS
The BS value of the SRC varies from 0.25 to 2.99. The 
sub-catchments with BS values ranging from 0.25 to 1.00 
are mainly distributed on the left bank of the upstream, 
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the left bank of the midstream and the right bank of 
the downstream (No. 38 sub-catchment), the basin area 
accounts for only 21.00 % of the total area; the sub-catch-
ments with BS values ranging from 1.01 to 1.99 are dis-
tributed in most areas of the SRC, accounting for 57.98 %; 
the sub-catchments with BS values ranging from 2.00 to 
2.99 are less distributed, mainly located in the intersec-
tion of the upper and middle reaches, and in the down-
stream of the study area, the basin area only accounts for 
20.58 % (Fig. 6)

4.4  VF
In a catchment, as the main stream represents the ero-
sion basis of the region relative to its tributaries, the main 
stream is the region that is most sensitive to the response 
of tectonic and climate processes in the catchment 
(Chang et al. 2015; Fan et al. 2018). The evolution of val-
leys is also the region with the most significant feedback 
on regional tectonic deformation and uplift in fluvial geo-
morphology. Therefore, based on the above theory, we 
calculated the VF index of 41 sub-catchments in SRC. We 
calculated the VF values of the mainstream and tributar-
ies of Shuiluo River at a sampling interval of 6km, and 
obtained the VF average values for each sub-catchment. 
The results show that the river valleys with VF >1.00 are 
mainly in the north of the studied basin; deep V-shaped 
canyons with VF < 0.50 and VF < 0.10 are mainly scat-
tered among middle and south of SRC. The average val-
ues of VF index of the sub-catchments in SRC also show 
that the low VF values are scattered among midstream 
and downstream of the SRC (Fig. 7).

4.5  ksn and stream profile
The stream power incision model shows that the stream 
longitudinal profile of the bedrock channel in the active 
tectonic zone is mostly in an disequilibrium state. And 
the stream profile in an unbalanced state usually has 
upper convex reaches (knickpoint). Knickpoint divides 
the longitudinal profile of the stream into sections with 
different steep indices (ksn). The larger the ksn value, the 
steeper the stream longitudinal profile develop, which 
usually indicate the tectonic or climate change along the 

stream longitudinal profile. This method of judging the 
steepness of the stream longitudinal section to reveal the 
tectonic informations contained in the active zone has 
been widely used in the field of tectonic geomorphology. 
According to the methods provided by previous work, we 
used GIS system and MATLAB script program to extract 
data like drainage basin and elevation from DEM, and we 
set 250m as the smoothing window to smooth the chan-
nel and took 12.2m as the elevation interval and set the 
reference concavity (θRef) as 0.45 according to Eq. (10). 
Finally, we extracted the longitudinal profile, log SA and 
ksn of the mainstream and 41 tributaries of the SRC, and 
determined the location of the knickpoints based on the 
longitudinal profile of the stream (Whipple and Tucker 
1999; Snyder et al. 2000; Kirby et al. 2003). At the same 
time, we calculated the ksn average values of 41 sub-
catchments of SRC. The results of ksn index are divided 
into 3 grades according to the natural split point disconti-
nuity method (the first level is 296.78–504.86; the second 
level is 156.76–296.77; the third level is 54.64–156.75) 
(Fig. 8a, b). The results show that most of the streams in 
the SRC are in transient state, and they developed mul-
tiple knickpoints. The high ksn values are mainly scat-
tered among the lower sections of the midstream, and 
in downstream of the SRC. The low values are mainly in 
the upper sections of midstream and in upstream of SRC 
(Fig. 8a), such as No. 1–19 streams. More knickpoints are 
developed in the midstream and downstream (such as 
Nos. 22–37) than in the upstream, which indicates that 
the longitudinal profile of the stream in the midstream 
and downstream of the SRC is steeper (Fig. 9).

Since the χ value can be used to determine the stabil-
ity of catchment watershed (Whipple 2004), we extracted 
the χ value of SRC and its surrounding streams. The 
results showed that there was a significant difference in 
the χ value between the left watershed boundary of SRC 
and the midstream of Jinsha River, indicating a migration 
toward SRC. However, there was no significant difference 
in the χ value of the stream source between the first level 
sub-catchments within SRC watershed. And there is no 
significant difference in χ values compared to other exter-
nal watersheds, such as the Litang River on the right side 

Table 2 Classification method of tectonic activity grade of various geomorphic parametres

Grade 1 Grade 2 Grade 3 Grade 4 References

HI HI ≥ 0.50 0.40 ≤ HI < 0.50 HI < 0.40 – Alipoor et al. (2011)

AF │AF-50│ ≥ 15 7 ≤ │AF-50│ < 15 │AF-50│ < 7 – Pérez-Peña et al. (2010)

BS BS ≥ 3 2 ≤ BS < 3 BS < 2 – Bull et al. (1977)

VF VF < 0.50 0.5 ≤ VF < 1 VF ≥ 1 – Hamdouni et al. (2008)

ksn 296.78 ≤  ksn ≤ 504.86 156.76 ≤  ksn ≤ 296.77 54.64 ≤  ksn ≤ 156.75 – Xu et al. (2016)

RIAT 1 ≤ RIAT < 1.5 1.5 ≤ RIAT < 2 2 ≤ RIAT < 2.5 2.5 ≤ RIAT Hamdouni et al. (2008)
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of SRC. Therefore, the χ value of SRC is not affected by 
inter catchment erosion and migration, and the water-
shed is relatively stable. In addition, we also extracted the 
local ksn values of all streams within and around the SRC 
watershed. Note that the extracted stream ksn values here 
are not only the ksn values of the trunk channels of the 

primary tributaries of each catchment, but also the local 
ksn values of all streams. This is to more intuitively display 
the spatial differences in ksn values of the SRC catchment 
and its surrounding streams. The results show that the ksn 
values in the midstream and downstream of the water-
shed are generally higher, while those in the upstream are 

Fig. 4 a The distribution map of HI values in SRC, b HI curve diagram. Note that in the horizontal axis of the curve, "a" represents the area 
above a certain contour line in the watershed. "A" represents the area of the entire watershed; on vertical axis "h" is the height difference 
between a certain contour line and the lowest point of the watershed, and "H" is the height difference between the highest point and the lowest 
point of the entire watershed
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smaller. This is consistent with the extracted ksn values of 
the trunk channels of the 41 sub-catchments in the SRC. 
All phenomena indicate that the ksn values in the middle 
and downstream of the SRC are high while those in the 
upstream are low, and the watershed between the sub-
catchments within the SRC is relatively stable(Fig. 10a, b).

4.6  RIAT
Based on the results of the geomorphic parameters we 
extracted, we calculated the RIAT of each sub-catch-
ment in the SRC according to the classification method 
of tectonic activity levels of each geomorphic parameter 
(Tables  2, 3), and divided different tectonic activity lev-
els (Fig. 11) with different colors in the GIS system. Our 
results show that there are very few sub-catchments with 
the first level (1.00–1.49), only No. 27 (Luoduogou) and 

No.32 (Lapaigong) sub-catchments in the midstream 
exist in the first level. The level 2 (1.50–1.99) are dis-
tributed in the center and south of the SRC. The level 3 
(2.00–2.49) are mainly scattered among the lower sec-
tions of the upstream in Shuiluo River, and the distribu-
tion area is very small. The level 4 (2.50–2.83) is in the 
northwest of the SRC. Therefore, the SRC’s intensity of 
tectonic activity is characterized by low in the north and 
high in the central and south generally.

5  Field geological work
We conducted necessary field work to verify the consist-
ency between the extraction results of fluvial geomorphic 
parameters and the field geology and geomorphology. We 
found many extremely wide valleys in upstream of SRC, 
which are distributed on the plateau surface upstream of 

Fig. 5 a The distribution of │AF-50│ index values in SRC, b tectonic tilt direction
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SRC. Their common characteristics are widely developed 
wide valleys and low undulating topography (Fig. 12a–d). 
On the contrary, extremely deep canyons have developed 
in the midstrea, and downstream, distributed on highly 
undulating topography (Fig. 12e–j). In addition, we have 
observed landslides and fault (Fig. 12k, l) in some areas of 
the midstream and downstream.

In addition, we conducted cross domain investigations 
on the upstream, midstream, and downstream areas of 
SRC and found that the upstream streams are gener-
ally wide and gentle, flowing on the flat plateau surface 
(Fig. 12m–n). In the midstream and downstream of SRC, 
extremely steep stream channels are generally devel-
oped, and there are many knickpoints. These channels 
are developed on the extremely steep and steep topogra-
phy in the midstream and downstream of SRC. We have 
found these commonly developed steep fluvial sections 
(Fig.  12o–u) on some large tributaries such as Chituhe, 
Lanyaohe, and Chongtianhe in the midstream and down-
stream of SRC. The extremely significant topographic 
differences in the up, mid, and downstream of SRC are 
products of differential tectonic activities, which may be 
controlled by differential uplift on the southeastern edge 
of the Tibetan Plateau. This differential uplift may create 
spectacular landscape of low undulating plateau surfaces 
and high undulating mountain gorges on the southeast-
ern edge. Our field investigation results are consistent 
with the geomorphic parameters and the index of relative 
tectonic activity of the division, indicating that our DEM 
based geomorphic research on SRC region is reliable.

6  Discussion
6.1  Factors affecting the geomorphological evolution 

of Shuiluo River Catchment
The evolution of geomorphology is restricted by inter-
nal and external forces such as climate, lithology, gla-
ciation and tectonic (Cyr et al. 2014). The lithology and 
tectonic of SRC are complex and are affected by glacia-
tion in some areas (Roughly located within the range of 
100.25°E–100.50°E, 28.35°N–28.40°N). These glacier is 
modern glaciers, mainly developed since the Quaternary 
period. Therefore, for the interior of the catchment, the 
impact of glaciers on the overall geomorphic evolution of 
the study area can be ignored. In terms of climate, SRC 
belongs to the temperate plateau climate zone, but the 
south is wholly in the subtropical monsoon climate, so 
there are certain differences in climate. Therefore, climate 
is also an important factor that cannot be ignored when 
analyzing the geomorphic evolution of the SRC.

6.1.1  Climate (precipitation) and glaciation
In the process of stream erosion, precipitation plays a 
vital role. The greater the precipitation, the stronger the 
stream erosion capacity, the shorter the time for the land-
form evolution to the middle and old age stage. When 
the precipitation is small, the external erosion becomes 
weak, the geomorphic evolution is still in the early stage 
(Snyder et al. 2000). We collected the average precipita-
tion (mm/a) of the SRC in the past 30 years from 1991 
to 2020 (https:// psl. noaa. gov/ data/ gridd ed/ data. UDel_ 

Fig. 6 The distribution of BS index values of SRC

https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html
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AirT_ Precip. html). We superimposed this data through 
the GIS system and re-classified it to obtain the annual 
average precipitation distribution map of the SRC 
(Figs.  13, 14). Figure  13 shows that the precipitation 
range of the SRC is 630.1-814.6 mm/a, and the precipita-
tion is generally high in the south and low in the north. 
The rainfall in the southeast, south and central parts is 
relatively large, while the rainfall in the north and north-
west is relatively small. This is inconsistent with the spa-
tial distribution characteristics of various geomorphic 
parameter values and the level of activity tectonic in SRC. 
In addition, the correlation coefficients between various 
geomorphic parameters and rainfall are relatively small 
(R2<0.6) (Fig. 14). Therefore, precipitation is not the main 
factor affecting the landform index of SRC.

There is a difference in erosion efficiency between gla-
cier erosion and stream hydraulic erosion. In the area 

affected by glaciers, the valley is generally U-shaped. 
Especially for the stream power incision model, due 
to the difference in erosion efficiency, the boundary 
between glacier erosion and stream erosion usually forms 
a knickpoint, which is an important basis for exploring 
the causes of stream knickpoints in glacier distribution 
areas (Chen et  al. 2018). We collected the glacier data 
(http:// www. ncdc. ac. cn/ portal/) and used it to study the 
relationship between the geomorphic evolution and gla-
cial processes of SRC. The spatial distribution of glaciers 
in the SRC indicates that large-scale glaciers are concen-
trated in the Minya Konka in Kangding, and Litang in 
Ganzi Prefecture. Inside the SRC, it is mainly located in 
the middle of the basin, near the Daocheng Yading Scenic 
Spot (Fig.  13). The distribution of glaciers in study area 
is less, which only influences local areas. For the whole 
basin, glaciers are not the main influencing factors of 

Fig. 7 a The spatial distribution map of VF values in SRC, b average VF values of 41 sub-catchments in the study area

https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html
http://www.ncdc.ac.cn/portal/
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geomorphic evolution. In addition, the catchment area 
has a certain impact on geomorphic parameters. How-
ever, we found that the linear fitting of the sub-catchment 
area and geomorphic parameters of SRC showed poor fit 
(R2 <0.1). Therefore, the impact of basin area on the val-
ues of geomorphic parameters is also limited (Fig. 15)

6.1.2  Lithology
The impact of lithology on geomorphic evolution is 
mainly reflected in its erosion resistance. The stronger 
the erosion resistance, the higher the grade of the geo-
morphic index. The weaker the erosion resistance, the 
older the landform development, and the lower the 
corresponding level of landform index. In theory, hard 
rocks are more resistant to erosion and weathering, 
while soft rocks are more susceptible to weathering 

(Bahrami et  al. 2015). We divide the bedrock of Shui-
luo River Catchment into hard rock, relatively hard 
rock, relatively soft rock, soft rock and extremely soft 
rock according to the soft and hard degree of the rock 
following to “Geological engineering handbook.” Igne-
ous rocks and granites are hard rocks; sandstone, lime-
stone, biological limestone, dolomite and marble are 
relatively hard rocks; moderately weathered metasand-
stone, slightly weathered slate, phyllite and pyroclastic 
rock are relatively soft rock; slightly weathered shale, 
argillaceous sandstone and mudstone are soft rocks; 
semi-consolidated glutenite, conglomerate and Qua-
ternary deposits are extremely soft rock. Based on the 
above theory, we classified rocks of various lithology, 
and used different colors in GIS to represent the spatial 
distribution of bedrock hardness and softness (Fig. 16). 

Fig. 8 a Spatial distribution of ksn values and knickpoints in SRC, b spatial distribution of ksn average values in 41 sub-catchments of SRC. 
Ms.knickpoints represent knickpoints developed on the main stream. Ts. knickpoints represent knickpoints developed on tributaries
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The result shows that there are mainly relatively hard 
rock and relatively soft rock in most areas of the SRC. 
The relatively soft rock is mainly in the west and center 
of SRC and the relatively hard rock is mainly distributed 
in the center and south. In addition, hard rock is mainly 
distributed in the north of the basin and the left bank of 
the upstream of mainstream. The soft rock and extreme 
soft rock are only distributed in the north and central 
part of the basin, and the distribution area is small. The 
geomorphic index of study area shows that the level 

of geomorphic parameters in the northern part of the 
basin is generally lower, and the level of geomorphic 
parameters in the midstream and lower downstream is 
higher (Figs. 16, 17), which is inconsistent with the spa-
tial distribution of bedrock erosion resistance. There-
fore, on the whole, the development and evolution of 
the landform of the SRC has little relationship with the 
lithology of the bedrock.

However, since the VF and ksn values of SRC can bet-
ter reflect the response of local area (stream reach) to 

Fig. 9 Stream longitudinal profile and area-slope logarithmic diagram (log SA) of some stream sections of SRC. No. 1–19 are the stream longitudinal 
profile and log SA of the tributaries in the upstream and upper of the midstream. It is obvious that the stream longitudinal profile in this area 
is relatively not steep and the ksn index values are low, and the number of developed knickpoints are small. No. 22–37 are the river longitudinal 
profile and log SA of the tributaries in the midstream and downstream. The stream longitudinal profile in this area is steep and the ksn values are 
high, and the number of developed knickpoints is also large
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lithology, it is a question to further discuss whether the 
geomorphic evolution is affected by the erosion resist-
ance of bedrock in local area. Therefore, we will discuss 
these two index values separately. First of all, the grades 
of VF and ksn average values in each sub-catchment of 
SRC are obviously high in the middle and south and 
low in the north (Figs. 7, 8). This is not consistent with 
the spatial distribution of bedrock erosion resistance 
(Figs.  16, 17). Therefore, on the whole, The strength of 
bedrock is not the main controlling factor influencing 
the VF and ksn average values of the basin. Secondly, 
we found that the local VF and ksn values are inconsist-
ent with the spatial distribution of bedrock strength as 
a whole. For example, the ksn values of partial stream 
segments (Nos. 3, 7 and 10 sub-catchments) transit 
from hard rock to relatively hard rock, relatively soft 
rock or extremely soft rock, the ksn values becomes 

larger (Fig.  16a), this is contrary to the theory that the 
stronger the rock strength, the higher the ksn values 
(Cyr et al. 2014). Although overall, rock strength is not 
the main factor controlling the geomorphic parameters 
of the study area, we found that geomorphic evolution 
processes related to changes in rock strength can still 
be observed in some regions (or stream sections). For 
example, some knickpoints develop at the boundary of 
rock strength, but there are no large-scale knickpoints 
that produce this phenomenon. So we will systemati-
cally point out the geomorphic parameter values related 
to lithological changes. For the VF value, these meas-
urement points in the river valley transition from soft 
rock to hard rock, with the VF value decreasing and the 
river valley narrowing from width, as follows: Nos. 2–3, 
12–13; The measurement points for valleys that tran-
sition from hard rock to soft rock, where the VF value 

Fig. 10 The χ and ksn values of SRC and its surrounding streams. a χ values; b local ksn values
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changes from low to high, and the river valley changes 
from narrow to wide are Nos. 18–19. Nos. 5–11 flows 
through soft Quaternary sediments, and the valley is 
generally wide, while Nos. 14–18 passes through hard 
rock covered areas, with low VF values and deep valleys 

(Figs.  18, 19, 20). Large number of faults developed in 
valleys below No. 24. Thus these valleys below are deep 
V-type, and the VF values have not changed significantly. 
Even on some lithological boundaries, the VF values are 
always low (Figs.  18, 19, 20), which shows that only in 
the upper part of the upstream and mainstream of SRC 
and the local area of the midstream, the VF value is 
affected by the rock strength. For the ksn values, the val-
ues are related to lithological changes in the midstream 
of sub-catchments Nos. 22, 23, and 40, as well as the 
upstream and downstream reaches of Nos. 31, 37 and 
39 (Fig.  16). The spatial distribution of knickpoints has 
a poor correspondence with the spatial distribution of 
rock erosion resistance (there is no large area of knick-
points developed on the boundary of rock hardness and 
softness) (Fig.  16). Therefore, overall, the differences in 
rock strength only affect partial regions, and the geo-
morphic evolution of the study area is weakly correlated 
with lithology.

6.1.3  Tectonics
A series of NW-SE faults, such as Xisashi, Boke, Qiasi, 
Langlang, Guaishaoti, Lagenwa, Yangta Fault, and a 
series of NE-NW faults, such as Zhangke, Zhongdian-
Xiangcheng Fault, have been developed in study area. 
Mengzi Fault and Chitu Fault deflected from NW to NE 
at the main stream of Shuiluo River. The distribution 
of these faults within the SRC mainly presents a spatial 
distribution feature of dense in the central and south-
ern regions and dispersed in the northern regions, and 
most of these faults are thrust faults with generally strong 
activity (Hao et al. 1990; Tang et al. 1993; Xu et al. 2016) . 
Therefore, we speculate that this may be a significant fac-
tor in the difference in SRC activity between the central 
southern region and the northern region (Figs. 21, 22). In 
addition, a series of regional fault zones, such as Jinshaji-
ang, Ganzi-Litang, Yulongxueshan and Lijiang, are also 
developed around the SRC (Fig. 1b, c). The regional geo-
logical structure system is extremely complex. The dif-
ferential activity of faults is possible and important factor 
affecting the geomorphic evolution. The spatial distribu-
tion of active faults in SRC is highly consistent with the 
geomorphic parameters. After excluding climate, glacier, 
and lithological factors, it can be estimated that fault 
activity is the possible and main controlling factor affect-
ing the geomorphic evolution of the study area. Although 
we have confirmed above that the VF, and ksn values of 
some stream sections are related to lithological changes, 
overall, tectonic activity is still considered the most sig-
nificant factor affecting the geomorphic evolution of the 
study area. As for the influence of tectonic factors on ksn 
value and knickpoint, the stream reaches on both sides 
of the fault or across the fault usually form a knickpoint, 

Fig. 11 The RIAT spatial distribution map of SRC. Note that the thick 
black lines in the figure represent the boundary between upstream, 
midstream, and downstream, that is, the boundary 
between the north, middle, and south. NU: North (upstream); CM: 
Center (midstream); SD: South (downstream)
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and the difference of ksn value in the stream reaches above 
and below the knickpoint will become more significant 
accordingly. However, among the 41 streams in the study 
area, many of the knickpoints developed on the streams 
did not cross the fault zone. However, the erosion base 
level decrease and the sudden increase of rock mass 
uplift rate caused by tectonic uplift will also produce 
corresponding tectonic knickpoints, and such tectonic 
knickpoints will move upstream with time (migrating 
knickpoint) (Cyr et al. 2010; Wang et al. 2020). Therefore, 
we believe that even though there is no good correspond-
ing relationship between the knickpoint and the fault, the 
tectonic activity is still the main factor for the generation 
and development of the river knickpoint in most rivers in 
the study area after the exclusion of glacier, precipitation, 
lithology and other factors. Weirs caused by landslides 
and debris flows also produce convex split points on the 
fluvial longitudinal profile of rivers. After field obser-
vation of most rivers in the study area, we find that the 
influence of weirs is extremely limited, and this factor can 

be excluded.We collected the seismic activities of magni-
tude 2–5 in the study area from 2000 to 2022. The seismic 
distribution map in the study area shows that earth-
quakes mainly occurred in the midstream and down-
stream of the basin, and in the upper reaches, only two 
earthquakes of magnitude 2–3 occurred near Sangdui. In 
contrast, earthquakes in the midstream and downstream 
occurred more frequently and with larger magnitude 
(Fig. 22). This is consistent with the geomorphic param-
eter values and the spatial distribution of the tectonic 
activity level we extracted. The spatial distribution of 
The RIAT in the sub-catchment of SRC also shows that 
the downstream tectonic activity is stronger, which may 
indicate that the fault activity developed in the down-
stream is stronger. The (U-Th)/He low-temperature ther-
mochronology data of detrital apatite and zircon along 
the periphery of the study area indicate that differential 
tectonic uplift occurred in different parts of the SRC 
(Lai et al. 2007; Tian et al. 2014; Gourbet et al. 2019). In 
particular, the thermal history of the Zhongdian Massif, 

Fig. 12 a wide valley developed on the left bank tributary of Niqinqu (No. 3 stream) in the north of SRC, b a wide valley at the source of Niqinqu 
river, c a low undulating terrain in the upstream of SRC, d a wide valley between Sangdui and Maiwa in the upstream of SRC, e a narrow valley 
on the right bank tributary in the middle reaches of Chituhe (No. 22 stream), f a V-shaped valley in the middle reaches of Chituhe main stream, 
g a V-shaped valley downstream of Chituhe main stream, h–i some V-shaped valleys developed in the midstream of Chituhe main stream, j 
a V-shaped valley developed downstream of SRC’s main stream, k Landslides developed downstream of Chituhe, l a thrust fault developed 
in the middle of Chituhe, m gentle fluvial channels near Niqinqu at the northern end of SRC, n a gentle fluvial upstream of the main stream of n 
SRC, o steep channels developed in the midstream of Chituhe, p–r steep fluvial sections near the right bank tributary of Chituhe, and developed 
knickpoints, s–t steep fluvial sections developed upstream of Lanyaohe (No.19 stream), u a steep fluvial section developed on the tributary of u 
Chongtianhe (No. 37 stream)
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Fig. 13 The spatial distribution of precipitation in SRC from 1991 to 2020 (https:// www. esrl. noaa. gov/ psd/ data/), glacier data were obtained 
from http:// www. ncdc. ac. cn/ portal/. It can be clearly seen that the area of glaciers in the SRC is only in the center, near the Aden scenic area 
in Daocheng

https://www.esrl.noaa.gov/psd/data/
http://www.ncdc.ac.cn/portal/
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which is located downstream, suggests that all samples 
experienced rapid uplift during the Pliocene. The tectonic 
uplift is mainly concentrated in two time periods, namely 
5.2–10.2 Ma and 5.2 Ma. The impact of the tectonic uplift 
process since 5.2 Ma has been significant. The influence 
of 5.2 Ma is quite extensive. This confirms that since 5.2 
Ma, the tectonic denudation rate of the Zhongdian block 
had been rapid, reaching 213.3 m/Ma–226.7 m/Ma sug-
gesting that the central and south part of the study area 
as a whole may have experienced faster tectonic uplift 
than the north since the Pliocene. In contrast to this is 
the relatively earlier uplift and lower denudation ration 
in the north part of the study area (Zou et al. 2014). This 
is consistent with the fact that the southeastern margin 
of the Tibetan Plateau experienced little denudation dur-
ing the Late Cretaceous to Early Miocene, resulting in 
a geomorphic surface with low elevation and low relief. 
In downstream of SRC, near the Jinsha River valley, the 
motion field captured by Global Navigation Satellite Sys-
tem (GNSS) shows a higher movement rate (Wang and 
Shen 2020), which may be related to the dextral strike slip 
in the middle and lower sections of the Jinshajiang Fault. 

Anyway, this seems to point to a conclusion that there 
may be high tectonic activity intensity in the middle or 
downstream of SRC (Fig. 22).

To sum up, geological structure (fault system) and 
tectonic uplift are the leading factors affecting the 
development and evolution of the geomorphology of 
SRC. Affected by the tectonic system and differential 
tectonic uplift, the tectonic activities in the upstream, 
and upper section of the midstream of the SRC are rela-
tively weak. The tectonic activity in the lower section 
of the midstream, and the downstream are strong, and 
the tectonic activity in the downstream is the strong-
est, which may be related to the differential activities of 
the faults in the two regions. In the upper section of the 
upstream and upper part of the midstream, exist partial 
stream sections the geomorphic evolution is affected by 
the difference of rock erosion resistance. We extracted 
the fluvial geomorphological indexes to quantify the 
landform development and activity tectonic intensity of 
SRC. The level of the geomorphic parameters and the 
RIAT are relatively consistent with the regional seismic 

Fig. 14 The correlation coefficient graph between rainfall and various geomorphic parameters (on the left side of the above figure); 
and distribution map of the rainfall and various geomorphic parameters (right)
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intensity, field geological survey, and low-temperature 
thermochronology.

7  Conclusions
In this work, we used computer programs and data 
models such as GIS, numerical analysis tool, and DEM 
to extract various fluvial geomorphic parameters, and 
actively discussed the main controlling factors affecting 
the geomorphic evolution of the study area combining 
regional geological, glacier, precipitation and other data. 
We also graded the results of these geomorphic param-
eters and combined them with the geochronological data 
obtained from previous geochronological work in the 
study area to discuss the intensity of active tectonic activ-
ity in the region. Some positive conclusions we obtained.

Precipitation and glacier factors have little impact 
on the geomorphic evolution of the SRC, and some 
stream sections are controlled by lithology. However, 

geological tectonic activity and differential tectonic 
uplift are still the most important factors controlling 
the geomorphic evolution of the SRC. Because within 
the SRC, the distribution of active faults is consistent 
with the values of fluvial geomorphic parameters. That 
is, in areas with more active faults, the level of these 
parameter values is higher, which correspondingly 
shows stronger regional tectonic activity intensity.

Under the influence of differential tectonic uplift 
movement, the intensity of activity tectonic in the area 
is generally strong. The VF and HI indexes values in the 
catchment are high level. The streams of SRC are gen-
erally incised powerfully, therefore the valleys are rela-
tively deep. Most of the streams are in transient state 
and the ksn values are large, and the stream longitudinal 
profile is relatively steep, accompanied by the develop-
ment of numerous knickpoints. From these parameter 
results, it can know that lithology only affects local 

Fig. 15 The linear relationship between the geomorphic parameter values of each sub-catchment of SRC and the catchment area
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areas (or river sections). The intensity of activity tec-
tonic in the midstream and downstream is strong, and 
the level of geomorphic parameters values are relatively 
high. The tectonic activity in the upstream is weak, and 
the RIAT are also small. The result of values of param-
eters indicates that the intensity of tectonic activity in 
the downstream is the greatest in the SRC. The results 

of geomorphic parameters extraction are also in good 
agreement with the regional seismic intensity, field-
work and low-temperature thermochronology indicat-
ing that it is reasonable to use the fluvial geomorphic 
parameters to evaluate the crustal stability of the 
region, and the method of geomorphic parameters can 
well quantify the regional geomorphic evolution. Our 

Fig. 16 The spatial distribution map of ksn and VF values and the distribution map of rock erosion resistance of SRC. Note: the black dashed 
rectangular boxes exist in (a), which represent a positive correlation between the ksn values of the river section and rock strength; b Overlay plot 
of VF value and rock strength
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research indicates that the differences in tectonic activ-
ity intensity reflected by the fluvial geomorphology of 
SRC well respond to the differential uplift on the south-
eastern edge of the Tibetan Plateau. However, our work 

has only yielded a preliminary result. The interpreta-
tion of active faults, higher precision lithology data, 
and geochronology work are still insufficient, which 
may require further exploration.

Fig. 17 The proportion of rock strength distribution area in each sub-catchments and the geomorphic parameters of each sub-catchment. Note 
that the values of geomorphic parameters have been dimensionless

Fig. 18 Statistical diagram of 47 river valleys on the main stream of SRC
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Fig. 19 The spatial distribution map of 47 river valleys in the main stream of SRC. The mountain shadow map of DEM is an enlarged figure 
of the local valley of DEM. The orange dots represent the calculated valleys
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Fig. 20 The image of the valleys on the main stream of SRC from Google Earth Image. The valley shown in the figure are mainly the valleys 
in the lower part of the upstream and the upper part of the midstream. It can be clearly seen from the figure that these valleys are narrowing. 
The change from the 12th valley to the 13th valley are particularly significant; the valley in the middle and lower reaches can be clearly seen 
from the figure that are very narrow as a whole, basically deep V-shaped valleys, and the variation of VF value is not significant (Nos. 17–26). The 
valleys 31, 32, 33, 44 and 45 located on the side of the downfall wall of the thrust fault are the deepest valleys in the whole main stream, and the VF 
values are also very low
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Fig. 21 The relationship between each parameter value and the spatial distribution of faults. The red dashed line in the figure represents the fault 
passing through the sub-catchments
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