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Abstract 

Seismic techniques using earthquakes are powerful tools for exploring the Earth’s internal structure. However, 
the earthquake distribution limits the spatial resolution. In recent years, ambient noise surface wave tomography 
using ambient seismic wave field has resolved these limitations. A typical ambient seismic wave field is microseisms 
excited by ocean swell activities. Ambient noise surface wave tomography is a technique in seismic interferometry 
that extracts seismic wave propagation between pairs of stations by cross-correlating the seismic records. The cross-
correlation function can be interpreted as an impulsive response at a station with a virtual source at the other station. 
This technique became standard with the development of modern dense seismic networks. This paper reviews a the-
ory of seismic interferometry for ambient noise surface wave tomography and procedures for practical data process-
ing to calculate cross-correlation functions. The tomographic method typically consists of four steps: (1) the construc-
tion of reference 1-D models, (2) phase velocity measurements for each path, (3) 2-D phase velocity inversions, and (4) 
the construction of a 3-D S-wave tomographic model obtained from series of local 1-D inversions at all the grids. This 
paper presents the feasibility of multimode surface wave dispersion measurements for improving depth resolution.

Keywords Ambient seismic noise, Multimode surface wave, Seismic interferometry, Surface wave tomography

1 Introduction
Seismic techniques are powerful tools for exploring the 
Earth’s internal structure from local to global scales. 
Earthquakes are a primary illumination source of the 
Earth’s interior. Seismic tomography using earthquakes 
revealed the lateral heterogeneities of the Earth on vari-
ous scales (e.g., Romanowicz 2003; Thurber and Ritsema 
2015). Although the method has produced many signifi-
cant results, it has inherent limitations attributed to the 
earthquake distribution. Earthquakes occur only in tec-
tonically active areas, and large earthquakes do not occur 

frequently. The source and station distributions limit the 
spatial resolution of the tomographic images.

Even on seismically quiet days, the Earth persistently 
oscillates because ocean swells excite seismic waves. They 
are known as microseisms (e.g., Nishida 2017), which is a 
kind of ambient seismic wave field (also known as ambi-
ent seismic noise). Seismic interferometry (SI) provided 
a clue to overcome the limitations due to the earthquake 
distribution because SI produces a virtual earthquake 
record from the ambient seismic wave field. An applica-
tion of SI for imaging Earth’s internal structure is known 
as ambient noise surface wave tomography (ANT). This 
section briefly introduces SI, ambient seismic wave field, 
and ANT followed by the scope of this paper.

1.1  Brief history of seismic interferometry
In seismology, an origin of SI is Aki’s Ph.D. thesis (Aki 
1957), inspired by the seminal book Cybernetics (Wie-
ner 1947). He proposed the SPatial AutoCorrelation 
(SPAC) method; later studies show that the method is 

*Correspondence:
Kiwamu Nishida
knishida@eri.u-tokyo.ac.jp
1 Earthquake Research Institute, The University of Tokyo, 1-1-1 Yayoi, 
Bunkyo-ku, Tokyo 113-0032, Japan
2 Research Center for Prediction of Earthquakes and Volcanic Eruptions, 
Graduate School of Science, Tohoku University, 6-6 Aza-Aoba, Aramaki, 
Aoba-ku, Sendai 980-8578, Japan

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40645-023-00605-8&domain=pdf
http://orcid.org/0000-0001-6778-8080


Page 2 of 42Nishida et al. Progress in Earth and Planetary Science            (2024) 11:4 

mathematically equivalent to SI (e.g., Chávez-Garía and 
Luzón 2005; Harmon et  al. 2010; Tsai and Moschetti 
2010) under certain conditions. Aki’s idea had not been 
paid attention until the 1980s. After 26 years, a group at 
Hokkaido University (Okada and Sakajiri 1983) devel-
oped a survey method for shallow structure using micro-
tremor, now known as the microtremor survey. After this 
work, this method became popular for surveying sub-
surface structures in seismic engineering (e.g., Cho et al. 
2006), which was also extended to multimode inversion 
(Tokimatsu et al. 1992).

A key for SI is a cross-correlation function (CCF) 
between a pair of stations. The CCF exhibits an impul-
sive response at a station by a virtual source at the other 
station. The idea of SI dates back to the 1950s in differ-
ent research fields: acoustic (Eckart 1953), ocean acous-
tic (Cox 1973), seismic exploration (Claerbout 1968), 
and seismology (Aki 1957). Although the ideas were pro-
posed independently, they are mathematically identical 
under certain conditions (e.g., Chávez-Garía and Luzón 
2005; Harmon et  al. 2010; Tsai and Moschetti 2010). SI 
is applied not only to the Earth but also to experimen-
tal studies, such as ultrasonic waves (Lobkis and Weaver 
2001), building responses (Snieder and Wapenaar 2010; 
Nakata et  al. 2013), helioseismology (Gizon and Birch 
2002; Duvall et al. 1993; Hanasoge et al. 2016) and ocean 
acoustic (Cox 1973). Later studies (e.g., Godin  2007; 
Snieder and Larose 2013) show that the principle of SI 
is akin to the fluctuation–dissipation theorem in phys-
ics (e.g., Callen and Welton 1951), which was generalized 
as linear response theory by Kubo (1957). The theorem 
establishes a connection between the response to an 
external force and the CCF of specific fluctuating proper-
ties when the system reaches thermal equilibrium.

1.2  Ambient seismic wave field
Ocean wave activities excite ambient seismic wave fields, 
even on seismically quiet days. Based on the types of 
ocean surface gravity waves and excitation mechanisms, 
we classified ambient seismic wave fields into (1) seismic 
hum from 1× 10−3 to 0.02 Hz, (2) primary microseisms 
from 0.02 to 0.1  Hz, and (3) secondary microseisms 
between 0.1 and 0.5 Hz (Nishida 2017).

The ocean surface gravity waves can be classified as 
ocean infragravity (IG) waves below 0.02  Hz and ocean 
swell above the frequency. IG wave is a shallow-water 
wave, whereas the ocean swell is physically a deep-water 
wave. The pressure fluctuations of the IG waves reach 
the seafloor in the pelagic and coastal regions, whereas 
those of the ocean swells cannot reach the seafloor in the 
pelagic regions.

IG waves excite background Love waves and Ray-
leigh waves predominantly from 1 to 20 mHz, known as 

seismic hum, through the topographic coupling on the 
seafloor (Nishida et al. 2008b; Fukao et al. 2010; Nishida 
2013). Ocean swell activities excite microseisms from 
0.05 to 0.5 Hz (Nishida 2017). Primary microseisms are 
excited by shoaling waves through the topographic cou-
pling on the sea floor (e.g., Hasselmann 1963; Ardhuin 
et al. 2015). Secondary microseisms are excited by ocean 
swell activities in both the pelagic and coastal regions 
through the nonlinear interaction (Longuet-Higgins 
1950; Hasselmann 1963). In the history of earthquake 
seismology, secondary microseisms have been a promi-
nent noise source for earthquake signals. Historical 
seismological studies took different approaches depend-
ing on two frequency bands below and above the typical 
frequency of secondary microseisms. This frequency is 
also important in characterizing the physical nature of 
seismic waves (Aki 2003). Above the frequency, strong 
lateral heterogeneities in the crust and sediment make 
the seismic wave field complex on a regional or global 
scale (see Sect. 6.2 for details), stimulating the develop-
ment of a stochastic approach. Below the frequency, the 
waveform can be reproduced in a deterministic manner. 
SI turns stochastic wave fields into a deterministic signal 
as a virtual seismic record, which can be applied to seis-
mic tomography. Thus, the operation of cross-correlat-
ing seismic wave fields, or SI, bridges the stochastic and 
deterministic approaches in seismology, which had been 
incompatible, as noted by Aki (2003).

1.3  ANT
Campillo and Paul (2003) demonstrated that SI can 
extract virtual seismic records from the ambient seismic 
wave field. This paper describes the analysis of the coda 
wave, a diffusive wave field, in Mexico. Cross-correlating 
the seismic records of coda waves extracted clear Love 
and Rayleigh wave propagations between every pair of 
stations. Although this paper analyzed earthquake coda, 
the method can be applied to ambient seismic wave 
fields. Shapiro and Campillo (2004) subsequently showed 
that the CCFs of the microseisms also exhibited clear 
surface propagations between every pair of stations. This 
result suggested the possibility of seismic imaging with-
out earthquakes, now known as ANT.

Shapiro et  al. (2005) achieved the milestone of the 
ANT studies. They demonstrated the feasibility of ANT 
using a modern dense seismic network. After this study, 
ANT became a standard technique for dense broad-
band observations because ANT does not require wait-
ing for earthquakes, i.e., a long observation period. After 
the paper, ANT was applied to many regions: the USA 
(e.g., Bensen et al. 2007; Moschetti et al. 2007; Liang and 
Langston 2008; Lin et al. 2008; Yang et al. 2008), Australia 
(e.g., Saygin and Kennett 2010), Europe (e.g., Yang et al. 
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2007), China (e.g., Zheng et al. 2008), Japan (e.g., Nimiya 
et  al. 2020; Nishida et  al. 2009), and the global scale 
(Nishida et al. 2009; Haned et al. 2016). With the increase 
in seismic stations with continuous observations at many 
seismic stations in the 2000s, ANT has become a stand-
ard analysis method. Today, ANT is first applied after 
deploying a dense seismic array.

1.4  What is covered/not covered in this review
There are already many review papers on SI and 
ANT (e.g., Snieder and Larose 2013; Wapenaar et  al. 
2010a,  2010b) and textbooks (e.g., Schuster 2009, Ritz-
woller and Feng 2019, Nakata et al. 2019, and Chapter 10 
in Sato et  al.  2012). This review focuses on a consistent 
theoretical treatment and systematic comparison among 
different phase velocity measurement methods.

This review also focuses on multimode measure-
ments. Recent developments in dense arrays enable us 
to extract multimode dispersion (e.g., Spica et  al. 2018; 
Chmiel et al. 2019; Savage et al. 2013; Jiang and Denolle 
2022; Socco et al. 2010). Multimode inversions have sig-
nificantly improved depth resolution, although the dis-
persion of fundamental mode branches alone has poor 
vertical resolution. As multimode dispersion measure-
ment has inherent difficulties, this review aims to provide 
clues for practical applications.

Because SI does not require earthquakes, it acceler-
ates the progress in monitoring the temporal change in 
seismic velocities. Monitoring the temporal change with 
events requires repeating earthquakes or repeating active 
sources. In most cases, they are not realistic. In the last 
ten years, SI has become a standard technique for moni-
toring the temporal change in seismic velocities asso-
ciated with environmental origins (e.g., precipitation, 
groundwater, and temperature), volcanic eruptions, and 
earthquakes (e.g., Sens-Schönfelder and Wegler 2006a; 
Wegler et al. 2007; Brenguier et al. 2008a, b, Wang et al. 
2017). Because this review does not cover such topics, see 
review articles (e.g., Sens-Schönfelder and Wegler 2011; 
Obermann and Hillers 2019) for further information.

This paper does not cover conventional surface wave 
tomography using earthquake data. Because many excel-
lent reviews are already available (e.g., Romanowicz 
2003,  2020,  2021; Laske and Widmer-Schnidrig 2015; 
Levshin et  al. 2018; Barmin et  al. 2001), please refer to 
those references.

This paper also does not cover attenuation tomogra-
phy using CCFs of ambient seismic noise. Some studies 
inferred the attenuation structure from the amplitude 
information of CCFs (Prieto et  al. 2009, 2011; Lin et  al. 
2011). Although the effects of source heterogeneities 
(e.g., Tsai 2011) can bias the estimation, recent develop-
ments to extract amplitude information from ambient 

noise cross-correlations (e.g., Lin et al. 2012b; Zhou et al. 
2020; Liu et al. 2021) have made it reliable. Because this 
topic is beyond the scope of this paper, we refer only to 
the aforementioned papers.

Section  2 summarizes a theory of SI for ANT. Sec-
tion  3 describes the procedures for practical data pro-
cessing to calculate CCFs. Ambient noise multimode 
surface wave tomography (multimode ANT) consists of 
four steps (Fig. 1). The first step (Sect. 4) is the measure-
ment of multimode surface wave dispersion for a local 
seismic array. The dispersion curves are also crucial for 
constructing local 1-D structures, which can be an initial 
model of ANT. The second step (Sect. 5) is the dispersion 
measurements for each path. The third and fourth steps 
(Sects.  6 and  7) are how to infer 3-D seismic velocity 
models from the dispersion measurements. The proce-
dures consist of two steps: (1) the 2-D inversion of phase/
group velocities in Sect.  6 and (2) a local 1-D inversion 
at each grid in Sect.  7. Figure  1 shows such procedures 
based on our previous studies (Nishida et  al. 2008a; 
Nagaoka et  al. 2012; Takagi and Nishida 2022; Takeo 
et al. 2022; Yamaya et al. 2021). This review will focus on 
and compare our previous studies with other studies.

2  A brief review of SI
Theories of SI originate from various backgrounds and 
have developed independently. Although they require 
different assumptions in different settings (e.g., an open 
or closed system), they are closely related. Theoretically, 
it is natural to consider a closed system for the global 
scale, whereas it is natural to consider an open system for 
the regional or local scale. This section provides an over-
view of the theories of SI in a closed system and an open 
system to understand the physical pictures. To model 
CCFs for ANT, we formulate synthetic CCFs for the 
homogeneous source distribution in a 2-D homogeneous 
medium. However, the heterogeneous source distribu-
tion realistically causes an apparent travel-time anomaly 
from the synthetic CCF for the homogeneous source dis-
tribution. We evaluate such biases based on the analytic 
formulation.

2.1  SI in a closed system
Here, we consider SI in a closed system. In the case of a 
finite body, we evaluate CCFs based on a normal mode 
approach (Lobkis and Weaver 2001). Because the Earth 
is a finite-size sphere, this approach is also feasible for 
multi-orbit propagations on a global scale (Nishida et al. 
2002, 2009). For simplicity, this subsection describes a 
scalar 1-D case, but it can be easily extended to elastic 
2-D and 3-D cases.
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2.1.1  Repeating seismic experiments
Virtually, we consider repeating seismic experiments in 
a closed system of a perfect elastic body. Before the initial 
time t = 0 , the body did not deform, and a random force 
f k(x) was applied to the body at t = 0 in the kth experi-
ment, where x is the spatial location. We consider a finite 
body from x = 0 to x = L and impose rigid or free bound-
ary conditions at both ends. The equation of motions is 
given by

(1)ρ(x)
∂2uk(x, t)

∂t2
= κ(x)

∂2uk(x, t)

∂x2
+ f k(x)δ(t),

where κ is the elastic constant, ρ is the density and uk is 
the displacement at the kth experiment. After the force 
is applied, the displacement is measured at the stations. 
These experiments are repeated K times. Note that we 
cannot consider a persistent force in this system because 
no attenuation leads to an infinite increase in the ampli-
tude over time.

We evaluated the displacement uk(x, t) by a convolu-
tion between the force f k(x) and the Green’s function. 
The Green’s function can be written in terms of normal 
mode theory (Dahlen and Tromp 1998) as
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Fig. 1 a Construction of reference 1-D models. b Phase/group velocity measurements for each path. c 2-D phase/group velocity inversions 
for multimodes. d A 3-D S-wave tomographic model is obtained from a collection of local 1-D inversions at all the grids. Modified from Takagi 
and Nishida (2022)
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where ωn is nth eigenfrequency and Un is nth eigenfunc-
tion, which satisfies orthonormality:

Then, the displacement can be represented by the 
convolution

where Ak
n = L

0 Un(x)f
k(x)dx . We consider the energy 

partition of the modes for a random external force in the 
next section.

2.1.2  Energy partition of modal energy
This subsection discusses the energy balance of each 
mode: how the work done by external forces is distrib-
uted to the kinematic and elastic energy. First, we evalu-
ate the work done by the external force can be given by

where the particle velocity vkn of nth mode in the kth 
experiment is written by vkn = Ak

nUn(x) cos(ωnt).
The kinetic energy of nth mode Tn can be evaluated by 

integrating the kinetic energy density in space as

The elastic energy Vn , on the other hand, can be evalu-
ated by integrating the strain energy density in space. The 
partial integral with the boundary condition leads to

The total energy Tn + Vn is

which balances the work done by external forces.
Here, we consider an excitation by random force Fk

i  at 
location xi as

(2)G(x, x′; t) =
∑

n

Un(x)Un(x
′)

ωn
sin(ωnt), t ≥ 0,

(3)
∫ L

0
ρ(x)Un(x)Un′(x)dx = δnn′ .

(4)uk(x, t) =
∑

n

Ak
nUn(x)

sin(ωnt)

ωn
,

(5)
∫ ∞

0

∫ L

0
vkn(x, t)f

k(x)δ(t)dxdt = (Ak
n)

2,

(6)Tn =
∫ L

0

ρ

2
(vkn)

2dx = 1

2
(Ak

n)
2 cos2(ωnt).

(7)

Vn =
∫ L

0

κ

2

(

Ak
n

∂Un

∂x

sin(ωnt)

ωn

)2

dx = 1

2
(Ak

n)
2 sin2(ωnt).

(8)Tn + Vn = (Ak
n)

2,

(9)f k(x) =
I−1
∑

i=0

Fk
i δ(xi),

where I is the number of the force. We also assume that 
Fk
i (x) is white noise as

where 〈〉k is ensemble average with respect to k. To sim-
plify the problem, we consider the constant density ρ0 . 
The expected value of the cross-correlation of An can be 
evaluated as follows.

where E is the modal energy. The amplitudes of the dif-
ferent modes An do not correlate with each other, and 
the total energy of each mode is distributed equally. The 
expected value of the modal energy is constant for each 
mode when the external force f is white noise. When a 
system meets this condition, we call the state the equi-
partition of energy. We note that the fluctuation–dis-
sipation theorem in physics (Callen and Welton 1951) 
requires a thermal equilibrium that satisfies the equi-
partition of energy. Equation 10 can be derived from the 
principle of equal a priori probabilities in the case.

2.1.3  CCFs under the equipartition of energy
Here we define a CCF φk(x1, x2; τ ) between uk(x1) and 
uk(x2) under the equipartition of energy as,

where x1 shows the location of station 1, and x2 shows 
that of station 2. We note that there are two types of CCF 
definitions. The sign of the second term of the other type 
is flipped.

The ensemble average of φ(x1, x2; t) over K time experi-
ments is defined by the ensemble average 

〈

φk(x1, x2; τ )
〉

k
 . 

Then, the CCF can be represented by

which relates the CCF to Green’s function (Snieder 
2004). The frequency dependence of this equation differs 
slightly from Aki’s formulation (e.g., Haney et  al. 2012). 
Although the formulation showed that the Hilbert trans-
form of the CCF can be related to Green’s function, the 
difference can be attributed to spectral normalization.

Compared to CCFs for real data, the biggest problem 
is the assumption of the equipartition of energy. Because 
the excitation sources are distributed near the surface, 
fundamental modes dominate the observed wave field. 

(10)�Fk
i F

k
i′ �k = F̄2δii′ ,

(11)

〈

Ak
nA

k
n′

〉

k
∼ I F̄2

Lρ0

∫ L

0
Un(x)Un′(x)dx = I F̄2

Lρ0
δnn′ ≡ Eδnn′ ,

(12)

φk(x1, x2; τ ) ≡ lim
T→∞

1

T

∫ T

0
uk(x1, t)u

k(x2, t + τ )dt,

(13)

d

dτ
φ(x1, x2; τ ) = −E

2
(G(x1, x2; τ )− G(x2, x1;−τ)),
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Energy is not partitioned equally among different mode 
branches. Indeed, the observed dominance of fundamen-
tal modes (e.g., Nishida 2017) shows that the energy is 
not equally distributed in the radial direction. When con-
sidering a single-mode branch, the energy is distributed 
equally in the horizontal direction if the external force is 
white noise distributed on the entire surface.

Although the theory assumed K experiments, practi-
cally, only one observation is possible. Therefore, the 
ensemble averages need to be replaced by time averages 
to calculate the CCFs of observed data for persistent 
external forces (e.g., ocean waves). However, no attenu-
ation in a closed system causes the problem of diverging 
amplitudes without attenuation; that is, the seismic wave 
field in a closed system never meets the equilibrium for 
persistent sources. Physically, it is natural to consider the 
equilibrium between the energy dissipation due to atten-
uation and the work performed by external forces (Kob-
ayashi and Nishida 1998; Fukao et al. 2002).

We note that the term Green’s function is often used 
in a less mathematically rigorous sense in studies on SI. 
Mathematically, a CCF converges to the Green’s function 
only in limited cases. A similar situation occurs in quan-
tum field theory. The Green’s function refers to CCFs, 
although it does not satisfy the mathematical definition 
(Zagoskin 2014).

2.2  SI in an open system
Next, we consider SI in an open system. The formulations 
in an open system depend on the source-receiver con-
figuration: (1) random point sources distributed over the 
whole space, (2) random sources distributed on a closed 
curve, and (3) uncorrelated plane wave incidents from 
various directions. This subsection describes the rela-
tionship between the different configurations of an open 
system. Mathematically, the theory of an open system 
differs from that of a closed system. We cannot use nor-
mal mode theory for an open system because the system 
loses energy from the radiation boundary.

For ANT, CCFs are usually formulated in an open sys-
tem, which better approximates the source-receiver con-
figuration. Because the surface wave can be formulated 
as a 2-D problem with a membrane approximation (e.g., 
Tanimoto 1990; Tromp and Dahlen 1992b, 1992a, 1993), 
we can consider them as a 2-D potential problem in an 
open system. For ANT, we explicitly express the mixed-
component CCFs of surface waves in a simplified case at 
the end of the subsection.

2.2.1  Seismic excitation by an infinite number of sources
We consider one realization of the background seismic 
wave field excited by an infinite number of sources in an 

open system. When external force acts on the body at a 
location r and time t = 0 , the 2-D wave equation is given 
by

where C(r) is phase velocity, and fi is ith external force 
at the location ri ( i = 0, · · · ,∞ ). The potential ψ(x, t) is 
given by

where g2D is the Green’s function in time domain.
The Fourier component of the potential ψ(r, t) is writ-

ten by

where G2D is the Green’s function in frequency domain. 
In this paper, we define the Fourier transform as follows 
(Dahlen and Tromp 1998),

We note that the Fourier convention depends on the lit-
erature. For example, Aki and Richards ’s definition has 
the opposite sign in the exponential term.

Here, we consider a potential ψ(ro, t0) in a simplified 
case with constant phase velocity as C(r) = C0 , where ro 
is the location of the origin and time denotes an arbitrary 
positive time. The ψ(ro, t0) is represented by the sum of 
the arrivals excited by sources along the concentric cir-
cle with radius r = C0t0 . The typical separation of the 
sources is assumed to be �x . Within the circle with the 
band �x , about 2πr/�x sources are distributed (Fig.  2 
left). Because the amplitude decay is proportional to 
r1/2 , the mean square amplitude ψ(ro, t0) is estimated 
to be about 2πr/(�x(r1/2)2) = 2π/�x , which does not 
depend on the distance r. Therefore, after t > 0 , the fluc-
tuations of ψ last for a semi-infinite time with the same 
mean squared amplitudes (Fig. 2 right).

2.2.2  Random sources distributed on a closed curve
The second source configuration is random sources on an 
arbitrary curve enclosing stations. Now, we observe the 
potential ψ at ro within the circle with radius r (Fig.  2). 
Based on the representation theorem, the wave excited by 
distributed sources outside the circle can be completely 
reproduced from the stresses and displacements on the 
circle (e.g., Aki and Richards 1980). The contribution of 

(14)

∂2ψ(r, t)

∂t2
= C(r)∇2ψ(r, t)+

∞
∑

i=0

δ(ri − r)δ(t)fi

(15)ψ(r, t) =
∞
∑

i=0

g2D(r − ri; t)fi,

(16)�(r,ω) =
∞
∑

i=0

G2D(r − ri;ω)fi,

(17)X(ω) =
∫ ∞

∞
x(t)e−iωtdt.
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the sources within the circle for the CCF can be neglected 
because the contribution from the sources outside the 
circle becomes infinitely large when considering infinitely 
long times. These features mean that it is equivalent to 
persistent sources distributed only on the circle. Suppose 
that uncorrelated random sources with white spectra on 
an arbitrary surface enclose stations in a heterogene-
ous medium. In this case, the time derivative of the cor-
responding CCF represents the exact Green’s function 
between a pair of stations (Wapenaar et al. 2010a).

2.2.3  Uncorrelated plane wave incidents
The third source configuration is uncorrelated plane wave 
incidents from various directions. Assuming that the 
source-station distances are sufficiently longer than the 
aperture of the seismic array, the assumption leads to a 
plane-wave approximation (Nakahara 2006; Haney et al. 
2012). The above discussions for a homogeneous source 
distribution lead to the identical formulation of CCFs 
regardless of the source configurations, as shown in the 
following subsection. When we consider a heterogeneous 
source distribution, the first source configuration is the 
most flexible to represent the source, and the second and 
third are gradually less flexible. The flexibility of the first 
two source configurations causes a complex dependence 
of a CCF on the locations of the two stations. In contrast, 
the inflexibility of the third source configuration causes a 
simple dependence of the CCF only on the relative loca-
tion between the stations (only the distance and the azi-
muth). In many cases, the ocean swell activities are far 
enough away from the stations to approximate the phe-
nomenon well. For simplicity, we will use the third source 

configuration to represent CCFs based on plane wave 
incidents in the following subsections.

2.2.4  CCFs for homogeneous source distribution in a 2‑D 
homogeneous medium

For ANT, we explicitly express the CCFs between all 
pairs of three-component seismometers in an open sys-
tem when multimode Love and Rayleigh waves dominate 
the ambient seismic wave field. We evaluated the CCFs 
for the surface waves in a 2-D problem with a membrane 
approximation (e.g., Tanimoto 1990; Tromp and Dahlen 
1992a, b, 1993). We show an expression of the mixed-
component CCFs of surface waves.

An arbitrary seismic wave field u(r, θ;ω) in 2-D can be 
represented by a superposition of multimode Love and 
Rayleigh waves as

where f Rayn,m (ω) is forcing for Rayleigh waves, and f Loven,m  
is forcing of Love waves. Un and Vn are eigenfunctions 
of the nth overtone of the Rayleigh wave, and Wn is the 
eigenfunction of the nth overtone of the Love wave, 
which has a real value. The basis functions Pm , Bm and 
Wm are given by

(18)

u(r, θ;ω) =
∞
∑

n=0

∞
∑

m=−∞
f
Ray
n,m (ω)[Un(ω)Pm(r, θ;ω)

+Vn(ω)Bm(r, θ;ω)]
+ f Loven,m (ω)Wn(ω)Cm(r, θ;ω),

(19)Pm(r, θ;ω) = ẑJm

(

ωr

c
Ray
n (ω)

)

eimθ ,

(a) (b)

∆ x

r

ro
t

t0

Fig. 2 Schematic figure for random sources in 2-dimension. a Source distribution in space. The red triangle shows the observed station. b Potential 
ψ(ro , t) observed at the origin r at time t. The wave packet at time t0 is traveled from the source within the concentric circle with radius r shown 
in (a)
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where cRayn (ω) is the phase velocity of nth overtone of 
Rayleigh wave, and cLoven (ω) is nth overtone of Love wave.

An assumption of equipartition of energy leads to

where PRay
n (ω) is the power spectrum of nth overtone of 

Rayleigh wave, and PLove
n  is the power spectrum of nth 

overtone of Love wave.
The mixed-component cross-spectra for multimode 

Rayleigh waves are written as,

where a cross-spectrum represents the CCF in frequency 
domain. The mixed-component cross-spectra for multi-
mode Love waves are written as,

where J0−2(z) ≡ J0(z)− J2(z) and J0+2(z) ≡ J0(z)+ J2(z) . 
Z represents the vertical component, and R and T repre-
sent the horizontal components according to the polari-
zation direction (Fig. 3).

These equations are identical to the result of Haney 
et  al. (2012). A similar formulation for DAS observa-
tion is given by Nakahara et al. (2021). We note that the 

(20)

Bm(r, θ;ω) =
c
Ray
n (ω)

ωr

[

r̂
∂

∂r
+ θ̂

r

∂

∂θ

]

Jm

(

ωr

c
Ray
n (ω)

)

eimθ ,

(21)

Cm(r, θ;ω) =
cLoven (ω)

ωr

[

r̂

r

∂

∂θ
− θ̂

∂

∂r

]

Jm

(

ωr

cLoven (ω)

)

eimθ ,

(22)�f Ray∗n,m f
Ray
n′,m′ �Un(ω)Un′(ω) ≡ P

Ray
n (ω)δnn′δmm′ ,

(23)�f Love∗n,m f Loven′,m′ �Wn′(ω)Wn(ω) ≡ PLove
n (ω)δnn′δmm′ ,

(24)�f Ray∗n,m f Loven′,m′ � = �f Love∗n,m f
Ray
n′,m′ � = 0,

(25)Rn(ω) ≡ Vn(ω)/Un(ω),

(26)
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(27)




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RT
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,

difference of sign �Ray
RZ  originates from the definition 

of the radial direction, which differs from this study. 
Using this formulation, cross-spectra for Rayleigh 
waves lead to a symmetric relation between the RZ and 
ZR components as �Ray

RZ = �
Ray
ZR  , whereas cross-spectra 

for body waves lead to an antisymmetric relation as 
�

body
RZ = −�

body
ZR  (Takagi et al. 2014).

Attenuation becomes significant when consider-
ing a seismic wave field in sediment above 0.1  Hz 
(Nishida et al. 2008a; Prieto et al. 2009, 2011). However, 

physically plausible attenuation measurements are 
practically difficult (e.g., Liu and Ben-Zion 2013; Tsai 

2011) because there is ambiguity between the source 
heterogeneities and the attenuation. Although new 
techniques have been developed to overcome this prob-
lem (e.g., Liu et  al. 2021; Magrini and Boschi 2021; 
Bowden et  al. 2015), they are beyond the scope of 
this study. Even if the physically plausible attenuation 
estimation is difficult, apparent Q measurements are 

r

Radial

Radial

Transverse

Transverse

1st station

2nd station

θ

Fig. 3 Schematic of the geometry of a pair of stations 
with separation distance r and the coordinate. The figure shows 
the radial and transverse directions for the station pair. To simplify 
the equation, the signs of the directions are different from those 
of other studies. The difference changes the signs of CCF 
in the components of RR, TT, RZ, and ZR
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feasible for better fitting a synthetic cross-spectrum to 
an observation (e.g., Nishida et al. 2008a).

2.3  Travel‑time anomalies due to the source 
heterogeneities

In this subsection, we evaluate travel-time anomalies due 
to source heterogeneities. Although the mode decompo-
sition in the previous subsection can be applied to more 
general source distributions, the resultant CCF for het-
erogeneous source distribution becomes complex. With 
a stronger assumption of the 2-D ambient seismic wave 
field described by a superposition of uncorrelated plane 
waves from all azimuths (the third source-receiver con-
figuration), the resultant CCF depends only on the rela-
tive location between the station pair. The condition that 
the excitation sources exist at infinite distances simpli-
fies the problem (see Sect.  2.2.3 for details). Reducing 
variables simplifies the effects on the source heterogenei-
ties. This assumption is sufficiently realistic, because we 
consider the on-land observation of the ambient seismic 
wave field excited by distant ocean swells. This estimate is 
consistent with Weaver et al. (2009), but with a different 
derivation.

We assumed that the sources were located along a 
closed curve surrounding the stations. If the source is 
distant enough compared with the wavelength, the cross-
spectrum � between a pair of stations is given by

where wavenumber k(ω) is ω/c(ω) , m is the azimuthal 
order, θ is azimuth (Fig. 4), and the Fourier coefficients of 
the source intensities βm(θ) are real value as

where am and bm are Fourier coefficients of the source 
distribution (Harmon et al. 2010; Cox 1973). The spatially 
symmetric part of the cross-spectrum with even m is a 
real function, whereas the antisymmetric part with odd 
m is an imaginary function. The symmetric feature origi-
nated from the plane wave decomposition by the Bessel 
function as

Here, we evaluate a travel-time anomaly due to source 
heterogeneities of CCFs by the asymptotic expansion 
of the Bessel function for a large argument given by 
Eqs. 9.2.5 and 9.2.6 of Abramowitz et al. (1988),

(28)�(r, θ;ω) =
∞
∑

m=0

imJm(kr)βm(θ),

(29)βm(θ) =
{

a0
2 m = 0,
am cos(mθ)+ bm sin(mθ) m �= 0,

(30)eikr cos θ =
∞
∑

m=−∞
imJm(kr)e

−imθ .

where Nm is the Bessel function of the second kind (also 
known as the Neumann function) and χ ≡ kr − π/4 . The 
real part of the cross-spectrum can be evaluated by only 
even orders as,

Insertion of the asymptotic Bessel function into the 
above equation leads to the following equations. The real 
part of the cross-spectrum is given by

and the imaginary part of the cross-spectrum is given by

where Bod and Bev are defined by

The real and imaginary parts lead to the following cross-
spectrum � as,

where B ≡ Bev(θ)+ Bod(θ) . B(θ) represents the intensity 
of incident plane waves as a function of azimuth θ . Here, 
we use the following relations.

(31)

Jm(kr) ≈
√

2

πkr

[

cos
(

χ − mπ

2

)

− 4m2 − 1

8kr
sin

(

χ − mπ

2

)

]

,

(32)

Nm(kr) ≈
√

2

πkr

[

sin
(

χ − mπ

2

)

+ 4m2 − 1

8kr
cos

(

χ − mπ

2

)

]

,

(33)Re[�(r, θ;ω)] =
∞
∑

m=0

(−1)mJ2m(kr)β2m(θ).

(34)

Re[�(r, θ;ω)] =
∞
∑

m=0

(−1)mJ2m(kr)β2m(θ)

≈ J0(kr)Bev(θ)+
√

2

πkr

sin χ

2kr
B′′
ev ,

(35)

Im[�(r, θ;ω)] = i

∞
∑

m=1

(−1)miJ2m+1(kr)β2m+1(θ)

≈ N0(kr)iBod(θ)− i

√

2

πkr

cos(χ)

2kr
B′′
od ,

(36)Bod ≡
∞
∑

m=0

β2m+1(θ),

(37)Bev ≡
∞
∑

m=0

β2m(θ).

(38)

�(r, θ;ω) ≈ H
(1)
0

(kr)B(θ)

+H
(2)
0

(kr)B(θ + π)

− i
√

2π(kr)3

[

eiχB′′(θ)− e−iχB′′(θ + π)

]

,
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To evaluate the travel-time anomalies due to source 
heterogeneity, we consider the far-field approximation 
( kr ≫ 1 ) of the Hankel function of the first kind:

We also assume that the source heterogeneity is weak as

The causal part of the cross-spectra (Eq. 38) can be writ-
ten by

Therefore, the travel-time anomaly δt of the causal part 
can be estimated by

where t is the travel time and ω is the nominal angular 
frequency. Figure  4 shows the stationary phase regions, 
which dominate the contribution of the CCF (Snieder 
2006). The aperture δθ of the stationary phase regions is 
proportional to the square root of the ratio between the 
wavelength and the station separation distance r (Fro-
ment et  al. 2010). Because the narrower the aperture at 

B(θ)+ B(θ + π) = 2Bev(θ),

B(θ)− B(θ + π) = 2Bod(θ).

(39)H
(1)
0 (kr) ≈

√

2

πkr
e
i
(

χ− 1
8kr

)

.

(40)1

krB

d2B

dθ2
≪ 1.

(41)

H
(1)
0 (kr)B(θ)− ieiχB′′(θ)

√

2π(kr)3

≈ B(θ)

√

2

πkr
exp

[

i

(

χ − 1

8kr
− B′′(θ)

2krB(θ)

)]

.

(42)δt(r, θ) ≈ B′′(θ)

2ωkrB(θ)
,

the higher frequency, the travel-time anomaly decreases 
for a longer distance and a higher frequency. The equa-
tion does not include the first derivative of the intensity B 
because the symmetry cancels the contribution (Weaver 
et  al. 2009). Equation  42 gives an error proportional to 
the second derivative of the intensity B to the azimuth. 
This equation can estimate the phase velocity bias due 
to source heterogeneities and correction (Weaver et  al. 
2009; Froment et al. 2010).

Finally, the analytic representation of a cross-spectrum 
for heterogeneous sources is given by

where Green’s function in 2-D is given by

This subsection shows how to estimate travel-time 
anomalies due to source heterogeneities. We note that 
the CCFs still satisfy the original wave equation even if 
the source distribution is heterogeneous. This property 
ensures that phase velocity measurements can be pos-
sible even for a heterogeneous source distribution if the 
station density is sufficiently high and the excitation 
sources are located outside the station array. Follow-
ing Lin et  al. (2013), we briefly show the relation in the 
following.

Here we consider potential ψ , which satisfies a wave 
equation L as

We also assume that no sources are distributed within 
the station array. The CCF φ is defined by

The CCF satisfies the wave equation as

where L1 is the wave equation concerning r1 . The CCF 
also satisfies the wave equation for r2 . Because the CCF 
satisfies the wave equation only without spectral whiten-
ing and one-bit normalization, these procedures often 
create unphysical phases (Nakata et al. 2013).

(43)
�(r, θ;ω) ≈ 4

(

e−
π
2
iG∗(r;ω)e−iωδt(r,θ)B(θ)

+e
π
2
iG(r;ω)eiωδt(r,θ+π)B(θ + π)

)

,

(44)G(r;ω) = −i
H

(2)
0 (kr)

4
.

(45)L[ψ(r, t)] ≡
[

∂2

∂t2
− C(r)∇2

]

ψ(r, t) = 0.

(46)

φ(r1, r2, t) = lim
T→∞

1

T

∫ T

0
ψ(r1, τ)ψ(r2, t + τ )dτ

(47)

L1[φ(r1, r2, t)] = lim
T→∞

1

T

∫ T

0
L1[ψ(r1, τ )]ψ(r2, t + τ )dt = 0,

B( ) θ

δθ

θ
r x

y

Fig. 4 Schematic figure of the geometry of stations 
and the stationary phase regions shown in blue. The sources are 
located sufficiently distant from the stations, and the distribution 
is given by B(θ) as a function of the incident azimuth θ
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3  Data processing
If the seismic wave field is stochastic stationary, data 
processing for the CCF calculation is straightforward. 
In a realistic situation, the spectral structure of seismic 
records changes with time. Moreover, seismometers 
record transient phenomena such as earthquakes, which 
are noise for the CCF calculations. Instrumental noise is 
also problematic. To improve the quality of CCF, we need 
to select and regularize seismic records (Bensen et  al. 
2007; Ritzwoller and Feng 2019). This section explains 
the practical data processing.

3.1  Instrument
Before processing data, we must consider the influence 
of instrumental characteristics. This review considers 
the geophysical observable of ground motions and pres-
sure in the ocean. The seismometer records the ground 
motions, and they can be categorized into strong motion 
sensors, short-period sensors, and broad-band sensors 
according to the frequency and amplitude ranges.

3.1.1  Sensors
Today, on a global scale, broad-band seismometers are 
commonly used. Because instrumental responses depend 
on sensor types, the responses should be removed prior 
to data analysis. Typically, broad-band sensors have a flat 
response in particle velocity above the corner frequency 
of about 10 to 100  s, and the response decreases with 
decreasing frequency below the corner frequency.

Short-period sensors (typically velocity seismom-
eters with a corner frequency of 1  Hz) are also com-
monly used on a local scale. In the recent development 
of dense observation with more than 1000 stations (also 
known as a large-N array, e.g., Lin 2013), geophones 
with a natural frequency of 10  Hz are also often used. 
Although only nominal responses are available in many 
cases, the responses are slightly different from one to 
another (Ueno et al. 2015; Takeo et al. 2022). When we 
use the data with a frequency close to the natural fre-
quency, the difference might cause an apparent phase 
shift, which could be problematic for a short separation 
distance.

When a sensor is deployed on the seafloor, pressure 
gauges are also commonly used (Webb 1998). Cross-cor-
relation analysis of ocean bottom pressure gauges exhibits 
Rayleigh wave propagations by cross-correlation analysis 
(e.g., Takeo et al. 2014). When a sensor is deployed on the 
seafloor or bottom of a borehole, the orientation of the 
sensor is unknown (e.g., Takagi et al. 2019). In such cases, 
the orientations should be determined by known events, 
such as an active shot or teleseismic events.

3.1.2  Instrumental corrections
In ambient noise cross-correlation analysis, small-ampli-
tude seismic wave signals are used compared to regular 
earthquake signals. Moreover, the signals may fall within 
the lower frequency band than the natural frequency of 
the seismometers, potentially residing below the instru-
ment noise level. In such cases, instrument noise can sig-
nificantly impact the quality of CCFs. Instrument noise 
can be categorized into incoherent and coherent noises 
across observation stations. Incoherent noise between 
stations decreases with the square root of the number of 
stacks of CCFs. However, coherent noise does not dimin-
ish and remains in the CCFs even with many stacks.

Takagi et al. (2015) conducted an ambient noise cross-
correlation analysis using Hi-net short-period seismom-
eters in Japan and found periodic pulses at 60-second 
and 1-second intervals within the CCFs. The stacking 
of raw records revealed that these periodic pulses were 
not a result of data analysis but were inherent in the raw 
records shared across all stations. Although the ampli-
tudes were extremely small, less than 1 bit, they appeared 
in the CCFs at frequencies lower than the natural fre-
quency band because of their coherence across stations. 
Similar instrument noise and its impact on CCFs have 
also been reported in other observation systems (e.g., 
Wang et  al. 2017). This coherent periodic instrument 
noise is attributed to load fluctuations in data loggers, 
such as time calibration and data recording. There is also 
temporally random but coherent instrument noise across 
stations. The coherent random instrument noise appears 
as pulses near the zero lag in the CCFs. Such coherent 
random noise was found in DAS observations (e.g., Trib-
aldos and Ajo-Franklin 2021) and cabled ocean-bottom 
seafloor seismometers (Takagi et al. 2021).

It is crucial to remove coherent instrument noise to 
utilize CCFs to image subsurface structure. Several meth-
ods have been proposed to deal with periodic coherent 
instrument noise. One method involves creating wave-
forms of periodic coherent instrument noise by stacking 
many raw records and subtracting them from the raw 
observation records (Takagi et  al. 2015). Alternatively, 
instead of computing instrument noise waveforms, one 
can calculate the difference of raw observation records 
(e.g., the difference between two adjacent days) and then 
compute the CCFs of these differential waveforms (Tak-
agi et al. 2021). To reduce randomly coherent instrument 
noise, practical methods such as modeling and estimat-
ing the spectral shape of instrument noise (Takagi et al. 
2021) or subtracting the median of CCFs from each trace 
(Tribaldos and Ajo-Franklin 2021) have been proposed. 
By taking advantage of dense DAS observations, the F-K 
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filtering of fast-propagating phases before computing the 
CCFs is effective (Fukushima et  al. 2022). In summary, 
while coherent periodic or coherent random instrument 
noise across observation stations can contaminate CCFs, 
understanding the characteristics of the noise and apply-
ing appropriate removal methods enable us to expand the 
analyzable frequency range and ultimately improve the 
resolution of structural imaging.

The time reliability is crucial for the cross-correlation 
analysis between stations. For onshore observations, 
satellite systems, such as the Global Navigation Satellite 
System (GNSS), usually give a precise time stamp. When 
GNSS reception fails, the temporal change in the CCFs 
has been used to estimate the error in the time stamps 
(Sens-Schönfelder 2008; Hirose and Ueda 2023). For off-
shore observations, precise time stamps are mostly given 
at deployment and recovery, and the drift of the internal 
clock can be linearly corrected. When the time stamp 
cannot be obtained either at the beginning or at the end 
of the observation, the temporal change in the CCFs can 
be used again to estimate the drift (Hannemann et  al. 
2014; Gouédard et al. 2014; Takeo et al. 2014). The time 
asymmetric shape of the CCFs can also be used to esti-
mate unknown instrumental responses such as the con-
stant time shift of the logger or the frequency-dependent 
phase response of the differential pressure gauges (Takeo 
et al. 2014).

3.2  Data selection
We must choose seismic data that satisfy a local station-
ary state to apply the SI. Outliers such as earthquake 
records and instrumental glitches decrease the SNR. 
This subsection introduces (1) one-bit normalization, (2) 
RMS-based data selection, and (3) polarization-based 
data selection.

3.2.1  One‑bit normalization
To suppress the effects of transient phenomena such 
as earthquakes, one-bit normalization (e.g., Aki 1955; 
Bensen et al. 2007; Cupillard et al. 2011) keeps only the 
sign of the original information, changing all positive 
values to 1 and all negative values to -1. Because this 
method is simple, it has been widely used. When tran-
sient phenomena (e.g., many aftershocks and packet loss 
during data logging) occur frequently, their contributions 
decrease the quality of the CCFs. In such a case, care-
ful reduction of transient signals allows us to improve 
the CCF’s quality. A disadvantage of this method is the 
loss of amplitude information. Different amplitude 

normalizations among components cause problems in 
the cross-correlation analysis of multicomponent data.

3.2.2  RMS‑based data selection
If the signal obeys a stationary process, we can reject out-
liers using an RMS threshold. In a strict sense, secondary 
microseisms do not follow a stationary process but are in 
a local stationary state: RMS changes significantly by sev-
eral orders of magnitude on a timescale of several days 
(Fig. 5). We must define the local background levels for 
the rejection, which change slowly over several days.

Here, we introduce an example for estimating the local 
background level by Nishida and Takagi (2022). To define 
the typical background level of the whole network at the 
ith time step, we calculate the median of MS amplitudes 
for all stations Pi . Here, we consider a situation: ith time 
step is the latest accepted time step, and we reject n suc-
cessive time steps. If Pi+n changes suddenly, we reject the 
( i + n+ 1) th time step with the threshold ǫ:

we reject all data at time step i + n+ 1 with the criterion 
proportional to the rejection duration (orange points in 
Fig. 5).

3.2.3  Data rejection associated with large earthquake using 
a catalog

Seismometers record global propagations of many seis-
mic phases excited by large earthquakes, typically with 
moment magnitudes greater than 6 (Ekström et al. 2012). 
In most frequency ranges, the RMS criterion can reject 
the corresponding data. However, the secondary micro-
seisms are still large enough to hide some earthquakes. 
Even smaller amplitudes can bias the CCFs because the 
earthquake signals are coherent among the stations. 
Careful rejections of large earthquakes improve the qual-
ity. Using a global earthquake catalog (e.g., the global 
Centroid Moment Tensor (CMT) catalog (Ekström et al. 
2012)), data rejection based on the magnitude in the cat-
alog is feasible to exclude hidden seismic phases.

Approximately the amplitude of earthquake data 
decays exponentially with time. The typical duration De 
is:

where f is the dominant frequency, Q is the typical qual-
ity factor, M is the moment, and J is a typical geometrical 

(48)| ln(Pi+1)− ln(Pi)| > nǫ,

(49)De = 2Q
ln(JM/1023)

(2π f )
,



Page 13 of 42Nishida et al. Progress in Earth and Planetary Science            (2024) 11:4  

spreading (Nishida and Kobayashi 1999; Tanimoto and 
Um 1999). Data were rejected for De seconds after the 
arrival. The orange dots in Fig. 5 show a typical example 
of rejected data (Nishida and Takagi 2022). Data can be 
rejected until the earthquake signal is much smaller than 
the background noise levels.

3.2.4  Polarization‑based data selection
If the excitation processes are stochastic stationary in 
time and space, the energy partition among the mode 
branches should be constant. The energy partition 
changes over time because they are not stationary in 
a realistic situation. For example, Takagi et  al. (2018) 
pointed out that the energy partition of P-wave micro-
seisms at periods of 4–8 s becomes more significant on 
seismically quiet days based on the polarization analy-
sis of Hi-net data in Japan. When we want to empha-
size overtones of seismic surface waves, data selection 
based on polarization information can potentially 
improve the detection of overtone branches. Pedersen 
et al. (2023) proposed the data selection based on the 
H/V spectral ratio to extract teleseismic body wave 
microseisms, and this strategy may be applicable for 
detecting overtone branches.

3.3  Regularization: weight and normalization of CCFs
If both the signal and the noise are subjected to the 
Gaussian distribution, calculating the CCFs from 
selected data is straightforward. However, neither noise 

nor signal behaves well in a realistic situation. Regulari-
zation of data is required as part of the preprocessing 
(Bensen et al. 2007).

3.3.1  Weighting of cross‑spectra
The weighting on the data is important when we 
calculate a cross-spectrum between a station pair 
(Nishida 2014). The amplitudes of microseisms at 
frequencies around 0.1 Hz change with time, which 
reaches more than one order of magnitude on a time-
scale of one day. Spectral whitening efficiently reduces 
the non-stationarity (e.g., Bensen et  al. 2007). The 
amplitudes of the seismic hum in the mHz band are 
stationary, although the local noise level is higher than 
the signal levels. In this case, the weighting of the data 
depending on the local noise level can be effective 
(Nishida 2014; Takeo et  al. 2013). In the mHz band, 
the noise levels of the horizontal components are 
orders of magnitude higher than those of the vertical 
components. For the calculation of the cross-spec-
trum, we suppressed noisy Fourier components using 
the data weighting as follows.

We calculated a weighted cross-spectrum �ij(f ) 
between the ith and jth stations at a frequency f as

(50)
�ij(f ) =

1
∑

k

wk
ij(f )

∑

k

wk
ij(f )U

k∗
i (f )Uk

j (f ),

Fig. 5 Example of the data selection process. The orange dots show data excluded using the global CMT catalog (Ekström et al. 2012), and the blue 
dots show data transients when the amplitude changes suddenly. The black dots represent selected segments. The vertical axis shows the relative 
power normalized by the Peterson NLNM (Peterson 1993)), which represents the lowest ground noise on Earth. Taken from Nishida and Takagi 
(2022)
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where Uk
i (f ) is a Fourier spectrum of ground acceleration 

of the kth segment at the ith station. The weighting fac-
tor wk

ij(f ) depends on the situation. If the noise is much 
larger than the signal, the weight can be estimated by

We can evaluate the uncertainty σij(f ) of the resultant 
�ij(f ) as

(51)wk
ij(f ) =

1

|Uk
i (f )|

1

|Uk
j (f )|

.

(52)σij(f ) =
1

�

Nij(f )





1

Nij(f )

Nij
�

k=1

wk
ij(f )





−1

,

where Nij(f ) is number of stacked traces (Takeo et  al. 
2013). The corresponding CCF φij(t) is calculated by the 
inverse Fourier transform of �ij(f ) (e.g., Fig. 6).

3.3.2  Spectral whitening
If the signal is larger than the noise, the assumption of 
the previous Sect.  3.3.1 is broken down. Although sim-
ple stacking works for signals with Gaussian distribu-
tion, the signal level changes significantly with time. In 
particular, the amplitudes of secondary microseisms 
can change by several orders of magnitude over a time-
scale of a few days. Without regularizing the amplitude, 
the resultant CCFs emphasize days of high-ocean-swell 
activities too much. For the amplitude regularization, the 

Fig. 6 Cross-correlation functions as a function of interstation distances filtered at 20–30 s, 10–20 s, and 5–10 s. The amplitudes are multiplied 
by 

∑

k

wk
ij (f ) in the frequency domain to produce similar noise levels for different pairs of stations. The dashed pink line shows the group velocity 

of each specified mode at a typical period for the 1-D isotropic model. The modes include the fundamental mode and first-higher-mode Rayleigh 
waves, 0 S, and 1 S. The TT components show wave packets of Love waves xT, which could not be identified as a single mode due to possible 
interference between the fundamental mode and the higher mode with very similar group and phase velocities. Taken from Takeo et al. (2016)
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cross-spectrum �ij is normalized by the amplitude (e.g., 
Aki 1957; Nishida et al. 2008a; Prieto et al. 2009) as,

The �ij with spectral whitening is also known as cross-
coherency. The equation is similar to the weighting, but 
the factor 

∑

k w
k
ij is not required.

Although direct waves are accurately reconstructed 
with spectral whitening, they cause many pseudo-arriv-
als. Therefore, if we ignore the pseudo-arrivals, all nor-
malizations work practically (Nakata 2020). To mitigate 
the pseudo-arrivals, smoothing of wk

ij in the frequency 
domain was proposed (Tauzin et al. 2019).

Another implementation is performed by spectral 
whitening of the individual seismic trace before calcu-
lating CCFs (Bensen et al. 2007). Specifically, the inverse 
Fourier transform of Uk

i (f )/|Uk∗
i (f )| corresponds to the 

whitened seismic trace.

3.3.3  Temporal flattening
Different amplitude normalizations at different stations 
become problematic if we utilize amplitude information 
(e.g., attenuation). Although this topic is beyond the scope. 
Temporal flattening (Zhou et al. 2020; Weaver 2011) was 
proposed to preserve the amplitude information.

4  Dispersion measurement of surface waves 
for constructing local 1‑D structures

In the first step of ANT (Fig. 1a), a reference dispersion 
curve of phase or group velocities is measured using the 
CCFs of an array. This section briefly summarizes the 
measurement methods: (1) frequency–time analysis, (2) 
slant stack technique, (3) SPAC method, (4) FJ method, 
and (5) waveform fitting. The dispersion curves are also 
important for the construction of local 1-D structures, 
which can be an initial model of ANT (see Sect. 6.3.1).

4.1  Frequency–time analysis (FTAN)
Frequency–time analysis is a common method for meas-
uring the dispersion curves of earthquake data (Levshin 
et  al. 1992; Cotte and Laske 2002; Romanowicz 2020). 
This method is also feasible for ambient noise CCFs 
(Bensen et al. 2007; Harmon et al. 2007; Yao et al. 2011; 
Spica et al. 2018). For the measurements, we usually use 
the time-symmetric part of CCF to reduce the effects 
of source heterogeneities (see equations  34 and 35 in 
Sect.  2.3). In this subsection, we use the folded CCF to 
lag time 0 φ+

ij  as,

(53)

�ij(f ) =
∑

k

wk
ij(f )U

k∗
i (f )Uk

j (f ) =
∑

k

Uk∗
i (f )Uk

j (f )

|Uk
i (f )||Uk

j (f )|
.

and the corresponding Fourier component is defined 
by �+

ij (f ) . The folding procedure distorts the waveform 
when the separation distance is shorter than about one 
wavelength. The tail of the acausal wave packet contami-
nates the causal peak because the CCF does not satisfy 
causality, as in the case of Green’s function.

A group velocity-period diagram can be calculated for 
each CCF. The general outline of the procedures is as fol-
lows, although there are some other implementations. 
Figure 7 shows an example of a synthetic test.

At a given center frequency f, a narrow-band filter with 
the center frequency f0 is applied to the CCF. For exam-
ple FTAN (Levshin et al. 2018; Ritzwoller and Feng 2019) 
use a Gaussian filter

where α is the coefficient, determining the bandwidth 
(Fig. 7a, b). Because a smaller α broadens the bandwidth, 
a smaller α provides a stable estimate for noisy data. At 
the same time, smaller α can bias the estimation in cases 
of strong dispersion. α often changes with the separation 
distance (Ritzwoller et al. 2011) as

where α0 is the reference value at the separation distance 
r0 . In a synthetic test shown in Fig. 7, α0 is 40, and r0 is 
200 km.

The envelope functions of the filtered CCFs are plot-
ted against the periods and corresponding group veloci-
ties calculated from the separation distance and the lag 
time (Fig. 7c). Correction for f0 using the instantaneous 
frequency based on the analytical signal is feasible for a 
better estimate (Shapiro and Singh 1999; Levshin et  al. 
2018). In this case, a synthetic CCF is given by

where n is Gaussian noise with a standard deviation of 
0.03. We can measure group velocities by tracing the loci 
of a local maximum as a function of the period. Because 
a strong frequency dependence on the spectral content 
can bias the group velocity measurements, the correc-
tion is necessary for accurate measurements. AFTAN 
(Automatic Frequency–Time Analysis) package (Barmine 
2018) is available for this type of measurement. We show 
an example of the estimation errors at 0.1 Hz as a func-
tion of the separation distance (Fig. 7d).

(54)φ+
ij (t) =

{

1
2

[

φij(t)+ φij(−t)
]

t ≥ 0
0 t < 0

,

(55)Fb(f , f0) = e
−α

(

f−f0
f0

)2

,

(56)α = α0
√

r/r0,

(57)�syn(ω) = J0(k(ω)r)+ n(ω),
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We can also measure the phase velocity from the 
phase of �+

ij (f ) (e.g., Levshin 2018; Ritzwoller and Feng 
2019) if a single mode is dominant. Multimode inter-
ference is problematic for such measurements. To iso-
late a single mode, we must apply a proper filter. Here, 

we introduce two typical filters: (1) time variable filter 
(Landisman et al. 1969) and (2) floating filter (Levshin 
et al. 1992).

The time variable filter (Harmon et  al. 2007; Landis-
man et  al. 1969) isolates a single-mode wave packet by 
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Fig. 7 a Gaussian filters for various separation distances at 0.1 Hz. b Gaussian filter for r = 200 km. c FTAN diagram for a synthetic CCF 
with the observation error is 1%. The separation distance is r = 200 km. The black line shows the theoretical group velocity and the red dots show 
measured values using synthetic data. d Group and phase velocity anomalies for the synthetic CCFs with 1% measurement errors as a function 
of separation distance at 0.1 Hz. e Measured phases (blue dots) and the theoretical values (dashed lines) at 0.1 Hz. f Histogram of group and phase 
velocities estimation errors at 0.1 Hz
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windowing the CCF around the arrival time predicted 
by the group velocity measurements. Window length is 
set according to the dispersion because the stronger dis-
persion makes the duration of the wave packet longer. A 
typical window length (Harmon et al. 2007) Tw is given by

where U is group velocity, and τ is period.
Floating filtering is also a common procedure for 

extracting a single mode (Levshin et al. 1992). Based on 
the group velocity measurement, phase correction ψ(ω) 
is defined by

where r is the separation distance, and t1 is a constant. 
�+

ij (ω) is multiplied by eiψ to compress the signal around 
the average group time. t1 is chosen to focus on the aver-
age group arrival. After cleaning up the signal, φ+ is 
recovered by the inverse Fourier transform with e−iψ.

The phase velocity C can be measured from the phase 
of �+(ω) (Lin et al. 2008; Harmon et al. 2007) as,

where N is an integer number. The π/4 originates from 
the Bessel function, and the 2π ambiguity can be solved if 
a good starting model is available. Note that �+(ω) is out 
of phase by π/2 with the corresponding empirical Green’s 
function (see Sect. 2 of Lin et al. (2008)).

Figure 7e shows the phase of the synthetic test and the 
theoretical values. Although they agree, the finite band-
width of the Gaussian filter biases the measured phases. 
At higher frequencies, estimating the phase ambiguity N 
is difficult due to the ambiguity of an initial model. If a 
dense array is available, the array methods, as discussed 
in the following subsections, are feasible for measur-
ing the phase velocity at higher frequencies. The meas-
urement using FTAN has a limitation for the separation 
distance of CCFs. The group velocity measurements are 
accurate when the separation distance exceeds three 
wavelengths. For this reason, (Bensen et al. 2007) recom-
mended that the longest period should be r/12.

Histograms in Fig.  7f show the estimation errors of 
the group and phase velocities. Although the measured 
phase velocities were relatively accurate, the dispersion 
caused bias. When applying this method to strongly dis-
persive wave fields, we must carefully consider bias, par-
ticularly for low-SNR data.

An advantage of the FTAN method is the ability to 
measure the dispersion of a single station pair. As already 

(58)Tw = 160× dU

dτ
,

(59)ψ(ω) = r

∫ ω1

ω0

U−1dω + t1ω,

(60)C(ω) = ωr

− arg(�+(ω))+ 2πN + π
4

,

pointed out, the FTAN method also has the disadvantage 
that the dispersion measurements are difficult for sepa-
ration distances shorter than about three wavelengths. 
FTAN method is still feasible for measuring multimode 
dispersion if a wave packet of each mode branch is iso-
lated in the time domain. If multiple phases overlap in 
time domain, an array-based method (slant stack or 
SPAC) is appropriate.

Figure  8 shows an example of a multimode Rayleigh 
wave dispersion diagram measured using ocean-bottom 
seismometers. The figure shows two clear branches. The 
fundamental mode with a period 8  s has energy in the 
ocean, while it has energy in the crust and the upper-
most mantle with the longer period. The overtone also 
has energy in the crust and the uppermost mantle. This 
behavior of a multimode Rayleigh wave in an oceanic 
region is common, as shown in Fig.  6. A seismic array 
on a soft sediment layer records multiple mode branches 
above about 0.2 Hz (e.g., Spica et al. 2018).

4.2  Slant stack technique
Suppose that a dense array with station spacing compa-
rable to the wavelength is available. In this case, the slant 
stack technique, also known as the frequency–wavenum-
ber (F-K) method, is a common array processing (Rost 

Fig. 8 Group and phase velocities and the average spectrogram 
of raw data. Gray-scale filled contours represent the averaged 
spectrograms of all the CCF that met the SNR requirements, 
where the maximum value for each period in the individual 
spectrograms was normalized to one. The fundamental and second 
mode Rayleigh wave is visible in these data as the broad regions. 
Filled black circles with error bars indicate the average group 
velocities for the fundamental mode, while open circles with error 
bars indicate the average group velocities for the higher-mode 
Rayleigh wave. Black triangles with error bars indicate fundamental 
mode uncorrected phase velocities; gray triangles with error bars 
indicate −π/4 corrected phase velocities for higher and fundamental 
mode phase velocities, and open triangles with error bars indicate 
higher mode phase velocities. Taken from Harmon et al. (2007)
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and Thomas 2002; Gouédard et  al. 2008). This method 
also assumes that the superposition of plane waves can 
represent the wave field. The beam power Bp is defined 
by a sum of time-shifted waveforms �+(ω) with expected 
travel-time anomaly ωp · xi

where k and l represent the station number, rkl is the 
separation distance between kth station and lth station, 
and xk is the location vector of kth station represented by 
a Cartesian coordinate with the origin at the array cen-
troid. The term √rkl  corrects the amplitude decay due to 
geometrical spreading for a surface wave.

The disadvantage of this method is a potential bias due 
to the plane wave assumption. Equation  31 shows that 
the J0 (vertical component) the J0−2/2 (radial and trans-
verse component) can be approximated as

The contribution of the terms (8kr)−1 and 7(8kr)−1 is sig-
nificant for a shorter station pair. These equations sug-
gest that the bias of the horizontal components could 
be larger. We tested the bias of the vertical component 
using a synthetic CCF at 0.15 Hz given by Eq. 57 and the 
slowness of 0.3 s/km. Figure 9 shows the station distribu-
tion of the array (Hi-net stations with a radius of about 
100 km) and the result. The beam peaks at 0.3 s/km, con-
sistent with the theoretical value. To verify the bias, we 
measured the peak slowness for 10,000 experiments. Fig-
ure 10 shows the histogram. Although the measurements 
fluctuate, the central value is 0.05% lower than the theo-
retical value. The bias of about 0.05% is consistent with 
−(8k2r2)−1 estimated from equation  62 with a typical 
separation distance of 60 km.

This method can reveal multimode dispersion on a 
scale of 100 m to 100 km: DAS observation on a 100 m 
scale (Dou et al. 2017), a 10 km scale ocean bottom DAS 
(Viens et  al. 2022; Williams et  al. 2021), and a 100  km 
scale basin structure (e.g., Boué et  al. 2016; Jiang and 
Denolle 2022). Li et al. (2020) demonstrated that super-
vised machine learning methods are feasible for separat-
ing multimode information.

There is another implementation to calculate the F-K 
spectrum. When calculating the slant stack, the separa-
tion distances between stations are not regular. We can 

(61)Bp(p,ω) =
∣

∣

∣

∣

∣

∑

kl

√
rkl�

+
kl(ω)e

iωp·(xk−xl)

∣

∣

∣

∣

∣

2

,

(62)
√
rJ0(kr) ≈ cos(kr − π

4
)+ 1

8kr
sin(kr − π

4
),

(63)
√
r

2
J0−2(kr) ≈ cos(kr − π

4
)− 7

8kr
sin(kr − π

4
).

re-sample the CCFs on regular grids if all the station sepa-
ration distances are shorter than half the wavelength. CCFs 
can be mapped from the spatial domain to the F-K domain 
using the 2-D fast Fourier transform (FFT) after a correc-
tion r1/2 for geometrical spreading (Gabriels et  al. 1987). 
This method is applied to joint inversion of the first over-
tone and fundamental mode for deep imaging in the Val-
hall oil field using ambient seismic noise (Tomar et al. 2017 
2018).

4.3  SPAC method
This subsection explains the implementation of the SPAC 
method. In the case of homogeneous source distribution 
in a stratified medium, the synthetic cross-spectrum ρsyn

ZZ  
between vertical components can be represented by a Bes-
sel function (see Sect. 2.2.4) as

where r is the separation distance of the station pair. 
Assuming an arbitrary wavenumber k(ω) at a given fre-
quency, we determine the optimum amplitude a, by mini-
mizing the squared difference S between the observed 
cross-spectrum �i of ith pair and ρsyn(ri, a,C;ω) (e.g., 
Nishida et al. 2008b) with weight wi . S is given by

where N is number of the pairs. By minimizing S at a 
given frequency ω , we infer the phase velocity C(ω) and 
the amplitude a(ω) . Regarding a, S can be minimized 
analytically as

We obtain the optimum a for given C and ω as

To minimize S with respect to C in ω , we maximize the 
variance reduction VR given by

(64)ρ
syn
ZZ (r, a,C;ω) = a(ω)J0

(ωr

C

)

,

(65)S(a,C;ω) =
N
∑

i=1

wi

[

ρ
syn
ZZ (ri, a,C;ω)−�i(ω)

]2
,

(66)
∂S

∂a
= 0.

(67)aopt(C ,ω) =
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i=1

wi�i(ω)J0

(ωri

C

)

N
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wiJ0

(ωri
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.

(68)
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.
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The maximum is inferred using the grid search method. 
The estimate can be refined using a generalized least-
squares method (Menke and Jin 2015).

Figure  9 shows a test of the SPAC method using a 
synthetic cross-spectrum at 0.15  Hz given by Eq.  57 
and the slowness of 0.3 s/km. We used an array with a 
radius of about 100  km shown in Fig.  9a. Most of the 
separation distance ranges from 40 to 130 km (Fig. 9b). 
Figure  9c shows VR as a function of slowness (1/C). 
Because the amplitude of the surface wave decreases 
with 1/

√
r  , the appropriate modeling by SPAC sharpens 

the peak compared to the beam power.
We measured the maximum of VR for 10,000 experi-

ments to evaluate the estimation errors. Figure  10 
shows the histogram. The measurements fluctuate 
within 0.05%, and the median value is around the theo-
retical value.

(a) Station distribution
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Modeling �RR and �TT in horizontal components is 
more complicated because both Love and Rayleigh waves 
contribute to these components, as shown by Eqs. 26 and 
27. The corresponding synthetic cross-spectra ρsyn

RR  and 
ρ
syn
TT  can be represented by

When we analyze the station with a separation distance 
shorter than the wavelength, we must consider the Love/
Rayleigh wave for the RR/TT component, respectively. 
Although the Love and Rayleigh waves are coupled in 
this system, we can solve this equation directly. The 
maximum search becomes complex because the variance 
reduction at a given frequency is a function of CR and CL.

Here, we consider a simplified problem with a far-
field approximation. Because J0+2 is proportional to 
r−3/2 , the term becomes negligible for r longer than the 
wavelength (e.g., Takeo et al. 2013). In this case, we can 
simply apply the SPAC method to these components 
separately by replacing J0 of the vertical component with 
J0−2 . Figure 11 shows VR using the SPAC method in Japan 
(Nishida et  al. 2008a). The diagram shows clear Ray-
leigh and Love branches. Although this method assumed 
a single-mode branch, the figure exhibits multimode 
branches, which enable us to increase depth resolution 
(e.g., Ikeda et al. 2012). The SPAC method is also applied 
to seismic data from the ocean floor (Takeo et al. 2013, 
2014; Lin et  al. 2016; Takeo et  al. 2016, 2018; Kawano 
et  al. 2023). To separate multimode Rayleigh waves, 
polarization information could also be useful (Nayak and 
Thurber 2020).
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On a global scale, cross-spectra can be modeled using 
the Legendre function instead of the Bessel function 
(Nishida et al. 2002; Nishida 2014).

4.4  FJ method
The frequency–Bessel (FJ) method (Wang et  al. 2019a; 
Hu et  al. 2020; Nimiya et  al. 2023) is closely related to 
Aki’s SPAC method. Here, we reinterpret the FJ method 
with the SPAC method. For simplicity, we consider the 
ZZ component in this subsection. Refer to Hu et  al. 
(2020) for other components.

If we observed φ(r,ω) as a function of the separation 
distance r, the squared difference with weight r can be 
evaluated by the following integration,

By minimizing S for given C and ω , we obtain

If rN is much longer than the wavelength, the denomina-
tor can be approximated by

aopt(C ,ω) can be approximated by the integral (the 
numerator) evaluated at discrete points (Hu et al. 2020) 
as

(70)S =
∫ rN

0

[

a(ω)J0

(ωr

C

)

−�(r,ω)
]2
rdr.

(71)aopt(C ,ω) =

∫ rN

0
J0

(ωr

C

)

�(r,ω)rdr

∫ rN

0

[

J0

(ωr

C

)]2
rdr

(72)
∫ rN

0

[

J0

(ωr

C

)]2
rdr ≈ rNC

πω
.

Fig. 11 Frequency–phase velocity spectra using all pairs of stations. a A spectrum of radial components shows a clear Rayleigh wave branch, 
and b that of transverse components, which shows a fundamental Love wave branch, first overtone branch, and second overtone branch. Taken 
from Nishida et al. (2008a)
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where

and �i is the cross-spectrum of the ith station pair. FJ 
spectrum I(C ,ω) defined by Nimiya et al. (2023) can be 
approximated by

Although Hu et  al. (2020)’s definition of the coefficient 
ω2/C3 instead of ω2/C has a physical meaning, the 
emphasis on small phase velocity C may bias the estima-
tion, as shown below. We can interpret the FJ spectrum 
as a variant of SPAC method with weight wi defined by

We again tested the FJ method using a synthetic cross-
spectrum given by Eq. 57 and the slowness of 0.3 s/km. 
Figure 9c shows the FJ spectrum. The peak width is nar-
rower, but the side lobes are more significant than the 
others. Let us evaluate the side lobes using Eq. 71. If rN is 
sufficiently longer than the wavelength, the FJ spectrum 
ω for synthetic data J (ωri/C0) can be approximated (see 
Eq. 31) by

This integral can be interpreted as the Fourier series. 
Fourier series without a taper function cause significant 
spectral leakage (Oppenheim and Schafer 2014). If rN is 
sufficiently large, I(C ,ω) has value only at C = C0 like 
the delta function, due to the orthogonality of the cosine 
function (more precisely, the orthogonality of the Bessel 
function). This means that the FJ method has, in princi-
ple, the highest resolution in phase velocity.

To evaluate the accuracy, we measured the peak slow-
ness for 10,000 experiments using the FJ method. Fig-
ure  10 shows the histogram. The estimated value of 
the FJ spectrum of Hu et al. (2020) is about 0.2% larger 

(73)

aopt(C ,ω) ≈ πω

rNC

∑

i

�i(ω)J0

(ωri

C

)

r̄i�ri

= πω

rNC

∑

i

�(ri)J0

(ωri

C

) r2i+1 + 2ri(ri+1 − ri−1)− r2i−1

8
,

(74)r̄i ≡
1

2

(

rj−1 + rj

2
+ rj + rj+1

2

)

,

(75)�r ≡ 1

2
(rj+1 − rj−1),

(76)

I(ω,C) ≡ ω2

C

∫ rN

0
�(r,ω)J0

(ωr

C

)

rdr ≈ rNω

π
aopt(C,ω).

(77)wi =
πω

rNC

r2i+1 + 2ri(ri+1 − ri−1)− r2i−1

8
.

(78)

I(C ,ω) ≈ 2ω

π

∑

i

cos
(ωri

C
− π

4

)

cos

(

ωri

C0
− π

4

)

�ri.

than the theoretical value. The bias is caused by the fall-
off of the spectra at low phase velocity of C−2 (Shap-
iro and Singh 1999). The drop in the C−2 term (Nimiya 
et  al. 2023) of equation  78 significantly reduces bias, as 
shown in Fig.  10. The greater variation in the estimates 
is due to the greater weight of the smaller amplitudes at 
longer separation distances (Eq. 77). When the observa-
tion error is sufficiently small, the high resolution of the 
FJ method in the slowness domain will be beneficial for 
separating multimode surface waves. When the observa-
tion error is significant, the SPAC method can consider 
the noise using appropriate weights.

Figure  12 shows an example of field data (Hu et  al. 
2020). Although this subsection mentioned only the ZZ 
components, it can be applied to other components. 
Because the RR and TT components record both Love 
and Rayleigh waves, as shown by Eq.  69, their coupling 
complicates the estimation of the FJ spectra in the RR 
and TT components. Hu et  al. (2020) proposed pro-
cedures to separate the Love and Rayleigh wave using 
orthogonal relations of the Bessel functions (Fig. 12).

4.5  Multimode dispersion measurements by waveform 
fitting in a model space

The frequency–phase velocity diagram does not show 
clear mode branches in regions with strong lateral het-
erogeneities, such as volcanoes and ocean sediments 
(Takeo et al. 2022; Takagi and Nishida 2022). For example, 
Fig. 13 shows an example of SPAC diagrams in an oceanic 
area offshore the central part of northern Japan near the 
Japan Trench. They show fundamental Rayleigh and Love 
waves below 0.08 Hz, but other mode branches are inter-
mittent and ambiguous. Lateral variations of the shallow 
soft sediment distort the dispersion curves of multiple 
modes. Moreover, multimode interference also complexes 
the diagrams. In this case, the physically plausible phase 
velocity measurements are difficult. A physically plausible 
constraint on the dispersion is crucial for better measure-
ments. One strategy is to skip phase velocity measure-
ments using a SPAC method. For a given S-wave velocity 
structure, the corresponding phase velocity of jth over-
tone Cj(β;ω) can be evaluated, where β is a vector with 
components of S-wave velocity at each depth. The vari-
ance reduction given by Eq. 68 is summed over in a fre-
quency range from ω0 to ω1 and the N mode branches as

where Vall
R  is the summed variance reduction. By maxi-

mizing Vall
R  for β , we can infer the local 1-D struc-

ture. This method can be applied to the RR and TT 

(79)Vall
R (β) =

N−1
∑

j=0

∫ ω1

ω0

VR(C
j(β;ω);ω)dω,
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Fig. 12 Multicomponent frequency–Bessel spectrograms of field data in North America. a–d are the FJ spectrograms IR0 , IR1 , IR2 , and IL0 , respectively. 
Here, IR0 is FJ spectrum of Rayleigh wave using ZZ components, IR1 is FJ spectrum of Rayleigh wave using RZ and ZR components, IR2 is FJ spectrum 
of Rayleigh wave using RR and TT components, and IL0 is FJ spectrum of Love wave using RR and TT components. The black arrow in (a) indicates 
the location where the fundamental mode Rayleigh wave is bifurcated into two branches. The ith overtone is labeled next to each dispersion curve, 
and 0 indicates the fundamental mode. Taken from Hu et al. (2020)

Fig. 13 Array-based dispersion measurement of the real data. a 1-D shear velocity structure modeled with six layers of variable thickness 
(parameterization A). The thick and thin black lines represent the mean and standard deviation of the estimated models from the 100 
bootstrap samples. b Rayleigh wave dispersion curves estimated with model A. The thick and thin white curves represent the mean and three 
times the standard deviation of the 100 bootstrap results. The background image is the average of the variance reductions of the conventional 
cross-spectral fitting for the ZZ, ZR, and RR components. The frequency range without the white shadow is used in the dispersion measurement. c 
Love wave dispersion curves estimated with model A. Taken from Takagi and Nishida (2022)
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components even if Love and Rayleigh waves appear in 
both the RR and TT components with shorter separa-
tion distances. Figure  13 shows an example. Figure  13a 
shows the S-wave velocity models, and Fig. 13b, c shows 
the corresponding mode branches. Along the calcu-
lated mode branches, VR is summed over the frequency 
and all wave types. By maximizing Vall

R  , we can infer the 
local 1-D model. This method searches for the global 
maximum of Vall

R  in the model space. Physically implau-
sible models can be rejected automatically. The plot of VR 
against frequencies and phase velocities, as shown in the 
figures, is feasible to check the validity of the estimated 
model. Liu et  al. (2023) proposed an inversion method, 
which directly compared multimode dispersion diagrams 
with the synthetic kernel of the Green’s function, which 
shares a similar idea as the method here.

5  Dispersion measurements for each path
In the second step of ANT (Fig.  1b), phase or group 
velocity is measured for each path. This section intro-
duces four methods to measure dispersion for each CCF: 
(1) FTAN, (2) the zero-crossing method, (3) the SPAC-
based waveform fitting in the phase velocity domain, and 
(4) the waveform fitting in a model space. FTAN and the 
zero-crossing method (Ekström et al. 2009) are feasible to 
measure the phase velocity of a single mode. The latter 
two methods measure phase velocities by SPAC-based 
waveform fitting. The first measures the phase velocity 
directory under an assumption of single-mode domi-
nance, whereas the second measures by fitting synthetic 
CCF to the observed one with the help of reference CCF 
constructed by the local 1-D structural inversion.

5.1  FTAN
FTAN explained in Sect. 4.1 can also be used for phase 
and group velocity measurements of a single trace (e.g., 
Lin et al. 2008). We can measure the group velocities of 
multimode surface waves by picking up local maxima 
from a stacked FTAN diagram over an area (Spica et al. 
2018). However, multimode interference makes phase 
velocity measurements using FTAN difficult. Even in the 
case of multimodes, if we can isolate a single mode by a 
time variable filter (Landisman et al. 1969) or (2) a float-
ing filter (Levshin et al. 1992), we can measure the phase 
velocities.

5.2  Zero‑crossing method
The zero-crossing method (Ekström et al. 2009) is briefly 
summarized here. We will consider the ZZ component 
for simplicity, but it can be easily extended to other com-
ponents. For the frequency ωn of the nth zero-crossing 
observed, the phase velocity can be evaluated by

where zn of is the nth zero of the Bessel function J0 , 
m = 0,±1,±2 , which represents the ambiguity of n. 
This formulation allows missed or extra zero crossings 
because observed noise makes measurement of zn diffi-
cult. The messed or extra zero crossings 2m arise from 
the distinction between positive-to-negative zero and 
negative-to-positive zero. The advantages of this method 
over the FTAN method are (i) applicability even for a 
shorter separation distance (typically shorter than three 
wavelengths) and (ii) smaller bias for shorter distances 
owing to no far-field approximation. Although zero-
crossing measurements are practically robust (Ekström 
et al. 2009), the low-SNR CCF behaviors become unsta-
ble. In particular, because strong lateral heterogeneities 
distort the phase information, appropriate filtering prior 
to application is crucial for stable measurements.

5.3  SPAC‑based waveform fitting in phase velocity domain
This method measures the phase velocity anomaly 
in the ith frequency band from ωi to ωi+1 under the 
assumption of single-mode dominance. If we already 
inferred local 1-D models based on the SPAC method, 
the synthetic cross-spectrum can be represented by

where ǫ is phase velocity anomaly. We infer δa and ǫ by 
minimizing the squared difference defined by

where ǫi is the phase velocity anomaly at ωi , and αi is an 
amplitude correction term at ωi . αi is estimated first by 
the least-squares method for ǫi . With the estimated αi , ǫi 
is measured using the grid search method (Nagaoka et al. 
2012; Yamaya et al. 2021).

5.4  Multimode dispersion measurements by waveform 
fitting in a model space

In the case of the dense spacing of the mode branches 
in the phase velocity domain, there is a method for esti-
mating the multimode dispersion curve by waveform 
fitting using a 1-D velocity structure as model param-
eters. Yoshizawa and Kennett (2002) developed the 
original idea of measuring the phase velocity disper-
sion curve for each path of teleseismic surface waves. 
We applied this method to the cross-spectra of ambient 

(80)Cm(ωn) =
ωnr

zn+2m
,

(81)�synth(ǫ;ω) = a(ω)J0

(

ωr

C(1+ ǫ)

)

,

(82)

S(αi, ǫi) ≡
∫ ωi+1

ωi

[

(1+ αi)�
synth(ǫi;ω)−�obs(ω)

]2
dω,
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noise continuously (Takagi and Nishida 2022; Takeo et al. 
2022). The advantages of this method are that it provides 
physically achievable dispersion curves and can simul-
taneously measure dispersion curves for multimode 
surface waves. Given the 1-D velocity structure, it is pos-
sible to calculate dispersion curves for all correspond-
ing higher-order modes, explaining observed waveforms 
through the superposition of multimode surface waves. 
For the superposition of multiple modes, it is necessary 
to know the excitation amplitudes for each mode. In the 
case of teleseismic surface waves, the excitation ampli-
tudes for each surface wave mode can be calculated from 
the seismic source mechanism. We can use the ampli-
tudes aj calculated from the array-based SPAC method 
for the cross-spectrum of ambient noise (Eq. 67). Given a 
reference 1-D structure of the first step (Sect. 4), the syn-
thetic cross-spectrum can be represented by

where δβ is a perturbation of 1-D structure, N is the num-
ber of the mode branches, and j represents the order of 
the mode branch. We infer δβ by minimizing the residual 
sum of squares given by

It is worth noting that the 1-D velocity structure, which 
serves as a model parameter, does not necessarily rep-
resent the true Earth structure (Yoshizawa and Ken-
nett 2002). The 1-D structure model is not unique with 
respect to band-limited dispersion curves; different 1-D 
models can reproduce similar dispersion curves. The 
main products here are the multimode dispersion curves 
calculated by the 1-D structure. Thus, the search range of 
the model space should be wide enough to reproduce a 
dispersion curve that nicely fits the waveform.

These equations correspond to the vertical compo-
nent but can be readily extended to other components. 
In waveform fitting, a relatively wide frequency range is 
often handled, and multicomponent data can be simul-
taneously processed. Therefore, it is important to con-
sider the weighting of the data in practical applications. 
The error estimate of the SPAC method based on the 
array can be utilized as the weights (Takagi and Nishida 
2022).

Figure  14 exemplifies its application to S-net data 
(Takagi and Nishida 2022). Even in this case, where 
the signal-to-noise ratio of the CCFs is low, it is pos-
sible to robustly estimate multimode dispersion curves 

(83)�synth(δβ;ω) =
N−1
∑

j=0

aj(ω)J0

(

ωr

Cj(β + δβ;ω)

)

,

(84)

S(δβ) =
∫ ω1

ω0

w(ω)2
[

�synth(δβ;ω)−�obs(ω)

]2

w(ω)2
dω.

by utilizing the entire waveform of multicomponent 
CCFs and applying physical constraints based on 1-D 
structure.

6  2‑D multimode ANT
In the third step of ANT (Fig.  1c), we conduct a 2-D 
inversion of the phase/group velocity of multimode sur-
face waves from the phase/group velocity measurements 
for all pairs of stations. The method has been developed 
to explore the mantle structure using earthquake data 
(e.g., Woodhouse and Dziewonski 1984; Nakanishi and 
Anderson 1982; Tanimoto and Anderson 1985; Ekström 
et al. 1997; Nolet 2008). Because review papers covering 
ANT are available (e.g., Barmin et  al. 2001; Montagner, 

Fig. 14 Dispersion measurement for a single path by waveform 
fitting in a model space. a Modeled pair-specific 1-D shear 
velocity structure for the S-net station pair N.S2N08-N.S3N20. 
The thick and thin black lines represent the mean and standard 
deviation of the 1-D structures estimated by the bootstrap 
method. The gray line results from the reference model obtained 
by the array-based SPAC method in Fig. 13a. b Phase velocity 
dispersion curves of the fundamental-mode Rayleigh wave (0R), 
the first-overtone Rayleigh wave (1R), and the fundamental-mode 
Love wave (0 L). The thin blue and red lines are the means and three 
times standard deviations of the estimated pair-specific dispersion 
curves. The thick blue and red curves represent the frequency 
ranges that meet the quality control criteria based on variance 
reductions within narrow frequency bands. The gray ones are 
the results of the array-based measurement in Fig. 13b, c. c Fitting 
of the cross-spectra for this pair. The black and red are the data 
and the modeled cross-spectra, respectively. d Same as in (c), 
but both cross-spectra are normalized by the standard deviation 
of the cross-spectral data estimated from the array-based SPAC 
method. Taken from Takagi and Nishida (2022)
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2015 Rawlinson et al. 2010; Thurber and Ritsema 2015; ), 
see them for details.

For inversion, we should consider the sensitivity ker-
nels of the phase/group velocity. Although in an ideal-
ized situation, the kernel is identical to a finite-frequency 
kernel for an earthquake, a heterogeneous distribution of 
the noise source distorts the kernels (e.g., Nishida 2011; 
Tromp et al. 2010; Hanasoge 2013; Fichtner 2014; 2015; 
Fichtner et al. 2016; de Vos et al. 2013).

The first subsection describes how source heteroge-
neities affect the kernel using an analytical method for a 
simplified case. The next section explains the conditions 
for the application of surface wave tomography. The last 
subsection briefly summarizes the 2-D inversion meth-
ods: local 1-D inversion, ray-theoretical inversion, and 
finite-frequency inversion.

6.1  2‑D phase velocity sensitivity kernel for ANT
The sensitivity kernel for 2-D phase velocity is evaluated 
based on the Born and Rytov approximations (Born et al. 
1999; Ishimaru 1997; Nolet 2008). The Born approxima-
tion relates the scattered wave to the phase velocity per-
turbations with the first-order approximation, but it does 
not separate the effects on the amplitude and the phase. 
On the other hand, the Rytov approximation by taking 
the logarithm of the wave (e.g., Yoshizawa and Kennett 

2005) enables us to separate the logarithmic amplitude 
term and the phase term.

Here, we consider the Born sensitivity kernel K, which 
relates the phase velocity perturbation and the cross-
spectrum perturbation δ� as

where C is phase velocity and δC is the perturbation. The 
locations r1 , r2, and r3 are shown in Fig. 15a. The kernel K 
is given by

where �(r1, r2;ω) is the cross-spectrum between r1 and 
r2 at frequency ω (e.g., Nishida 2011), and G is the Green’s 
function in frequency domain. Although the kernel was 
generally calculated numerically, it can be estimated by 
observed data in principle if dense data were available 
(Chmiel et al. 2018).

With an assumption of the 2-D ambient seismic wave 
field described by a superposition of uncorrelated plane 
waves as in Sect. 2.3, Eq. 43 gives the analytic representa-
tion of � . Assuming that ωδt and kr are small enough, the 
kernel can be rewritten by

(85)δ�(r1, r2;ω) =
∫

δC

C
K (r1, r2, r3;ω)d�3,

(86)

K (r1, r2, r3;ω) =− 2k2
{

�(r2, r3;ω)G∗(r1, r3;ω)
+�∗(r1, r3;ω)G(r2, r3;ω)

}

,

(87)
K (r1, r2, r3;ω) ≈

−ik

π
√
r13r23

{(

e+i(χ23+χ13)B(θ2)− e−i(χ13+χ23)B(θ1)
)

+ei(χ13−χ23)(B(θ2 + π)− B(θ1 + π))

}

,

(a) (b)

θ2θ1

Station 1 Station 2

r1 r2

r3

r12

r13 r12

r1 r2

r13 < r 23 r13 > r 23

Fig. 15 a Schematic map of the geometry of stations. The star symbols show the station locations at r1 and r2 . The open circle shows the location 
of a phase velocity anomaly at r3 . b Elliptic curves with constant |r13 − r23| , and hyperbolic curves with constant |r13 − r23|
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where B(θ) represents the intensity of incident plane 
waves as a function of azimuth θ , and rij is the distance 
between ri and rj , χij ≡ krij − π/4 (see Fig.  15a). The 
form of a phase sensitivity kernel for a homogeneous 
source distribution is the same as that of the earthquake 
data (Nishida 2011).

The Rytov approximation is feasible to evaluate the 
phase sensitivity kernel (e.g., Yoshizawa and Ken-
nett 2005; Nishida 2011). Although the approximation 
requires a single-wave packet, the cross-spectrum � 
given by Eq.  43 ( θ = 0 , and r = r12 ) includes both the 
causal and acausal parts. We divide the cross-spectrum 
� and the kernel K into causal and acausal parts accord-
ing to the sign of the exponent, approximately. The causal 
part can be represented by e−kr+ωt , while the acausal part 
can be represented by ekr+ωt , where the wavenumber k 
and the angular frequency ω are positive. The cross-spec-
trum � is divided into the causal part �c and the acausal 
part �ac as,

The Born sensitivity kernel K is also divided into the 
causal part Kc and the acausal part Kac according to the 
sign of the exponent as,

and

where the region r13 > r23 corresponds to the first and 
fourth quadrants, whereas the region r13 < r23 corre-
sponds to the second and third quadrants (Fig.  15b). 
The Born kernels also satisfy K = Ka + Kac from the 
definition.

The causal perturbation δ�a and acausal perturbation 
δ�ac are related to phase velocity anomalies as

(88)
�c(ω) = H

(2)
0 (kr12)e

iωδt(r12,π)B(π)

�ac(ω) = H
(1)
0 (kr12)e

−iωδt(r12,π)B(0).

(89)Kc ≡
{ −ik

π
√
r13r23

[

−e−ik(χ13+χ23)B(θ1)+ eik(χ13−χ23)(B(θ2 + π)− B(θ1 + π))
]

r13 < r23
−k

π
√
r13r23

[

−e−ik(χ13+χ23)B(θ1)
]

r13 ≥ r23
,

(90)Kac ≡
{ −ik

π
√
r13r23

[

eik(χ13+χ23)B(θ2)
]

r13 < r23
−k

π
√
r13r23

[

eik(χ13+χ23)B(θ2)+ eik(χ13−χ23)(B(θ2 + π)− B(θ1 + π))
]

r13 ≥ r23
,

(91)δ�c =
∫

δc

c
K c(r1, r2, r3;ω)d�3,

(92)δ�ac =
∫

δc

c
Kac(r1, r2, r3;ω)d�3.

Most studies on ANT used the time-symmetric part of 
the cross-correlation function to measure phase velocity 
anomalies. The time-symmetric part of cross-spectrum �̄ 
is defined by

We consider the relation between perturbation of �̄ and 
the corresponding Born kernel K̄  as

where

The Rytov approximation is employed to obtain a 
phase sensitivity kernel for phase velocity perturba-
tions (Nishida 2011). In the Rytov method, the loga-
rithm of the cross-spectrum �̄ is considered instead of 

(93)�̄(ω) ≡ �c +�ac∗

2
,

(94)δ�̄ =
∫

δc

c
K̄ (r1, r2, r3;ω)d�3,

(95)δ�̄(ω) ≡ δ�c + δ�ac∗

2

(96)
K̄ (r1, r2, r3;ω) ≡

Ka(r1, r2, r3;ω)+ Kac∗(r1, r2, r3;ω)
2

.

the cross-spectrum itself. By taking the logarithm, �̄ can 
be divided into real (amplitude) and imaginary (phase) 
parts, as follows:

where A is the amplitude of the causal part, and ψ is its 
phase. The phase perturbation δψ can be written by

where the phase sensitivity kernel Kp is the imaginary 
part of −K̄/�̄.

(97)ln �̄ = ln(Ae−iψ) = lnA− iψ ,

(98)δψ =
∫

δc

c
Kp(r1, r2, r3;ω)d�3.
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Then, the phase kernel Kp can be written by

where we neglect the first-order term.
Figure 16 shows an example of sensitivity kernels. The 

separation distance of the station pair is 150 km, and the 
phase velocity is 3 km/s. The source B(θ) is assumed to 
be cos θ + 1.

The first term has an elliptical shape (Fig.  15b), as 
shown in Fig. 16a, corresponding to the finite-frequency 
kernel of an earthquake. The kernel along the line 
between the station pair ( θ1 = 0 and θ2 = π ) is identi-
cal to the finite-frequency kernel of an earthquake. The 
width of the kernel at the midpoint is proportional to √
�r12 , where � is the wavelength 2π/k . As a location 

moves away from the line between, the source heteroge-
neity increases the sensitivity on the r2 side.

The second term with the dependency of |r13 − r23| 
exhibits a hyperbolic shape (Fig.  15b) caused by source 
heterogeneity (Fig.  16b), and the term oscillates rapidly 
outside the stationary zones behind it. The effect tends to 
be smoothed out when the typical spatial scale of the lat-
eral heterogeneity is larger than the wavelength.

When the spatial scale of the source distribution is 
large (i.e., the azimuthal dependence of B(θ) is smooth), 
the shape of the kernel is similar to the finite-frequency 

(99)
Kp = k3/2√

2π

√

r1

r13r23

[

− cos
(

k(r13 + r23 − r12)−
π

4

)B(θ2)+ B(θ1)

B(0)+ B(π)

+ sin
(

k(|r13 − r23| + r12)+
π

4

)B(θ2 + π)− B(θ1 + π)

B(0)+ B(π)

]

,

kernel of an earthquake (e.g., Spetzler et al. 2002; Yoshi-
zawa and Kennett 2005). Because an approximation of 
the finite-frequency kernel of an earthquake works for 
most cases practically, most studies did not consider the 
source heterogeneity effect of the kernel. To check the 
effects, travel-time anomalies due to the source hetero-
geneities given by Eq. 42 can be a common criterion. In 
particular, because source heterogeneities cause apparent 
azimuthal anisotropy, the travel-time anomalies given by 
Eq. 42 are useful to evaluate accuracy. Although attenu-
ation measurements are beyond the scope, the corre-
sponding amplitude kernel is more sensitive to the source 
distribution, so that the source heterogeneities should be 
considered.

6.2  Conditions for application of surface wave 
tomography

This subsection briefly summarizes the conditions for 
applying the 2-D inversion method, known as phase/
group velocity tomography. Surface wave tomogra-
phy requires weak scattering of the surface waves dur-
ing propagation because we measure phase or group 
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velocity anomalies of the direct waves. Because the prop-
agation distance ranges from hundreds to several thou-
sand km, the distance should be shorter than the mean 

free path. Otherwise, strong scattering makes phase or 
group velocity measurements difficult. Figure  17 shows 
the mean free path as a function of the frequency com-
piled by Sato (2019). When we explore the mantle struc-
ture using earthquake data, we use surface waves below 
0.05 Hz. The mean free path longer than 1000 km at the 
frequency validates the application of the method of sur-
face wave tomography.

To understand applicability, Fig. 18 shows a classifica-
tion of wave propagation and the applicable method in 
ka− kL diagram (Aki and Richards 1980), where k is the 
wavenumber, a is the scale of heterogeneities, and L is 
the propagation distance. Here, we assume that the mean 
free path is comparable to a, although this estimate is 
very crude. The mean free path of northern Japan from 
0.5–1Hz is estimated to be about 30  km (Hirose et  al. 
2020), and that of Germany is estimated at 0.2 Hz to be 
about 500 km (Sens-Schönfelder and Wegler 2006b). The 
red lines show propagation distances from 10 to 150 km, 
and the blue broken lines show those from 150 to 
2000 km. At 0.03 Hz, the surface wave propagation at tel-
eseismic distance beyond 2000 km is within the regime of 
ray theory. At 0.2 Hz, the strong scattering makes meas-
urements difficult for propagation distances longer than 
200 km. This is the reason why earthquake surface wave 
tomography is practically difficult above 0.1  Hz. Before 

Fig. 17 Log–log plot of reported isotropic scattering coefficients against frequency. The left vertical axis shows the isotropic scattering coefficient 
giso , and the right vertical axis shows the corresponding mean free path ( g−1

iso ). Grey lines are for the lithosphere. Taken from Fig. 1 of Sato (2019)

Fig. 18 ka− kL diagram (Aki and Richards 1980) for a classification 
of wave propagation, where k is the wavenumber, a is the scale 
of heterogeneities, and L is the propagation distance. Red lines show 
propagation distances from 10 to 150 km, and blue lines show those 
from 150 to 2000 km. The mean free path at 0.03 Hz is 5000 km, 
that at 0.1 is 500 km, and that at 0.2 Hz is 30 km
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applying ANT, setting up an appropriate problem based 
on the observed situation is important.

Let us consider the difference in ray geometry between 
ANT and earthquake surface wave tomography. In the 
case of regional-scale earthquake surface wave tomog-
raphy with source-receiver paths, the target area is sur-
rounded by earthquakes, which are limited along active 
tectonic areas (Fig.  19a). Because most ray paths travel 
across the area, the travel-time anomalies reflect the 
seismic structure along lines over the scale. Because the 
perturbations of the inferred phase/group velocity map 
strongly depend on the damping of the tomographic 
inversion, the absolute velocities tend to be ambigu-
ous. Although the damping problem is common in ray-
theoretical inversion, including ANT, an initial local 1-D 
model for ANT constructed from multimode dispersion 
measurements using subarrays (see Sect. 6.3.1) can miti-
gate the ambiguity.

In contrast, in the case of ANT with a dense array, 
the distribution of the ray path is uniform (Fig.  19b). 
Above 0.05 Hz, CCFs with longer separation distances 
(typically longer than 1000  km) become complex. Ray 
paths with separation distances shorter than 1000  km 
enable us to infer tomographic maps even in regions 
with strong lateral heterogeneities above 0.1  Hz. This 
situation is similar to earthquake tomography using 
the two-station method (e.g., Dziewonski and Hales 
1972; Hamada and Yoshizawa 2015), which measures 

the phase differences between seismograms for two sta-
tions on a common great-circle path. The drawbacks 
of the two-station method are (1) that it requires both 
stations to be located close to the common great-circle 
path, which reduces the available ray paths, and (2) that 
the longer earthquake-receiver distance tends to cause 
the wave propagation to enter the regime of multiple 
scattering at a higher frequency (Fig. 18).

The shape of the sensitivity kernel is elliptical along 
the ray path, and the width at the midpoint is propor-
tional to 

√
�r12 , where � is the wavelength. Because the 

lengths of ray paths of earthquake data become longer 
in general, the widths become wider than those of 
ANT. The wider width tends to average the anomalies 
within the fat ray, and the averaging over a long dis-
tance makes restoring the small-scale image difficult.

The advantages of ANT are the homogeneous path dis-
tribution and the shorter ray paths. These features enable 
us to estimate phase/group velocity maps above 0.1 Hz.

6.3  Implementations of the 2‑D phase/group velocity 
inversions

The subsection briefly summarizes implementations of 
2-D phase/group velocity inversions using phase/group 
velocity anomalies measured from ambient noise CCFs: 
(1) regionalization using subarrays, (2) the ray-theoreti-
cal inversion of ANT, and (3) finite-frequency inversion 
of ANT.

(a) Earthquake surface wave tomography (b) ANT

Fig. 19 a A typical example of earthquake-receiver geometry for earthquakes. The gray lines show ray paths between the earthquakes 
and the stations. Red stars show the earthquakes, and black dots show stations. b A typical example of station geometry for ANT. The lines show ray 
paths between the station pairs
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6.3.1  Regionalization using subarrays
If dense stations are distributed over a large area, the sta-
tions can be divided into local subarrays. Phase/group 
velocity maps can be inferred from phase/group veloc-
ity measurements with the subarrays, such as F-K analy-
sis (Jiang and Denolle 2022), FJ method (Fu et  al. 2022; 
Nimiya et  al. 2023), and slant stack (Qin et  al. 2022). 
These methods can easily incorporate information on 
multimodes with smaller amplitudes because array analy-
sis enhances the SN ratios.

The inferred map is also helpful as an initial model 
for further inversions. Most ANT studies employ lin-
earized inversion to obtain 2-D phase/group veloc-
ity maps (e.g., Rawlinson and Sambridge 2004) because 
the computational cost of fully nonlinear inversion (e.g., 
Markov Chain Monte Carlo (MCMC); Bodin and Sam-
bridge 2009; Bodin et al. 2012; Galetti et al. 2016) is still 
high. A good initial model is crucial for better modeling 
for linearized inversion, because an inappropriate initial 
model may lead to a solution with a local minimum. An 
inappropriate initial model sometimes requires strong 
damping to stabilize the inversion. The appropriate initial 
model could mitigate the degradation of a tomographic 
image.

6.3.2  Ray‑theoretical inversion of ANT
The most common method of tomographic inversion of 
phase/group velocity anomalies is ray-theoretical inver-
sion with the assumption of a high-frequency limit. For 
example, tomo_sp_cu_s is a program (Barmin 2018) 
designed for estimating 2-D models from regional- or 
global-scale surface wave phase/group velocity measure-
ments (Barmin et al. 2001; Ritzwoller 2002). The program 
also assumed a straight ray for a weakly heterogeneous 
medium. Another implementation to solve the eikonal 
equation is the fast marching method (Sethian 1996; 
Rawlinson and Sambridge 2004; White et al. 2020). SUR-
FTOMO (Rawlinson 2008) is an iterative nonlinear travel-
time tomography code in 2-D spherical shell coordinates. 
Figure 20 shows an example of wavefront tracking using 
the final tomographic results. Although the figure shows 
the concentric wavefront within the arc distance of 10◦ , it 
shows kinks in Eastern Australia, which can be explained 
by triplication due to the low-velocity zones. This figure 
also suggests that CCFs with a separation distance longer 
than 10◦ are difficult to model above 0.1 Hz without the 
help of a good initial model. An advantage of ANT is that 
we can choose ray paths that meet the conditions accord-
ing to the problem setting owing to the homogeneous 
distribution of the ray paths.

The eikonal tomographic method (for example, Lin 
et  al. 2009) also assumes a high-frequency limit with a 
single mode and solves the eikonal equation directly. The 

eikonal tomographic method tracks the evolution of the 
wavefront using only local information with dense array 
data. The phase velocity can be estimated by the in situ 
spatial gradient of the phase travel time without an 
inversion. The method can be applied to a more general 
condition of the source distribution than equal energy 
distribution because the method does not require CCFs 
to be related to the corresponding Green’s function. This 
method works as long as the phase travel time satisfies 
the eikonal equation (see the end of  Sect.  2.3; Snieder 
et al. 2006; Lin et al. 2013; Lehujeur and Chevrot 2020). 
If a dense array satisfies the station spacing shorter than 
the wavelength, this method is feasible to infer the phase 
velocity map (e.g., de Ridder and Dellinger 2011; Lin et al. 
2013; Ritzwoller and Feng 2019; Chen et al. 2022).

Fig. 20 a Evolution of the wavefront in the case of strongly 
heterogeneous media. The station with a green star acts 
as the source, and the red triangles show the stations 
concerning the advancing wavefronts. Note the triplication effects 
around the low-velocity zones. b Histograms of passage time 
residuals for measurements at 10 s for Rayleigh waves, initially 
compared to a uniform reference model with a velocity of 2.8 km/s 
with great-circle paths, and after the inversion with 6 iterations 
of the subspace method with deviated paths. Taken from Fig. 4 
of Saygin and Kennett (2012)
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6.3.3  Finite‑frequency inversion of ANT
Although the patterns of the ray-theoretical inversions 
are robust in different studies, the retrieved strength of 
phase/group velocity perturbations differs (e.g., Yoshi-
zawa and Kennett 2004). Finite-frequency inversion is 
crucial to improve the amplitude recovery of velocity per-
turbations. As shown in Sect.  6.1, the sensitivity kernel 
has an elliptical shape, and the width at the midpoint is 
proportional to 

√
�r12 . For a heterogeneous data set with 

multiple scales, the difference in the width of the sensitiv-
ity kernels becomes problematic, because it becomes dif-
ficult to recover the amplitude of velocity perturbations 
by a ray-theoretical inversion. This subsection summa-
rizes recent developments on finite-frequency inversions.

As explained in Sect. 6.1, a finite-frequency sensitivity 
kernel of a CCF also depends on the source distribution. 
Consequently, the phase/group velocity structure has a 
trade-off with the source distribution (Fichtner 2015). To 
improve the structural image, we must infer the source 
distribution simultaneously (Fichtner et  al. 2016; Sager 
et  al. 2020, 2017). To mitigate the effects of source het-
erogeneities, measurements of differential travel times 
between two pairs of three stations were proposed (Liu 
2020). The sensitivity kernels of the three-station method 
significantly reduce the effect of the heterogeneous 
source distribution. Because CCF amplitudes are more 
sensitive to source heterogeneities (Tsai 2011), the con-
siderations of the source information will become more 
crucial in inferring the attenuation structure.

Because the computational cost of the sensitivity ker-
nels for both the structure and the source distribution 
is still high, the earthquake sensitivity kernel for phase/
group velocities is instead used practically (Gao and 
Shen 2015a; Yang and Gao 2018; Covellone et  al. 2015; 
Gao and Shen 2015b; Emry et al. 2019; Yang et al. 2022; 
Gao and Shen 2014; Wang et  al. 2019b 2020; Lu et  al. 
2020; Crosbie et al. 2019; Janiszewski et al. 2019; Russell 
and Gaherty 2021; Zhao et al. 2020). The approximation 
becomes exact under the condition of equipartition of 
energy (Nishida 2011). Although the kernel does not con-
sider the source heterogeneities, it improves the image 
from ray-theoretical inversion.

Another implementation of the finite-frequency effect 
of ANT is Helmholtz tomography (Lin and Ritzwoller 
2011b; Lin et al. 2012b; Mordret et al. 2013). This method 
is a natural extension of eikonal tomography to consider 
finite-frequency effects by introducing the amplitude 
correction term. Although this method requires dense 
data, the phase velocity can be estimated without the 
sensitivity kernel and the inversion, as in the case of eiko-
nal tomography. This method can be applied to a more 
general condition of the source distribution (see the end 
of Sect. 2.3).

7  3‑D seismic velocity inversion using 
the multimode dispersion

In the fourth step of ANT (Fig. 1d), a 3-D seismic veloc-
ity structure is constructed from the inferred phase/
group velocity maps in the previous step, which exhibit 
the dispersion curves at each grid point. The local 1-D 
structure at each grid point can be inverted from the 
dispersion curves. 3-D seismic velocity structures can 
then be constructed by collecting local 1-D structures. 
In most cases, only the dispersion of fundamental modes 
(Love and Rayleigh waves) is utilized for the inversion 
because the excitation sources are distributed on the sur-
face. Recent studies reveal that a dense array enables us 
to utilize multimode dispersion. Joint inversion with the 
H/V or receiver function is feasible to improve the depth 
resolution.

7.1  1‑D seismic velocity inversion at each grid
The measured dispersion curves are inverted to obtain 
local 1-D structures. Inversion methods can be catego-
rized into a Monte Carlo method (Shapiro and Ritzwoller 
2002; Maraschini and Foti 2010) and a linearized method 
(Tarantola and Valette 1982; Tarantola 2005; Montag-
ner 2015). Because the local 1-D inversion is identical to 
the earthquake data, this section briefly summarizes the 
related studies mentioned above.

All 1-D inversions require a code to calculate the sur-
face wave dispersion (e.g., DISPER80, Saito 1988; sen-
skernel-1.0, Levshin 2018; Computer Programs 
in Seismology, Herrmann 2013). These codes also 
calculate the depth sensitivity kernel, which is also use-
ful for a Monte Carlo inversion. Figure 21 shows a typical 
example of depth sensitivity kernels for a model based on 
a reference Earth model PREM (Dziewonski and Ander-
son 1981), where the thickness of the ocean is changed 
from 3.0 to 4.6  km, and the thickness of the crust is 
reduced from 22 to 6 km (Takeo et al. 2013). Fundamen-
tal Love and Rayleigh waves have sensitivity at shallower 
depths. The higher modes are not sensitive to the S-wave 
structure at shallower depths, and they are more sensitive 
to the S-wave velocity structure at greater depths than 
the corresponding fundamental models. With increas-
ing periods, the kernels have higher sensitivity at greater 
depths. A multimode inversion can improve depth reso-
lution because overtones have different sensitivities from 
fundamental modes.

Figure  22 shows an example of the 1-D inversion 
(Yamaya et  al. 2021) using multimode dispersion under 
the ocean. The study used a computer program package 
SEIS_FILO (Akuhara 2022) for the inversion, which 
implements a transdimensional Bayesian interface and 
reversible-jump MCMC (rj-MCMC) (Green 1995). They 
assumed a uniform distribution for the prior probability 
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distribution (1–10 for the number of layers; 2.3–10  km 
for depths of the discontinuities; and 2.3 km for seafloor 
depth and 0.1–5  km/s for S-wave velocities). P-wave 
velocities and densities were scaled by the empirical 
relation (Brocher 2005). The multimode dispersion con-
straints enable us to infer both sediment thickness and 
S-wave velocity. To demonstrate the feasibility of mul-
timode measurements to improve depth resolution, let 
us compare the inversions of Fig.  22 with and without 
higher-mode surface wave dispersion. Figure 23d shows 
the inversion result using multimode dispersion, whereas 
Fig. 23e shows the result using only fundamental modes. 
These figures show that the inversion using multimode 
dispersion is feasible to constrain the shallow sediment 
structure, improving the resolution of the crustal struc-
ture. Although Rayleigh waves also have sensitivity to 
the P-wave velocity, the limited sensitivity only at shal-
low depths (Fig.  21b) makes it difficult to constrain the 
P-wave velocity structure practically. With an empirical 
relation (e.g., Brocher 2005), the P-wave velocity and the 
density are scaled to the S-wave velocity to reduce the 
number of parameters.

Many groups have already published crust and upper-
most mantle models using fundamental modes, although 

this paper focuses on multimode ANT. Since there is no 
space to discuss individual models, we introduce Data 
Services Products: EMC, A repository of 
Earth models (Trabant et al. 2012; IRIS DMC 2011), 
which is a resource that offers access to different Earth 
models, along with visualization tools to preview mod-
els, facilities to extract data and metadata from the mod-
els, and access to software and scripts that others in the 
research community have contributed.

Seismic anisotropy gives us a clue to understanding the 
rheology and deformation of the Earth. In some cases, 
an isotropic S-wave velocity model cannot explain the 
observed discrepancy between the Love wave dispersion 
and the Rayleigh wave dispersion, which can be explained 
by radial anisotropy (e.g., Aki and Kaminuma 1963; 
Anderson 1962). Radial anisotropy in the upper mantle 
can be explained by lattice-preferred orientation in the 
low-velocity zone or partial melt under shear stresses 
(e.g., Montagner 2015). Radial anisotropy also exists in 
the lower crust, which can be explained by the lattice-
preferred orientation (LPO) of anisotropic crustal min-
erals under extension (Moschetti et  al. 2010a, b; Huang 
et al. 2010). ANT also revealed radial anisotropy in vol-
cano areas (Jaxybulatov et al. 2014; Harmon and Rychert 
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2015; Spica et  al. 2017; Lynner et  al. 2018; Jiang and 
Denolle 2022; Jiang et al. 2023, 2018; Miller et al. 2020). 
The layering of a partial melt layer in the magma reser-
voir can explain them. Thus, radial anisotropy is feasible 
for discussing the stress state and the texture. Azimuthal 
anisotropy can also provide information on rheology and 
deformation (Lin et  al. 2009; Yao et  al. 2010; Ritzwoller 
and Feng 2019; Russell and Gaherty 2021): for example, 
the flow in the uppermost mantle related to plate motion 
(Takeo et  al. 2016). We note that apparent anisotropy 
due to the lateral heterogeneities of the isotropic S-wave 
velocity structure is problematic (Lin and Ritzwoller 
2011a; Fichtner et al. 2013). When estimating anisotropy 
by the tomographic method, the anisotropy has trade-
offs with the lateral heterogeneities. Moreover, ANT has 
another difficulty that source heterogeneity can yield up 
to about 1% apparent azimuthal anisotropy (Harmon 
et  al. 2010; Takeo et  al. 2014, 2016), which can be esti-
mated by Eq. 42 (equivalent to Weaver et al. (2009)).

7.2  Joint inversion with other observations
Although multimode ANT improves depth resolution, 
surface wave tomography has an inherent low depth res-
olution. Joint inversions with other geophysical observa-
bles are feasible for a better depth resolution at the 4th 
step.

A thin low-velocity layer near the surface is problem-
atic. Rayleigh waves are essentially less sensitive to the 
S-wave velocity structure near the surface, as shown in 
Fig.  21. The poor sensitivity of Rayleigh waves at shal-
low depths makes resolving the shallow structure dif-
ficult, although the layer can still change the dispersion 
curves of surface waves. The polarization of the Rayleigh 
wave provides information on the shallow S-wave veloc-
ity structure beneath a seismic station. If the amplitude 
ratios between the horizontal and vertical components 
(ellipticity) for individual mode branches are available, 
the joint inversion can constrain shallower depths (Lin 
et  al. 2012a). Even if the ratios of individual modes are 

Fig. 22 a Stations of the ocean bottom seismometers array in the region off Ibaraki. The station intervals are about 6 km. The yellow triangles show 
the stations deployed on October 17, 2010, and the red triangles show those deployed on February 15, 2011. b, c S-wave velocities along the A-A’ 
and B-B’ lines. The red, orange, and green regions reflect layer 1, layer 2, and layer 3, respectively. We interpret the red and orange regions to be 
sedimentary layers, the green region to be Cretaceous sediment, and the blue region to be the upper crust, respectively. The black lines show 
the depth of the acoustic basement (between the orange and green regions) and the top of the upper crust (between the green and blue regions). 
Modified from Figs. 1 and 8 of Yamaya et al. (2021)
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difficult to measure, the spectral ratio of the horizontal 
to vertical (H/V) components at a station (Nakamura 
1989; Sánchez-Sesma et  al. 2011; Bahavar et  al. 2020) 
can be robustly measurable. The H/V ratio allows us to 
constrain the shallow structure by joint inversion with an 
assumption of equipartition of modes (Spica et al. 2018). 
We note that the ellipticity also has information on the 
azimuthal anisotropy (Lin and Schmandt 2014) because 
the ellipticity also depends on the azimuth from one sta-
tion to the other station.

In particular, single-mode surface wave inversion is dif-
ficult to distinguish between the smooth Vs model and 
the layered model because the dispersion curves of sur-
face waves are insensitive to velocity jumps. A joint inver-
sion with the receiver function allows us to improve the 
resolution of the seismic discontinuities (e.g., Bodin et al. 
2012; Gao and Shen 2015b; Zhou et  al. 2020; Akuhara 
et al. 2023; Ai et al. 2023). A joint inversion of multimode 
dispersion with the receiver function for earthquake 
data (e.g., Taira and Yoshizawa 2020) could be feasible 
to improve depth resolution, although not yet applied to 
ANT.

8  Conclusions
The first section introduces theories of SI for ANT. 
Although they are based on different assumptions, the 
resultant CCFs can be related to the Green’s function 
under the equipartition of energy. In a realistic situa-
tion, although the modal energy is not equally distrib-
uted among different mode branches, they work for the 
individual mode branches. Heterogeneities of the noise 
sources break the equipartition of energy even for a sin-
gle-mode branch. We evaluated the apparent anomaly 
caused by the source heterogeneities. The important 
point is that the CCF still satisfies the wave equation even 
for a heterogeneous source distribution, leading to the 
robustness of the ANT results.

We summarize practical data processing on the calcula-
tion of CCFs. For calculating a good quality CCF (satisfy-
ing the theoretical assumptions), it is important to choose 
appropriate data processing depending on the behavior of 
the data and the noise. Because recent phase velocity meas-
urement methods used waveform information for precise 
measurements, amplitude information should be consid-
ered by careful data selection and normalization of CCFs.
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Page 35 of 42Nishida et al. Progress in Earth and Planetary Science            (2024) 11:4  

Since most conventional ANT studies utilized only the 
fundamental modes, it has inherited a great uncertainty 
regarding the depth structure. Recent developments in 
measurement techniques and dense observations ena-
ble us to utilize information on multimode dispersion. 
We show a typical inversion of multimode ANT, which 
consists of the following four steps. The first step is the 
multimode dispersion measurement of surface waves 
to construct local 1-D structures. The second step is to 
measure the phase/group velocity for each path. Mul-
timode interference was problematic in measuring 
multimode dispersion because most studies implicitly 
assumed the dominance of the fundamental mode. The 
dispersion measurements by waveform fitting in a model 
space are feasible for the multimode case. The third step 
is the 2-D phase/group velocity inversions. Ray-theo-
retical inversion was commonly used in most cases, but 
the finite-frequency effect has been considered recently. 
To evaluate the effects of source heterogeneities on the 
sensitivity kernel, we show an analytic kernel with source 
heterogeneities in a simplified case. Helmholtz tomog-
raphy is also feasible for considering finite-frequency 
effects and the source heterogeneities for sufficiently 
dense stations compared to the wavelength because 
CCFs for a heterogeneous source distribution still satisfy 
the wave equation. The fourth step is a local 1-D inver-
sion on each grid to construct a 3-D S-wave tomographic 
model. The multimode inversion improves the depth res-
olution of the S-wave velocity structure. Joint inversions 
with other geophysical observations, such as the H/V 
ratio and receiver functions, could be feasible to improve 
depth resolution further.

Abbreviations
1-D, 2-D, 3-D  One-dimensional, two-dimensional, and therein-dimensional
ANT  Ambient noise surface wave tomography
CCF  Cross-Correlation Function, which is the time-domain 

representation of a cross-spectrum
CMT  Centroid Moment Tensor
FFT  Fast Fourier transform
FJ method  The frequency–Bessel method
FTAN  Frequency–time analysis
Hi-net  A high-sensitivity seismograph network of nearly 800 

stations with an average spacing of 20 km. Seismom-
eters are installed at the bottom of boreholes at a depth 
of 100–3500 m to reduce noise caused by winds, ocean 
waves, and human activity. Observed data is digitized 
at each station and continuously transmitted to NIED. 
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H/V spectral ratio  The ratio between the Fourier amplitude spectra of the 
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IRIS  IRIS (Incorporated Research Institutions for Seismology[1]) 
was a university research consortium dedicated to explor-
ing the interior of the Earth by collecting and distributing 
seismographic data. On January 1, 2023, IRIS merged with 
UNAVCO to form the EarthScope Consortium.

LPO  Lattice-preferred orientation
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MCMC  Markov Chain Monte Carlo
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PREM  Preliminary Reference Earth Model (Dziewonski and 

Anderson 1981)
rj-MCMC  Reversible jump Markov Chain Monte Carlo
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SI  Seismic Interferometry
SPAC  SPatial AutoCorrelation method
USArray  A 15-year program to place a dense network of perma-

nent and portable seismographs across the continental 
USA. Seismographs record local, regional, and distant (tel-
eseismic) earthquakes. https:// doi. org/ 10. 7914/ SN/ TA
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