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Abstract 

The occurrence of earthquakes is now understood as brittle shear fracture releasing the elastic potential energy 
stored in the earth. Since the 1950s, many studies on the energy balance in earthquake faulting have been done, 
but there seems to be some incoherence among them. The essential reason is because various changes in concep-
tual framework happened during the last six decades, specifically the introduction of the new paradigm of plate 
tectonics in the 1960s, the concept of moment tensor as source representation in the 1970s, and the fault constitutive 
law governing rupture growth in the 1990s. Therefore, it will be worthwhile to reconsider the energetics of earth-
quake faulting from a current perspective. For this purpose, first of all, we summarize the basic concepts of elastic 
potential energy and moment tensor and review the general representation of earthquake sources and the origin 
of background crustal stress to confirm that the effect of earth’s self-gravitation is negligible in the energetics of shear 
faulting. Next, as a starting point for discussion, we directly derive a basic equation of mechanical energy balance 
in dynamic shear faulting from the equation of motion for an elastic body subjected to tectonic-origin deviatoric 
stress. Then, we review the widely accepted formula for indirectly evaluating radiated seismic energy from a simpli-
fied energy balance equation and compare with the direct evaluation based on the analytical solution of displace-
ment fields for a point dislocation source in order to call attention to inconsistency between them. The inconsistency 
comes from the omission of the effects of rupture growth rate in the simplified energy balance equation. So, finally, 
we review the energy balance at the tips of a propagating shear crack, which naturally leads to the introduction 
of the slip-weakening fault constitutive law as a fundamental equation governing earthquake rupture. Then, we dis-
cuss the whole process of earthquake rupture, consisting of initiation, acceleration, steady propagation, deceleration, 
and termination from the viewpoint of energy balance.
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1 Introduction
The occurrence of earthquakes is now understood as 
brittle shear fracture at a fault, which releases a part of 
the elastic potential energy (elastic strain energy) stored 
in the earth. Since the 1950s, many studies on the energy 
balance in earthquake faulting have been done, but there 
seems to be some incoherence among them. The essential 
reason is because various changes in conceptual frame-
work happened during the last six decades, for example 
the introduction of the new paradigm of plate tectonics 
in the 1960s, the concept of moment tensor as source 
representation in the 1970s, and the fault constitutive 
law governing shear rupture growth in the 1990s. There-
fore, it will be worthwhile to reconsider the energetics in 
earthquake faulting from a current perspective.

At the end of the 1950s, Steketee (1958) introduced the 
elasticity theory of dislocation into geophysics and con-
sidered the static change in elastic strain energy by the 
formation of dislocation (tangential displacement discon-
tinuity = fault slip) in a pre-stressed elastic body bounded 
by a traction-free surface. He concluded that the total 
elastic strain energy is always increased by the formation 
of dislocation irrespective of the initial stress state, which 
is called the Steketee’s paradox. At the end of the 1960s 
(after the introduction of the new paradigm of plate tec-
tonics), Savage (1969) gave a geophysical interpretation 
of the interaction energy between two stress systems 
(Eshelby 1956) and demonstrated that the formation 
of dislocation always decreases the total elastic strain 
energy if it occurs so as to produce a stress drop. How-
ever, such an argument seems to be out of focus, because 
the Steketee’s paradox results from a misinterpretation of 
his correct formula, the first line of Eq. (6.10) in Steketee 
(1958). Actually, with this formula as a starting point, 
we can easily derive essentially the same expression as 
Eq.  (4) in Savage (1969). After all, as Andrews (1978) 
discussed later, the fundamental question arising here is 
how the pre-stressed state can be formed in the isolated 
elastic body, the earth.

By the way, the earth is a self-gravitating body, and so 
we should consider the change in gravitational potential 
energy as well as the change in elastic potential energy. In 
the case of self-gravitating earth models, as pointed out 
by Kostrov (1974) and Dahlen (1977), the release of the 
total (elastic and gravitational) potential energy balances 
with the sum of the work done for shear faulting and the 
radiated seismic energy. In their formulations, the release 
of the gravitational potential energy is represented by the 
volume integral of the scalar product of gravity force and 
coseismic displacement over the entire earth. Savage and 
Walsh (1978) found that this volume integral could be 
transformed into the surface integral of the scalar prod-
uct of gravity-origin shear stress and fault slip over the 

area of earthquake faulting. The point is that the isotropic 
part of gravity-origin stress is independent of the work 
done for earthquake faulting. Anyway, they evaluated the 
crustal deviatoric stress associated with the horizontal 
contraction of a homogeneous, isotropic, elastic earth 
model by self-gravitation, and concluded that the change 
in gravitational potential energy due to dip-slip faulting 
is several orders of magnitude greater than the observed 
seismic energy. If this is true, any energy balance equa-
tion for non-gravitating earth models will lose its mean-
ing. In reality, because of the rheological property of the 
earth’s mantle and the steady seafloor spreading and oce-
anic plate subduction in long time scale, the stress field 
caused by self-gravitation will disappear except for its 
isotropic part. So, the gravity-origin stress does not affect 
the energetics in earthquake faulting substantially. To 
sum up, we may use the well-known formula of the static 
change in elastic strain energy �UE due to earthquake 
faulting for non-gravitating elastic earth models (e.g., Aki 
and Richards 1980; Rivera and Kanamori 2005),

in a good approximation. Here, σ initial
ij  represents the tec-

tonic-origin initial stress, σ final
ij  the final stress (the sum of 

the initial stress and coseismic stress changes), and Dfinal
i  

the final slip on a fault � with its unit normal n−j .
When the faulting is aseismic, we can regard Eq. (1) as 

the energy balance equation because there is no seismic 
wave radiation. However, the occurrence of earthquakes 
is normally accompanied by the radiation of seismic 
waves. Kostrov (1974) and also Rivera and Kanamori 
(2005) evaluated the radiated seismic energy ER in an 
ingenious but a bit troublesome way to avoid the problem 
of gravitational potential energy change as

where tinitial and tfinal represent the rupture initiation and 
termination times, respectively. It should be noted here 
that we rewrote the Kostrov’s original expression (2.26) 
by using the formula of integration by parts. The second 
term γeffS on the right-hand side of the above equation 
represents the total fracture surface energy. Historically, 
the fracture surface energy γeff was introduced to han-
dle the effects of artificial stress singularity at crack tips 
in the classical theory of rupture propagation based on 
the Griffith-type fracture criterion. In reality, the leading 
edge of crack is not a singular point but a finite process 

(1)�UE = − 1
2

�

(σ initial
ij + σ final

ij )n−j D
final
i dS,

(2)
ER = 1

2

∫

�

(σ initial
ij + σ final

ij )n−j D
final
i dS

− γeffS −
∫ tfinal

tinitial

dt

∫

�(t)
σijn

−
j ḊidS,
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zone, where the shear strength (stress) decreases from a 
peak value to a residual value with the increase of fault 
slip. Then, as discussed later in detail, we can incorporate 
the second term of fracture surface energy into the third 
term of frictionally dissipated energy on the fault.

Anyway, with Eq.  (2) as a starting point, Rivera and 
Kanamori (2005) and Kanamori and Rivera (2006) 
derived a simplified expression,

where τ is the average shear stress component paral-
lel to the direction of slip D on the fault � with its area 
S . The meaning of Eq.  (3) is obvious; the excess of the 
released elastic strain energy over the work done for 
shear faulting gives the radiated seismic energy. Track-
ing back the history, this type of energy balance equa-
tion has been widely used for the evaluation of radiated 
seismic energy since Kanamori (1977), but something is 
wrong. Rudnicki and Freund (1981) have directly evalu-
ated the seismic energy radiated from a point disloca-
tion source as

Here, M̈0 represents the second-order time derivative 
of the seismic moment defined by M0 = µDS , and ρ , µ , 
VP , and VS are the density, rigidity, P-wave velocity, and 
S-wave velocity of the elastic medium, respectively. This 
result clearly shows the dependence of the radiated seis-
mic energy on the rapture growth rate, but the simplified 
Eq. (3) appears to contain no information about rupture 
growth rates.

Incidentally, Kostrov (1974), Rudnicki and Freund 
(1981), and Rivera and Kanamori (2005) have made the 
attempt to strictly evaluate the second and third terms of 
Eq. (2), but their attempts were not completed because of 
the singularity of stress and particle velocity at the edge 
of a rupture zone. To resolve this problem, as discussed 
later in detail, we need to consider the physical process of 
rupture growth governed by a slip-weakening fault con-
stitutive law.

2  Basic concepts
First of all, we briefly summarize the basic concepts 
of elastic potential energy (elastic strain energy) and 
moment tensor. Then, we discuss the representation of 
earthquake sources and the origin of background stress 
fields. By the way, throughout this article, Einstein sum-
mation convention is used to make mathematical expres-
sion concise.

(3)

ER

/

S = 1
2 (τinitial + τfinal)Dfinal −

∫ Dfinal

0
τ (D)dD,

(4)ER =
1

30πρV 5
P

[

2+ 3(VP

/

VS)
5
]

∫ tfinal

tinitial

M̈2
0(t)dt.

2.1  Decomposition of elastic potential energy
In a linearized theory, we can write the potential energy 
density UE of elastic forces in a quadratic form of the 
elastic components εeij of strain tensor εij ; that is,

Here, the fourth-order tensor Cijkl denotes the elas-
tic stiffness, which has the basic properties of 
Cijkl = Cjikl = Cijlk . Then, by definition, the stress tensor 
components σij are given by the partial derivative of UE 
with respect to εeij as

under the condition of Cijkl = Cklij . Using this expression, 
we can rewrite Eq. (5) as

When the elastic material is isotropic, as demon-
strated by Walpole (1984), the constitutive Eq.  (6) can 
be decomposed into two independent parts as.

where τij and seij denote the deviatoric stress and strain 
tensors defined by

This means that the elastic deformation of isotropic 
material can be decomposed into two different types; that 
is, volumetric deformation and shearing deformation. As 
demonstrated by Matsu’ura and Terakawa (2021), substi-
tution of Eq. (9) into Eq. (7) yields

with

and

Here, I1(εeij) and I1(σij) denote the first invariant of the 
strain tensor εeij and the stress tensor σij , respectively, 
and J2(seij) and J2(τij) denote the second invariant of the 
deviatoric strain tensor seij and the deviatoric stress ten-
sor τij , respectively. From Eq.  (10), we can see that the 
elastic potential energy density of isotropic material can 
be decomposed into two independent parts; that is, the 
volumetric part and the shearing part.

(5)UE = 1
2Cijklε

e
ijε

e
kl .

(6)σij = Cijklε
e
kl

(7)UE = 1
2σijε

e
ij .

(8)σkk = 3κεekk and τij = 2µseij

(9)τij = σij − 1
3σkkδij and seij = εeij − 1

3ε
e
kkδij .

(10)UE = 1
2σvε

e
v + 1

2σsε
e
s

(11)εev = I1(ε
e
ij), ε

e
s = 2

√

J2(s
e
ij)

(12)σv = 1
3 I1(σij), σs =

√

J2(τij).
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Using the constitutive Eq.  (8) of isotropic material, 
we can represent the elastic potential energy density in 
Eq. (10) with only stress tensor components as

where � · �2 denotes the Frobenius norm of a second-
order tensor. One of the advantages of this representation 
is that we need not define the reference state to measure 
the strain εij . Another advantage is that the change in 
elastic potential energy density is also written as the sum 
of its volumetric part �U

v
E and shearing part  (Matsu’ura 

et  al. 2019); that is, denoting the initial stress state and 
the static stress change from it by σ 0

ij  ( =
1
3σ

0
kkδij + τ 0ij ) and 

�σij ( = 1
3�σkkδij +�τij ), respectively,

with

The important thing is that there is no interaction 
between the volumetric and shearing parts, and each 
of them consists of the interaction term of the stress 
changes and the initial stress field and the self-interaction 
term of the stress changes.

The elastic property of the actual earth is not neces-
sarily isotropic even in a macroscopic scale. So, the log-
ical consequences derived in this section may not be 
applicable to the actual problems in the strict sense. 
However, as demonstrated by Moakher (2008), we can 
define the closest (in the sense of Euclidean distance) 
isotropic fourth-order tensor C IE

ijkl to a given anisotropic 
stiffness tensor CA

ijkl . The structure of C IE
ijkl is the same as 

that in the isotropic case. The effects of anisotropy are 
reflected only in the values of two material constants, κ 
and µ . So, the logical consequences derived in this sec-
tion are still applicable to the actual earth.

2.2  Physical meaning of moment tensor
Most theoretical problems in seismology are treated 
in the framework of linear elasticity for mathematical 
simplicity. The actual earth is not a linear elastic body. 
In the mid-1970s, to bridge the gap between the actual 

(13)
UE(σij) = (18κ)−1I21 (σij)+ (2µ)−1J2(τij)

= (18κ)−1σ 2
kk + (4µ)−1

∥

∥τij
∥

∥

2

2
,

(14)
�UE ≡ UE(σ

0
ij +�σij)− UE(σ

0
ij ) = �U

v
E +�U

s
E

(15)
�U

v
E = (9κ)−1σ 0

kk
�σkk + (18κ)−1�σ 2

kk

= (9κ)−1
(

σ 0
kk

+ 1
2
�σkk

)

�σkk ,

(16)
�U

s
E = (2µ)−1τ 0ij�τij + (4µ)−1

∥

∥�τij
∥

∥

2

2

= (2µ)−1
(

τ 0ij + 1

2
�τij

)

�τij .

earth and the linear elastic model, Backus and Mulcahy 
(1976) introduced the concept of moment tensor, which 
includes the seismic moment tensor (Kostrov 1974) as 
a special case. The following is a physical interpretation 
of the Backus–Mulcahy moment tensor based on the 
theoretical consideration about the equation of motion 
in continuum mechanics (Matsu’ura et al. 2019).

We consider a solid body occupying the region V  
bounded by a traction-free surface Sex with its outer 
unit normal vector n = (n1, n2, n3) in a Cartesian coor-
dinate system (x1, x2, x3) as shown in Fig.  1. In a line-
arized theory, irrespective of the stress–strain relation 
of material, we can write the equation of motion of the 
solid body for t ≥ 0 as

Here, üi represents the second-order time derivative of 
the i-component of a displacement vector ui , σij the ij
-component of a stress tensor, and fi the i-component of 
a body force vector without time variation. The symbol 
∂j denotes partial differentiation with respect to the spa-
tial coordinate xj . Let’s suppose that the solid body was 
in an equilibrium state, 0 = ∂jσ

0
ij (x)+ fi(x) , for t < 0 . 

Then, in order to solve the equation of motion, we need 
to specify the relationship between the stress change �σij 
( = σij − σ 0

ij  ) and the displacement ui through the strain 
change �εij defined geometrically as

The occurrence of inelastic deformation, such as brittle 
fracture and/or plastic flow, at the defects distributed 
within the earth brings about elastic deformation in the 
region surrounding the defects. Thus, the strain �εij 
defined by Eq. (18) is not necessarily elastic anytime and 

(17)ρüi(x, t) = ∂jσij(x, t)+ fi(x).

(18)�εij = 1
2 (∂jui + ∂iuj).

Fig. 1 Geometry and notation of an elastic body V  bounded 
by a traction-free external surface Sex and an internal closed surface 
Sin . The unit normal vectors n are taken to be outward to the surfaces. 
n
+ and n− indicate the unit normal vectors to the front side �+ 

and back side �− of a fault � , respectively
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anywhere; that is, denoting the inelastic part of the strain 
�εij by �εaij,

Then, from Eqs. (6) and (19), the stress–strain relation in 
the actual earth can be written as

We now consider the occurrence of some inelastic 
event at t = 0 within the solid body in static equilib-
rium. Then, denoting the changes in stress and strain 
due to the inelastic events by �σij(x, t) and �εij(x, t) , 
respectively, we may rewrite the equation of motion 
(17) as

and the stress–strain relation (20) as

with

Here, �σm
ij  is a model stress, calculated from the dis-

placements ui through the geometrical strain under 
the assumption of linear elasticity, and mij is called the 
moment tensor density, which is equivalent to the stress 
glut tensor, Ŵij ≡ �σm

ij −�σij , defined by Backus and 
Mulcahy (1976). Substituting Eq.  (22) in Eq.  (21), we 
obtain the equation of motion to be solved in the frame-
work of linear elasticity as

or

with f mi (x, t) = −∂jmij(x, t) , which is called the body 
force equivalent (Burridge and Knopoff 1964). The ine-
lastic strain referred to here is almost the same as the 
eigenstrain in Mura (1982), but slightly different from 
the stress-free transformation strain of an inclusion in 
Eshelby (1957). The Mura’s eigenstrain is a virtual one, 
and so it can coexist with elastic strain, while the Eshel-
by’s inclusion and the elastic medium are mutually exclu-
sive because both of them are substantial.

It should be noted here that the inelastic strain 
�εakl(x) itself is physical substance, but the moment 

(19)�εij = �εeij +�εaij .

(20)�σij = Cijkl(�εkl −�εakl).

(21)ρüi(x, t) = ∂j�σij(x, t),

(22)�σij(x, t) = �σm
ij (x, t)−mij(x, t)

(23)�σm
ij (x, t) = Cijkl�εkl(x, t),

(24)mij(x, t) = Cijkl�εakl(x, t).

(25)ρüi(x, t) = ∂j�σm
ij (x, t)− ∂jmij(x, t)

(26)ρüi(x, t) = ∂j�σm
ij (x, t)+ f mi (x, t)

tensor density mij(x) defined by Eq. (24) is not physical 
substance. As can be seen from Eq.  (25), the moment 
tensor density appears as a virtual source term in the 
theory of linear elasticity. If the distribution of inelastic 
strain changes is restricted within a region Vs (Fig.  1), 
by definition, the moment tensor Mij is given by the 
volume integral of Cijkl�εakl(x) over Vs as

2.3  Representation of earthquake sources
In the mid-1960s, it was convinced that the source of 
earthquakes is the development of tangential displace-
ment discontinuity across a fault (Burridge and Knop-
off 1964). We now consider displacement discontinuity 
across an interface �(η) in an isotropic linear elastic body 
V  with the bulk modulus κ and the rigidity µ . In this case, 
the moment tensor Mij defined by Eq. (27) can be written 
as

In general, displacement discontinuity at the interface 
�(η) is represented as

where �ui(η) ≡ u+i (η)− u−i (η) is the i-component of 
displacement jump across �(η) , and H(x − η) denotes 
the Heaviside step function. Then, denoting the Dirac 
delta function by δ(x − η) and a unit normal vector 
pointing from the backside of �(η) to the front side by 
n
−(η) (Fig. 1), we can represent the distribution of inelas-

tic strain �εaij(x) localized at �(η) as

The isotropic part of the above inelastic strain is

and so the deviatoric part can be written as

Substitution of the expressions (31) and (32) into 
Eq.  (28) yields the moment-tensor representation of 
displacement discontinuity across the fault (Matsu’ura 
et al. 2019):

(27)Mij ≡
∫

Vs

mij(x)dV =
∫

Vs

Cijkl�εakl(x)dV .

(28)Mij =
∫

Vs

[

2µ�saij(x)+ κ�εakk(x)δij

]

dV .

(29)ui(x) = �ui(η)H(x − η),

(30)
�εaij(x) = 1

2 [�ui(η)n
−
j (η)+�uj(η)n

−
i (η)]δ(x − η).

(31)�εakk(x)δij = �uk(η)n
−
k (η)δijδ(x − η),

(32)
�saij(x) =

{

1

2
[�ui(η)n

−
j (η)+�uj(η)n

−
i (η)]

− 1
3
�uk(η)n

−
k (η)δij

}

δ(x − η).
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with

Here, m�
ij (η) represents the area density of moment ten-

sor on �(η).
In the case of shear faulting, denoting the tan-

gential component of displacement discontinuity 
�ui − (�ukn

−
k )n

−
i  by Di or Dνi (Fig.  2), we can reduce 

Eq. (33) to

which is nothing but the Kostrov’s seismic moment ten-
sor. Since the slip direction vector ν is perpendicular to 
the normal vector n− ( νkn−k = 0 ), the trace Mkk of the 
seismic moment tensor is always zero. On the other 
hand, in the case of crack opening, denoting the normal 
component of displacement discontinuity (�ukn

−
k )n

−
i  by 

Cn−i  , we can reduce Eq. (33) to

which has a nonzero isotropic part 13Mkk = κ
∫

�
C(η)dS . 

This difference between shear faulting and crack opening 
is crucial when we consider the effects of gravity force on 
the energy balance of the whole earth.

(33)Mij =
∫

�

m�
ij (η)dS

(34)
m�

ij (η) =µ[�ui(η)n
−
j (η)+�uj(η)n

−
i (η)]

+ (κ − 2
3
µ)�uk(η)n

−
k (η)δij .

(35)Mij = µ

∫

�

D(η)[νi(η)n−j (η)+ νj(η)n
−
i (η)]dS,

(36)

Mij =µ

∫

�

C(η)[n−
i
(η)n−

j
(η)+ n

−
j
(η)n−

i
(η)]dS

+ (κ − 2

3
µ)

∫

�

C(η)δijdS,

2.4  Origin of background stress fields
As demonstrated in Sect. 2.1, the elastic potential energy of 
an isotropic body and also its change can be decomposed 
into two independent parts, namely the volumetric part 
and the shearing part. This implies that we can treat the 
isotropic part and deviatoric part of stress fields separately. 
The origin of the isotropic part of the earth’s stress (litho-
static pressure) is of course self-gravitation. The question 
is the origin of the deviatoric part (tectonic stress). Our 
understanding is that the origin of tectonic stress is not the 
gravitational contraction of the elastic earth but the stable 
process of converting thermal energy into kinetic energy in 
the earth’s interior (mantle convection), which causes the 
motion of tectonic plates. In this section, with the idea of 
the interaction energy between two stress systems (Eshelby 
1956), we conceptually explain the origin of background 
tectonic stress. The derivation of interaction energy shown 
below is based on Sect. 13 of Mura (1982).

We consider a non-gravitating elastic body V  bounded 
by a traction-free surface Sex (Fig. 1). In the initial state, the 
elastic body is assumed to be unstrained, and so its elastic 
potential energy (elastic strain energy) is also zero. Let us 
suppose some process with inelastic strain distribution εaij 
occurred within a region Vs ( ⊂ V  ). Then, the elastic poten-
tial energy UE ≡

∫

V UEdV  produced by this process is 
evaluated as

because σijεij = 1
2σij(∂jui + ∂iuj) = σij∂jui and

Note that σijnj = 0 on Sex (the boundary condition 
of traction free) and ∂jσij = 0 in V  (the equation of 
equilibrium).

When the source region Vs consists of two independent 
parts, Vs0 and Vs1 (Fig. 3), applying the formula (37), we can 
write the produced elastic potential energy as

(37)

UE = 1

2

∫

V

σijε
e
ijdV = 1

2

∫

V

σij(εij − εaij)dV

= 1
2

∫

V

σij∂juidV − 1

2

∫

Vs

σijε
a
ijdV

= − 1

2

∫

Vs

σijε
a
ijdV ,

(38)

∫

V
σij∂juidV =

∫

Sex

σijuinjdV −
∫

V
∂jσijuidV = 0.

(39)

UE = − 1
2

∫

Vs0

(σ 0
ij + σ 1

ij )ε
a0
ij dV − 1

2

∫

Vs1

(σ 0
ij + σ 1

ij )ε
a1
ij dV

= − 1
2

∫

Vs0

σ 0
ij ε

a0
ij dV − 1

2

∫

Vs1

σ 1
ij ε

a1
ij dV −

∫

Vs1

σ 0
ij ε

a1
ij dV ,

Fig. 2 Geometry and notation of the displacement discontinuity 
�u across a fault � . n− is the unit normal vector to the backside �− 
of the fault, and D represents the fault-parallel component of �u
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because

The proof of Eq. (40) is given as follows:

and

Following Andrews (1978), we regard εa0ij  as the ine-
lastic strain distribution produced by the long-term 
stable process of converting thermal energy into kinetic 
energy in the earth’s interior. Then, Eq. (39) can be read 
as the elastic potential energy after the occurrence of 
a sudden faulting with inelastic strain distribution εa1ij  
in the pre-stressed state of σ 0

ij  . Therefore, changing the 
notations of the inelastic strain εa1ij  , the stress change 
σ 1
ij , and the source region Vs1 associated with the sud-

den faulting to �εaij , �σij , and Vs , respectively, we can 
rewrite Eq. (39) as

with

(40)
∫

Vs0

σ 1
ij ε

a0
ij dV =

∫

Vs1

σ 0
ij ε

a1
ij dV .

(41)

∫

Vs0

σ 1
ij ε

a0
ij dV =

∫

V
σ 1
ij (ε

0
ij − εe0ij )dV = −

∫

V
σ 1
ij ε

e0
ij dV ,

(42)

∫

Vs1

σ 0
ij ε

a1
ij dV =

∫

V
σ 0
ij (ε

1
ij − εe1ij )dV = −

∫

V
σ 0
ij ε

e1
ij dV ,

(43)

∫

V
σ 1
ij ε

e0
ij dV =

∫

V
Cijklε

e1
kl ε

e0
ij dV =

∫

V
σ 0
klε

e1
kl dV .

(44)�UE = UE −U0
E = −

∫

Vs

(σ 0
ij + 1

2�σij)�εaijdV

(45)U0
E = − 1

2

∫

Vs0

σ 0
ij ε

a0
ij dV .

Here, �UE represents the change in elastic potential 
energy due to the sudden faulting. In the case of tangen-
tial displacement discontinuity (fault slip) at the interface 
�(η) , as shown in Sect.  2.3, the corresponding inelastic 
strain �εaij can be written as

Substituting this expression in Eq. (44), we obtain

with σ initial
ij = σ 0

ij  and σ final
ij = σ 0

ij +�σij , which is nothing 
but Eq. (1).

3  Energetics in earthquake faulting
As a starting point of discussion, we directly derive 
a basic equation of mechanical energy balance in 
dynamic shear faulting from the equation of motion 
for an elastic body subjected to gravity-origin isotropic 
stress and tectonic-origin deviatoric stress. Then, we 
review the indirect evaluation of radiated seismic 
energy based on a simplified energy balance equa-
tion and the direct evaluation based on the analytical 
solution of displacement fields for a point dislocation 
source, and call attention to inconsistency between 
them. Finally, to resolve this inconsistency, we consider 
the physical process of rupture growth governed by a 
slip-weakening fault constitutive law from the view-
point of energy balance.

3.1  Mechanical energy balance in earthquake faulting
Based on the discussion in Sect. 2.4, we consider an elas-
tic body subjected to gravity-origin isotropic stress and 
tectonic-origin deviatoric stress. So, the strain εij appear-
ing in this section is elastic. The elastic body occupies the 
region V  bounded by a traction-free external surface Sex 
and an internal surface Sin enclosing a fault � as shown in 
Fig. 1, where the direction of unit normal vectors n to the 
external and internal surfaces is always taken outward. 
As for the fault � , in accordance with the convention, we 
take a unit normal vector n− pointing from its backside 
�− to front side �+ . Although the equation of motion 
in linear elasticity has been already given in Eq. (17), we 
rewrite it for convenience of the later discussion as

(46)
�εaij(x) = 1

2 [Di(η)n
−
j (η)+ Dj(η)n

−
j (η)]δ(x − η).

(47)
�UE = −

∫

�

(σ 0
ij + 1

2
�σij)

1

2
(Din

−
j
+ Djn

−
j
)dS

= − 1
2

∫

�

(σ initial
ij + σ final

ij )n−
j
DidS

(48)ρ∂t u̇i(x, t) = ∂jσij(x, t)+ f
g
i (x) for t ≥ 0,

Fig. 3 Two independent source regions Vs0 and Vs1 in an elastic body V  
bounded by a traction-free external surface Sex . σij represents a common 
stress field
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where u̇i is the i-component of a velocity vector, f gi  is the 
i-component of a gravity force vector, and the symbol ∂t 
represents partial differentiation with respect to tine t . It 
is supposed here that the elastic body was in an equilib-
rium state for t < 0 under the background tectonic stress 
σ 0
ij (x) defined in Sect. 2.4 and the gravity force f gi (x) . So, 

the stress appearing in Eq. (48) should be read as the sum 
of the background tectonic stress and the stress change 
measured from it; that is, σij(x, t) = σ 0

ij (x)+�σij(x, t).
Now, following Sect. 7.8 of Leigh (1968), we multiply 

both sides of Eq. (48) by u̇i:

Here, the first term on the right-hand side can be rewrit-
ten as

with ε̇ij = 1
2 (∂j u̇i + ∂iu̇j) . Then, substituting the above 

expression into Eq.  (49) and integrating each term over 
the whole elastic region V  , we obtain the following 
energy balance equation:

Furthermore, applying the Gauss divergence theorem to 
the first term on the right-hand side and replacing the 
stress tensor σij in the second term with Cijklεkl , we can 
rewrite Eq. (51) as

Here, we dropped the term 
∫

Sex
u̇iσijnjdS because the 

traction on the external surface Sex is always zero. Note 
that the left-hand side of Eq. (52) represents the increase 
rate of kinetic energy, the first term on the right-hand 
side the rate of work done by the traction acting on the 
internal surface Sin , and the second and third terms the 
rates of change in elastic and gravitational potential 
energy, respectively.

In the case of shear faulting, shrinking the internal 
surface Sin to a fault � with its front side �+ and back 
side �− and denoting the i-component of the tangen-
tial velocity jump �u̇i ≡ u̇+i − u̇−i  across � by Ḋi , we can 
rewrite the first term on the right-hand side of Eq. (52) as

(49)ρu̇i∂t u̇i = u̇i∂jσij + u̇if
g
i .

(50)
u̇i∂jσij = ∂j(u̇iσij)− (∂j u̇i)σij = ∂j(u̇iσij)− ε̇ijσij

(51)

∫

V

1
2ρ∂t(u̇iu̇i)dV =

∫

V
∂j(u̇iσij)dV −

∫

V
ε̇ijσijdV +

∫

V
u̇if

g
i dV .

(52)

∫

V

1

2
ρ∂t(u̇iu̇i)dV =

∫

Sin

u̇iσijnjdS

−
∫

V

1
2
Cijkl∂t(εijεkl)dV

+
∫

V
u̇if

g
i dV .

As for the last gravity force term, applying the idea of 
interaction energy in Sect. 2.4, Savage and Walsh (1978) 
have demonstrated that the volume integral over the 
whole elastic region V  could be transformed into the sur-
face integral over the fault � as follows:

where σ g
ij  represents the internal stress field that satisfies 

the equation of equilibrium ∂jσ
g
ij + f

g
i = 0 . Substitution 

of Eqs. (53) and (54) into Eq. (52) yields

When the internal stress field caused by the gravity 
force is isotropic ( σ g

ij =
1
3σ

g
kkδij ), the last term on the 

right-hand side of Eq. (55) vanishes:

because Din
−
i = 0 for shear faulting. Then, discarding the 

last term associated with gravity force, we obtain a basic 
equation of mechanical energy balance in dynamic shear 
faulting as

with the increase rate of kinetic energy

the rate of work done for shear faulting

and the rate of change in elastic potential energy 

We consider a shear faulting that initiated at 
t = tinitial on a fault � and terminated at t = tfinal . 
Hereafter, tinitial and tfinal are abbreviated to ti and tf  , 

(53)

∫

Sin

u̇iσijnjdS =
∫

�++�−
u̇iσijnjdS = −

∫

�

Ḋiσijn
−
j dS.

(54)
∫

V
u̇if

g
i dV = −

∫

V
u̇i∂jσ

g
ijdV =

∫

�

Ḋiσ
g
ij n

−
j dS,

(55)

∂t

∫

V

1

2
ρu̇iu̇idV =−

∫

�

σijn
−
j ḊidS

− ∂t

∫

V

1
2
σijεijdV

+
∫

�

σ
g
ij n

−
j ḊidS.

(56)

∫

�

σ
g
ij n

−
j ḊidS = 1

3

∫

�

σ
g
kkδijn

−
j ḊidS = 1

3

∫

�

σ
g
kkn

−
i ḊidS = 0,

(57)K̇ (t) = −Ẇ (t)− U̇E(t)

(58)K̇ (t) = ∂t

∫

V

1
2ρu̇i(x, t)u̇i(x, t)dV ,

(59)Ẇ (t) =
∫

�

σij(η, t)n
−
j (η)Ḋi(η, t)dS,

(60)U̇E(t) = ∂t

∫

V

1
2σij(x, t)εij(x, t)dV .
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respectively, unless misleading. Let us suppose that the 
disturbances caused by the shear faulting died down 
by t = tstationary ( ts in abbreviation) except the seismic 
waves traveling outward from the source. Then, inte-
grating each term of Eq.  (57) with respect to t from ti 
to ts ( >> tf  ), we obtain

with

and, from Eqs. (44) and (47),

where � represents the final rupture area �(tf) . In this 
context, we can read K (ts) as the radiated seismic energy 
ER , and so Eq. (61) is written as

This expression is essentially the same as Eq.  (2), if we 
can incorporate the fracture surface energy term γeffS in 
Eq. (2) into the last integral term of frictionally dissipated 
energy (Fukuyama 2005).

3.2  Radiated seismic energy
Nowadays, using an inversion technique, we can 
estimate the dynamic process of earthquake faulting 
from seismological and/or geodetic data. A direct 
way to evaluate the radiated seismic energy of an 
earthquake is of course to perform the integration 
in Eq.  (62). Another indirect way is to evaluate the 
right-hand side of Eq. (65), which relates the radiated 
seismic energy and the history of fault slip during the 
earthquake.

3.2.1  Indirect evaluation of radiated seismic energy
Rivera and Kanamori (2005) simplified the energy bal-
ance Eq. (2) by exchanging the order of integration of the 
last frictionally dissipated energy term as

(61)K (ts) = −W (ts)−�UE(ts)

(62)

K (ts) ≡
∫ ts

ti

K̇ (t)dt = 1
2ρ

∫

V (ts)
u̇i(x, ts)u̇i(x, ts)dV ,

(63)

W (ts) ≡
∫ ts

ti

Ẇ (t)dt =
∫ tf

ti

dt

∫

�(t)
σij(η, t)n

−
j (η)Ḋi(η, t)dS,

(64)

�UE(ts) ≡
∫ ts

ti

U̇E(t)dt

= − 1

2

∫

�

[σij(η, ti)+ σij(η, tf)]n−j (η)Di(η, tf)dS,

(65)

ER = 1
2

∫

�

(σ initial
ij + σ final

ij )n−j D
final
i dS −

∫ tfinal

tinitial

dt

∫

�(t)
σijn

−
j ḊidS.

Here, D denotes the vector magnitude of fault-slip, and 
τ = σijn

−
j νi represents the scalar projection of the trac-

tion vector Ti = σijn
−
j  in the slip direction νi = Di

/

D 
(Fig. 4). In this expression, the shear stress τ is assumed 
to be a single-valued function of the fault slip D ; that 
is τ = τ (D) . Then, we can replace the integration 
∫ tf
ti
τ (t)∂tD(t)dt with the integration 

∫ Df
0 τ (D)dD . In 

the natural process of shear faulting, the shear stress τ 
defined above is always positive.

Kanamori and Rivera (2006) further simplified the 
energy balance equation by neglecting the fracture sur-
face energy term γeffS and taking the spatial average of 
the shear stress τ (η) and the fault slip D(η) over the fault 
� with its final dimension S as

which is nothing but Eq.  (3). This energy balance equa-
tion is often interpreted by using the τ−D diagram in 
Fig. 5 as follows: (1) the trapezoidal area under the thick 
broken line, which corresponds to the first term on the 
right-hand side, represents the elastic potential energy 
released by shear faulting, (2) the shaded area under the 
thick solid curve (rupture growth path), which corre-
sponds to the second integral term, represents the work 
done for shear faulting, (3) the most part of the released 
elastic potential energy is spent for the shear faulting, and 
4) the remaining part (the difference between the areas 

(66)
ER = 1

2

∫

�

[τi(η)+ τf(η)]Df(η)dS − γeffS

−
∫

�

dS

∫

Df(η)

0
τ (D|η )dD.

(67)

ER

/

S = 1
2 (τinitial + τfinal)Dfinal −

∫ Dfinal

0
τ (D)dD,

Fig. 4 Geometry and notation of a traction vector T on a fault � . n− 
is the unit normal vector to the backside �− of the fault, and ν represents 
the unit slip-direction vector
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marked with + and -) gives the seismic wave energy ER 
radiated from the source. Such interpretation seems to 
be plausible; the most primitive one is found in Kanamori 
(1977), which gives a theoretical basis of the moment 
magnitude scale Mw of seismic events. But something is 
wrong. For instance, when the growth of shear rupture is 
quasi-static, the left-hand side of Eq.  (67) must become 
zero because of no seismic wave radiation, but the right-
hand side will not change anything because it appears to 
be independent of rupture growth rates.

3.2.2  Seismic waves and permanent deformation
The displacement field due to a moment tensor Mpq 
located at the origin ( x = 0 ) of a Cartesian coordinate 
system is generally expressed as

Here, Gip(x, t; 0, t ′) is the solution of the equation of 
motion to a unit impulsive force in the xp-direction, 
δipδ(x)δ(t − t ′) , applied to a point x = 0 at t = t ′ , and 
∂qGip(x, t; 0, t ′) represents the partial derivative of 
Gip(x, t; 0, t ′) with respect to the spatial coordinate xq . 
The explicit form of Gip for a homogeneous, isotropic, 
unbounded elastic medium, which is called Stokes’ solu-
tion, is given in Sect. 4.2 of Aki and Richards (1980) as

(68)ui(x, t) =
∫ t

0
∂qGip(x, t − t ′; 0, 0)Mpq(t

′)dt ′.

(69)

4πρGip(x, t; 0, 0) = (3γiγp − δip)
1

r3

∫ r/VS

r/VP

t ′δ(t − t ′)dt ′

+ γiγp
1

V 2
P
r
δ

(

t −
r

VP

)

− (γiγp − δip)
1

V 2
S
r
δ

(

t −
r

VS

)

,

where r =
√

x21 + x22 + x23 and γi = xi
/

r ( = ∂ir ) denote 
the distance and direction cosines from the source point 
0 to the receiver point x.

In the case of shear faulting, substituting  
the corresponding moment-tensor representation, 
Mpq = M0(t)(νpn

−
q + νqn

−
p ) , into Eq. (68), we obtain the 

explicit expression of displacement field due to a seismic 
moment tensor as

where a = γ · n− , b = γ · ν , and M0(t) is a cumulative 
seismic moment function.

From the difference in geometrical attenuation, the first 
term on the right-hand side of Eq.  (70) is traditionally 
called the near-field term, the second and third terms the 
intermediate-field terms, and the fourth and fifth terms 
the far-field terms. Specifically, the first three terms decay 
in amplitude with the square of the source–receiver dis-
tance r , while the last two terms decay with the distance 
r . Since the cumulative seismic moment function M0(t) 
monotonically increases with time t from 0 at t = ti up 
to M0 at t = tf , its time derivative Ṁ0(t − r/c) vanishes 
for t − r/c > tf . So, from Eq.  (70), we can see that the 
far-field terms become zero everywhere behind the wave 
packets traveling outward at the phase velocity c ( VP for 
P-wave and VS for S-wave). On the other hand, the near- 
and intermediate-field terms remain as permanent defor-
mation after disturbance died down ( t − r/c > tf ), which 
causes the change in elastic potential energy.

During the rupture growth ( ti ≤ t ≤ tf ), the far-field 
terms and the near- and intermediate-field terms interact 
with each other, but such interaction will die down soon. 
So, we may define the cumulative kinetic energy K (t) , work 
done for shear faulting W (t) , and elastic potential energy 
change �UE(t) for a sufficiently large time t ( ≥ ts ) as in 
Eqs. (62), (63), and (64). As discussed in Sect. 3.3, the last 

(70)

ui(x, t) =
6(5abγi − aνi − bn

−
i
)

4πρr4

∫

r/VS

r/VP

t
′
M0(t − t

′)dt ′

+
2(6abγi − aνi − bn

−
i
)

4πρV 2
P
r2

M0

(

t −
r

VP

)

−
3(4abγi − aνi − bn

−
i
)

4πρV 2
S
r2

M0

(

t −
r

VS

)

+
2abγi

4πρV 3
P
r
Ṁ0

(

t −
r

VP

)

−
(2abγi − aνi − bn

−
i
)

4πρV 3
S
r

Ṁ0

(

t −
r

VS

)

,

Fig. 5 A schematic diagram for interpreting the energy balance 
in earthquake faulting. The thick solid curve τ = τ(D) represents 
a rupture growth path; τi , τp , and τf are the initial, peak, and final values 
of the shear stress τ , respectively. Further explanation is given in the text
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two cumulative functions, W (t) and �UE(t) , are mutually 
dependent because the growth of fault rupture is controlled 
by the influx of released potential energy.

3.2.3  Direct evaluation of radiated seismic energy
Now, we directly evaluate the total energy radiated as seis-
mic waves from the explicit expressions of far-field terms 
in Eq. (70). For this purpose, we take a new Cartesian coor-
dinate system fixed to a seismic source as shown in Fig. 6, 
where the x1-axis is taken in the direction of fault slip (then 
aν = sin θ cosφ ) and the x3-axis in the direction of fault 
normal (then an = cos θ ). From Eq.  (70), we can see that 
the particle motion of the far-field P-wave (the fourth term) 
is perpendicular to the wave front, while that of the far-field 
S-wave (the fifth term) is tangential. Furthermore, the tan-
gential particle motion of S-wave can be decomposed into 
two mutually orthogonal components. Following Sect. 4.3 
of Aki and Richards (1980), we represent the mutually 
orthogonal particle velocities as

(71a)

u̇
P(x, t) =

1

4πρV 3
P r

sin 2θ cosφM̈0(t −
r

VP
) er ,

where er , eθ and eφ are the mutually orthogonal unit vec-
tors that define a local coordinate system at a receiver 
point (Fig. 6).

The spherical fronts of the P- and S-waves expand out-
ward with time at the phase velocity c (Fig. 6). So, for a 
sufficiently large time ts ( >> tf ), the cumulative kinetic 
energy K (ts) is given by the volume integral of the kinetic 
energy density 12ρ|u̇|

2 over the sphere with the radius 
r = c(ts − ti):

with

Substituting the explicit expressions of the mutually 
orthogonal particle velocities given by Eq.  (71) into 
Eq.  (72) and reducing the interval of integral for r to 
c(ts − tf) ≤ r ≤ c(ts − ti) , we can evaluate the contribu-
tion to the total kinetic energy of each particle motion as 
follows:

(71b)

u̇
Sθ (x, t) =

1

4πρV 3
S r

cos 2θ cosφM̈0(t −
r

VS
) eθ ,

(71c)

u̇
Sφ(x, t) = −

1

4πρV 3
S r

cos θ sin φM̈0(t −
r

VS
) eφ ,

(72)

K (ts) =
∫ c(ts−ti)

0
dr

∫ 2π

0
dφ

∫ π

0

1
2ρ|u̇|

2r2 sin θdθ

(73)|u̇|2 =
∣

∣

∣
u̇
P
∣

∣

∣

2
+

∣

∣

∣
u̇
Sθ
∣

∣

∣

2
+

∣

∣

∣
u̇
Sφ
∣

∣

∣

2
.

(74a)
K

P(ts) =
1

30πρV 6
P

∫

VP(ts−ti)

VP(ts−tf)

M̈
2
0

(

t −
r

VP

)

dr

=
1

30πρV 5
P

∫ �T

0

M̈
2
0(t

′)dt ′,

(74b)

K
Sθ (ts) =

7

15× 16πρV 6
S

∫

VS(ts−ti)

VS(ts−tf)

M̈
2
0

(

t −
r

VS

)

dr

=
7

15× 16πρV 5
P

∫ �T

0

M̈
2
0(t

′)dt ′,

(74c)

K
Sφ(ts) =

1

3× 16πρV 6
S

∫

VS(ts−ti)

VS(ts−tf)

M̈
2
0

(

t −
r

VS

)

dr

=
1

3× 16πρV 5
P

∫ �T

0

M̈
2
0(t

′)dt ′,

Fig. 6 A Cartesian coordinate system fixed to a seismic source. The 
x1-axis is taken in the direction of fault slip ν and the x3-axis is taken 
in the direction of fault normal n− . The mutually orthogonal unit 
vectors, er , eθ and eφ , define the local coordinate system at a receiver 
point (r , θ ,φ) . The radial distance range of the wave packet traveling 
outward at a phase velocity c is indicated by c�T
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where �T = tf − ti denotes the rupture duration. Finally, 
summing up the above expressions, we obtain

Rudnicki and Freund (1981) has obtained the equivalent 
result in a slightly different way, though their radiated 
energy in Eq. (4) is just twice as large as the present eval-
uation, because they adopted the definition of radiated 
energy by Haskell (1964), which is essentially the same as 
K (ts) in Eq. (72) except for the factor 1

/

2 . The important 
thing is that the origin of the cumulative kinetic energy, 
which can be read as the radiated seismic energy, is not 
the moment rate Ṁ0(t) but the moment rate change 
M̈0(t).

The seismic moment function M0(t) is defined as

As pointed out by Ampuero et  al. (2006), the fault slip 
distribution of actual earthquakes is heterogeneous in 
both time and space because of the spatiotemporal het-
erogeneity of stress drop. So, the moment rate function 
Ṁ0(t) of actual earthquakes is not always unimodal. 
Nevertheless, in the following, we consider the case 
where the seismic moment monotonically increases 
with time for sake of simplicity. First, to compare the 
direct evaluation of radiated seismic energy in Eq.  (75) 
with the indirect evaluation in Eq. (67), we take the spa-
tial average of the slip function D(η, t) over the fault � 
with its final dimension S , and denote it by D(t) ; that is 
M0(t) = µSD(t) . Then, to say it without worrying about 
being misunderstood, the radiated seismic energy is pro-
portional to the square of the fault slip acceleration D̈(t) . 

(75)

K (ts) =
1

60πρV 5
P

[

2+ 3(VP

/

VS)
5
]

∫ �T

0
M̈2

0(t
′)dt ′.

(76)M0(t) ≡ µ

∫

�(t)
D(η, t)dS.

When the fault area concentrically expands from 0 at 
t = ti to S at t = tf , we may define the average rupture 
velocity as vr =

√
S/2π

/

�T  with �T = tf − ti . Figure 7 
schematically shows the rupture velocity-dependence of 
the fault slip D , slip velocity Ḋ , and slip acceleration D̈ , 
where the time t is normalized by the rupture duration 
�T =

√
S/2π

/

vr . From this diagram, we can see that the 
fault slip acceleration is proportional to the square of the 
average rupture velocity vr . On the contrary, the simpli-
fied Eq.  (67) appears to be independent of the rupture 
velocity.

3.3  Energetics of rupture growth
To correctly evaluate the energy balance Eq.  (2) or (65), 
we need to make clear the physical mechanisms of rup-
ture initiation, acceleration, deceleration, and termina-
tion. Until the 1970s, this problem has been treated with 
the Griffith-type fracture criterion in the framework of 
clack theory. One of the difficulties in the crack theory 
is how to deal with the singularity of stress at crack tips, 
though it does not exist in reality because the strength 
of actual materials is finite. In the 1980s, the stick–slip 
experiments of rock samples revealed the existence of 
a breakdown zone just behind the propagating rupture 
front, where the creation of new fracture surfaces is pro-
ceeding. We can use the shear stress–slip displacement 
relation observed during the breakdown process, which 
is called the fault constitutive relation, as a fundamen-
tal equation governing the rupture process instated of 
the Griffith-type fracture criterion. Thus, in the 1990s, it 
became possible to numerically simulate the entire pro-
cess of earthquake generation by solving a coupled sys-
tem of the equation of motion and the fault constitutive 
relation under given initial and boundary conditions. In 
this section, we discuss the physical process of rupture 
growth governed by the slip-weakening fault constitutive 
law and elucidate the true meaning of the energy balance 
Eq. (2) or (65).

3.3.1  Griffith‑type fracture criterion
Early in the twentieth century, Griffith (1921) considered 
the stability of a traction-free crack existing in the elastic 
body subjected to an external surface traction and pro-
posed an energetics-based global fracture criterion as fol-
lows. If the energy release rate Gs (the decrease in total 
potential energy of the elastic body per unit crack exten-
sion) exceeds the fracture surface energy γeff (the energy 
spent for newly creating unit crack area), the unstable 
rupture of crack begins. In the case of earthquake fault-
ing, we need not consider the work done by the exter-
nal surface traction, and so we can read the decrease in 

Fig. 7 A schematic diagram showing the rupture-velocity dependence 
of the fault slip D , slip velocity Ḋ , and slip acceleration D̈ . The vertical 
axis t′ represents the time normalized by the rupture duration 
�T =

√
S/2π

/

vr ( S : the final fault area, vr : the average rupture velocity)
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total potential energy as the decrease in elastic strain 
energy. In the 1950s, on the basis of the analysis of stress 
and strain fields near crack tips, Irwin (1957) related the 
energy release rate Gs to the stress intensity factor Ks (the 
factor indicating the intensity of stress singularity at crack 
tips) as Gs = cK 2

s  with c = (3κ + 4µ)
/

4µ(3κ + µ) for 
Mode I and II cracks and c = 1

/

2µ for Mode III crack. 
Incidentally, this general relationship between Gs and Ks 
can be obtained by substituting the asymptotic expres-
sions of displacement and stress fields around a crack tip 
into the formula evaluating potential energy changes due 
to hypothetical crack growth (Rice and Drucker1967).

From the 1960s to the 1970s, the Griffith’s fracture 
criterion for static cracks has been extended to the case 
of dynamically propagating cracks by considering the 
inflow rate of released elastic strain energy into the crack 
tip (e.g., Kostrov 1964, 1966, 1975; Freund 1972, 1979). 
For the energetics of a propagating Mode III (anti-plane 
shear) crack, first Kostrov (1966) and later Aki and Rich-
ards (1980) have obtained a complete solution. The deri-
vation of the energy balance equation shown below is 
given in Sect. 15.2 of Aki and Richards (1980). We con-
sider an anti-plane shear crack extending in the x-direc-
tion at an instantaneous rupture velocity vr . Figure  8 is 
a snapshot of stress and slip distributions along a crack 
surface ( x < c ) and its extension ( x > c ) at a moment 
t ( ≥ 0 ). In this case, the energy balance at the crack tip 
x = c(t) can be written as

with

(77)
1

2µ

√

1− vr
/

VS

1+ vr
/

VS
K 2
inst = γeff (vr < VS)

(78)

Kinst =
√

2

π

∫ c(t)

c(t)−VSt

�τ
(

x′, t − [c(t)− x′]/VS

)

√
c(t)− x′

dx′.

Here, the left-hand side of Eq. (77) represents the inflow 
rate of released elastic strain energy into the crack tip 
propagating at vr , and the right-hand side is the fracture 
surface energy at x = c(t) . As can be seen from Eq. (78), 
Kinst represents the cumulative effect of past stress drop 
�τ(x, t) on the present intensity of stress singularity at 
x = c(t) , which does not depend on the rupture velocity 
vr . When the crack extension is quasi-static ( vr = 0 ), the 
left-hand side of Eq. (77) corresponds to the static energy 
release rate Gs , because the energy distribution factor 
p(vr) =

√

(1− vr
/

VS)
/

(1+ vr
/

VS) becomes unity and 
the instantaneous stress intensity factor Kinst is identical 
to the static stress intensity factor Ks . As the rupture 
velocity vr increases from 0 to VS , the factor p(vr) 
decreases monotonically from 1 to 0 (Fig. 9). This means 
that only a part ( p ) of the supplied elastic strain energy 
( K 2

inst

/

2µ ) is spent for creating new crack area, and the 
remaining parts ( 1− p ) are spent for accelerating slip 
motion, which causes seismic waves as shown in 
Sect. 3.2.2. To satisfy the energy balance Eq. (77) for given 
Kinst and γeff , the factor p(vr) must take an appropriate 
value at each moment. In other words, the rupture veloc-
ity vr at each moment is determined so as to satisfy 
Eq. (77). Thus, we can say that the Griffith-type fracture 
criterion is a fundamental equation governing the whole 
rupture process; a good numerical example is given in 
Das and Aki (1977).

3.3.2  J‑integral and slip‑weakening fault constitutive law
In the classical crack theory, as shown in Fig. 8, the shear 
stress τ just outside a crack has a 1

/√
x − c(t)-type sin-

gularity, but the fault slip D is zero everywhere. On the 

Fig. 8 A snapshot of stress and slip distributions along a shear crack 
extending in the x-direction at a rupture velocity vr . The red and blue 
lines represent the stress and fault slip distributions at a moment t  , 
respectively

Fig. 9 Dependence of the energy distribution factor p 
on the instantaneous rupture velocity vr
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other hand, the fault slip just inside the crack takes a √
c(t)− x-type distribution, but the shear stress is zero 

everywhere. Then, regarding the fracture surface energy 
γeff as the work done for the crack tip passing the singular 
point, we obtain

This result is not irrational but physically meaningless. 
In reality, the leading edge of crack would not be a sin-
gular point but a finite process zone, where the shear 
stress (strength) decreases from a peak value τp to a resid-
ual value τr with the increase of fault slip D as shown in 
Fig. 10.

For simplicity, we consider a two-dimensional anti-
plane shear crack � with a finite process zone δc as shown 
in Fig.  11. Here, the area A surrounded by the external 
boundary ( Ŵex ) and the upper and lower crack surfaces 
( �+ and �− ) is elastic and subjected to some stress σij 
and strain εij . When the residual shear stress on � is zero 
( τr = 0 ), the total potential energy of the elastic body per 
unit thickness is given by

(79)
γeff = τx=c(t) × Dx=c(t) = ∞× 0 (indeterminate).

where UE = 1
2σijεij , Ti = σijnj , and ui and ni denote the i

-components of a displacement vector and a unit normal 
vector, respectively. Using a path independent integral 
J (Ŵ) defined by Rice (1968),

we can evaluate the decrease of the total potential energy 
P by quasi-static unit crack extension as

Note that the external boundary Ŵex is one of the coun-
terclockwise integration paths Ŵ surrounding the pro-
cess zone δc , which start from a point on the lower crack 
surface �− and end at the same point on the upper crack 
surface �+ . From Eq.  (82), we can see that J (Ŵex) gives 
the energy release rate Gs by definition. By way of trial, 
we take a very thin rectangular integration path Ŵc sur-
rounding the process zone δc as shown Fig.  11. Then, 
from Eq. (81), we obtain

with τ = σyz and D = u+z − u−z  , because nx = 0 and 
ny = ∓1 on �± . Assuming the shear stress τ to be a sin-
gle-valued function of fault slip D , we can rewrite the 
above equation as

where Dc is the critical slip displacement for completing 
the process of slip weakening. From this equation, we can 
see that J (Ŵc) gives the fracture surface energy γeff . Since 
the J-integral is path independent, from Eqs.  (82) and 
(84), we obtain the following energy balance equation;

The above equation implies that if the relation τ = τ (D) 
is real, the Griffith-type fracture criterion Gs = γeff is 
automatically satisfied. In other words, we can use the 
shear stress–slip displacement relation τ = τ (D) as a fun-
damental equation governing the whole rupture process 
instated of the Griffith-type fracture criterion.

The residual shear stress τr on � is usually not zero. In 
such a case, as pointed out by Palmer and Rice (1973), 

(80)P =
∫

A
UEdS −

∫

Ŵex

TiuidŴ,

(81)

J (Ŵ) =
∫

Ŵ

[

(UE − σxz∂xuz)nx − (σyz∂xuz)ny
]

dŴ,

(82)− lim
δ�→0

δP

δ�
= J (Ŵex).

(83)J (Ŵc) = −
∫

�

τ(x)∂xD(x)dx

(84)J (Ŵc) =
∫ Dc

0
τ (D)dD,

(85)Gs ≡ J (Ŵex) = J (Ŵc) =
∫ Dc

0
τ (D)dD ≡ γeff.

Fig. 10 A snapshot of stress and slip distributions 
along a propagating shear crack with a finite process zone δc . In 
the process zone, the shear stress τ degrees from a peak value τp 
to a residual value τr with the increase of fault slip D

Fig. 11 A two-dimensional anti-plane shear crack � with a finite 
process zone δc embedded in an elastic body A . The closed curves 
with arrowheads, Ŵex , Ŵ and Ŵc , represent three different integration 
paths surrounding the process zone δc . The vectors T and u represent 
the traction and displacement at a point on the integration path Ŵ , 
respectively
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we need to consider the effects of frictional resistance 
to fault slip over � . In consequence, the energy balance 
Eq. (85) is modified as

with

Here, Dfinal ( > Dc ) denotes the final slip displacement 
on � . In the energy balance Eq.  (2) based on the classi-
cal crack theory, Kostrov (1974) and also Rivera and 
Kanamori (2005) used the divided expression on the 
right-hand side of Eq.  (86) to represent the work done 
for shear faulting. However, from a physical point of 
view, it would be natural to use the unified expression 
∫ Dfinal
0 τ (D)dD in the midsection, because the fracture 

surface energy γeff was introduced to handle the effects 
of artificial stress singularity at crack tips. Thus, incorpo-
rating the fracture surface energy term γeffS into the last 
term of frictionally dissipated energy, we can reduce Eqs. 
(2) to (65), which was derived from the general expres-
sion of mechanical energy balance in earthquake faulting.

Nowadays, most numerical simulations of earthquake 
generation are done by solving a coupled system of the 
equation of motion and the fault constitutive law under 
given initial and boundary conditions. In the 1980s, on 
the basis of rock experiments, two different-types of 
fault constitutive law have been proposed; one is the 
rate- and state-dependent law (e.g., Dieterich 1979; 

(86)

Gs +
∫ Dfinal

0
τrdD =

∫ Dfinal

0
τ (D)dD = γeff +

∫ Dfinal

0
τrdD

(87)γeff =
∫ Dc

0
[τ (D)− τr]dD.

Ruina 1983) and another is the slip-dependent law (e.g., 
Ohnaka et  al. 1987). From the viewpoint of energetics, 
as discussed above, the slip dependence is more essen-
tial in earthquake rupture than the rate (slip velocity) 
dependence.

Through the stick–slip experiments of rock samples, 
Ohnaka et al. (1987) and Ohnaka and Kuwahara (1990) 
revealed the existence of a breakdown zone just behind 
the propagating rupture front, where the creation of 
new fracture surfaces is proceeding. In Fig. 12, we show 
a typical example of the constitutive relations between 
shear stress and fault slip observed in the breakdown 
process; that is, with the progress of fault slip D , the 
shear stress τ first increases rapidly up to a peak value 
τp , and then decreases gradually to a constant level τr . 
Matsu’ura et al. (1992) developed a physical model that 
rationally interprets the general features of the con-
stitutive relations observed in stick–slip experiments 
by considering the abrasion of contacting irregular 
rock surfaces with the progress of fault slip. We show 
the constitutive relation curves computed from such 
a physical model in Fig.  13, where �c = 2π

/

k1 repre-
sents the upper limit of a wavelength range with same 
fractal dimension of irregular rock surfaces. From this 
figure, we can see that the critical slip displacement Dc 
scales linearly with the upper wavelength limit �c of 
fractal rock surfaces (Power et  al. 1988), which gives a 
rationale of the scale dependence of the fracture surface 
energy γeff ≃ 1

2 (τp − τr)Dc suggested by Shibazaki and 
Matsu’ura (1998) and Ohnaka and Shen (1999). Thus, in 
the 1990s, the slip-weakening fault constitutive law was 
introduced as a fundamental equation governing the 
entire process of earthquake rupture (Matsu’ura et  al. 
1992; Shibazaki and Matsu’ura 1992).

Fig. 12 The constitutive relation between shear stress and slip 
displacement observed in a stick–slip experiment of rock sample 
(cited from Ohnaka et al. 1987). The symbols τi , τp , and τr indicate 
the initial, peak, and residual stress, respectively, and Dc represents 
the critical slip displacement

Fig. 13 The constitutive relation curves computed from a physical 
model considering the abrasion of contacting irregular rock surfaces 
with the progress of fault slip (cited from Matsu’ura et al. 1992). 
Here, �c = 2π

/

k1 represents the upper limit of a wavelength range 
with same fractal dimension of irregular rock surfaces
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3.3.3  Effects of rupture velocity on energy balance
The dynamic rupture, suddenly started after a quasi-
static nucleation process, is at first gradually and after-
ward rapidly accelerated to a terminal velocity. This is a 
common feature of spontaneous rupture propagation, 
indicating the excess of the inflow rate of shear strain 
energy over the fracture surface energy. The dynamic 
rupture accelerated to a terminal velocity is eventually 
arrested by the existence of barriers with large fracture 
surface energy (e.g., Aki 1979) in most cases or the short-
age of energy supply from the surrounding region (e.g., 
Day 1982) in some cases. To understand the energy flow 
and transformation during such a sequential rupture pro-
cess, the energy balance Eq.  (57) would not be helpful, 
because it has been spatially integrated.

The slip motion with strength (stress) decrease in the 
breakdown zone generates dynamic disturbances in its 
surrounding region, which are soon separated into spe-
cific phases called the near-, intermediate-, and far-field 
terms. As mentioned in Sect.  3.2.2, the far-field term 
radiates from the source as traveling waves, while the 
near- and intermediate-field terms result in permanent 
deformation, which causes the change in elastic strain 
energy density there through the interaction with back-
ground stress. Figure 14 is a schematic diagram showing 
the spatial density distributions of traveling seismic wave 
energy (green) and released elastic strain energy (blue) at 
a certain moment t after the termination of concentric 

expansion of a circular fault � . The traveling seismic 
wave energy goes away from the central part at the P- 
or S-wave velocity. The release of elastic strain energy 
density occurs as a result of the interaction between the 
stress changes caused by fault slip and a background 
stress field. As mentioned in Sect. 3.3.1, the released elas-
tic strain energy is partly spent for creating new fracture 
surfaces and partly spent for accelerating slip motion fol-
lowing the energy distribution factor p(vr) . The accelera-
tion of fault slip generates further dynamic disturbances, 
and so the above-mentioned cyclic process, accompanied 
with the radiation of seismic wave energy, continues as 
long as the dynamic rupture propagates. After the arrest 
of dynamic rupture, the disturbances except traveling 
seismic waves eventually die down. Therefore, in the case 
of dynamic rupture, not only the radiated seismic energy 
ER but also the work done for shear faulting W  must 
depend on the time history of rupture growth with fault-
slip acceleration and deceleration.

As mentioned in Sect. 3.3.2, we can naturally incorpo-
rate the fracture surface energy term γeffS into the inte-
gral term of frictionally dissipated energy, and so Eq. (2) 
is reduced to Eq. (65). Then, exchanging the order of inte-
gration of the last term in Eq. (65), we obtain the energy 
balance equation in a stationary state ( t ≥ ts ), realized 
after all the dynamic disturbances except traveling seis-
mic waves died down, as

with

Here, the subscript “final” means the final stationary state 
but not the state at the time of dynamic rupture termina-
tion. Even after the arrest of dynamic rupture, the shear 
strain energy released in the past at a distant place will 
continue to flow into the source region for a short while. 
As a result, the stress inside the rupture area decreases 
gradually from a residual level τr (specified by the fault 
constitutive law) to a stationary level τfinal (determined 
from the equation of equilibrium) and the fault slip over-
shoots. Including such a transient adjustment process, 
which has been confirmed by Madariaga (1976) through 
a numerical simulation of a concentrically expanding 
circular shear crack, we represent the shear stress–fault 
slip relation by τ = τdy(D) . The rupture growth path 
in the dynamic case is schematically shown in Fig.  15 
by the thick grey curve, which is characterized by three 

(88)
ER = 1

2

∫

�

[τinitial(η)+ τfinal(η)]Dfinal(η)dS

−
∫

�

dS

∫

Dfinal(η)

0

τ (D|η )dD

(89)ER ≡ K (ts) = 1
2ρ

∫

V (ts)
u̇i(x, ts)u̇i(x, ts)dV .

Fig. 14 A schematic diagram showing the spatial density distributions 
of traveling seismic wave energy (green) and released elastic strain 
energy (blue) at a certain moment t  after the termination of concentric 
expansion of a circular fault � . In this diagram, the azimuthal variation 
of energy density is ignored
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phases: the initial slip-weakening phase, the intermediate 
high-speed rupture propagation phase, and the final slip 
deceleration and transient adjustment phase. The energy 
balance equation corresponding to such a rupture growth 
path can be written as

The above equation states that the dissipated energy by 
frictional faulting ( W ) = the released elastic strain energy 
( −�UE)—the radiated seismic energy ( ER).

As a reference, we consider the case of quasi-static 
rupture growth, where both the rupture velocity vr and 
the slip velocity Ḋ are very slow in comparison with 
elastic wave velocities. In this case, as can be seen from 
Eq. (70), the disturbances generated by fault slip contain 
no far-field term (no traveling wave), and so the work 
done for shear faulting W  balances with the released 
shear strain energy �UE at any time. The shear stress–
fault slip relation τ = τqs(D) in the quasi-static case is 
characterized by the initial slip-weakening phase and 
the subsequent steady rupture growing phase, as shown 
by the thick white curve in Fig. 15. The energy balance 
equation corresponding to such a rupture growth path 
can be written as.

(90)

∫

�

dS

∫

Dfinal(η)

0
τdy(D|η )dD

=
∫

�

1
2 [τinitial(η)+ τfinal(η)]Dfinal(η)dS − ER.

(91)

∫

�

dS

∫

Dfinal(η)

0
τqs(D|η )dD

=

∫

�

1
2 [τinitial(η)+ τfinal(η)]Dfinal(η)dS.

The total release of elastic strain energy ( −�UE ) does 
not depend on the time history of rupture growth. Then, 
from comparison of these two cases, we can finally evalu-
ate the total seismic energy escaping from the mechani-
cal system concerned as

Here, the integral on the right-hand side corresponds to 
the area enclosed by the thick grey and white curves in 
Fig. 15.

From Fig. 15, we can see that the rupture growth path 
in the dynamic case is clearly different from that in the 
quasi-static case. Now, to focus on the rupture growth 
path in the dynamic case, we delete the slip-weakening 
curve (black) and the quasi-static rupture growth path 
(white) from the τ − D diagram in Fig.  15. Then, we 
obtain the τ − D diagram as shown in Fig. 16, which cor-
responds to the τ − D diagram in Fig. 5. In this diagram, 
the trapezoidal area under the thick broken line repre-
sents the total release of elastic strain energy by shear 
faulting likewise the diagram in Fig. 5. So, the difference 
between the areas marked with + and—gives the radi-
ated seismic energy ER , which is equivalent to the area 
enclosed by the thick gray and white curves in Fig.  15. 
However, their physical meanings are different, because 
the thick broken line is only an auxiliary line but not the 
quasi-static rupture growth path.

4  Conclusions
We reconsidered the energetics of earthquake faulting 
from the current perspective and obtained the following 
conclusions. The origin of crustal deviatoric stress is not 
the earth’s self-gravitation but the mechanical interaction 
between adjacent plates, and so the effect of self-gravita-
tion is negligible in the energetics of shear faulting. Then, 

(92)−ER
/

S =
∫ Dfinal

0
[τdy(D)− τqs(D)]dD.

Fig. 15 A schematic diagram showing the difference in rupture 
growth path between the dynamic and quasi-static cases. The 
thick gray curve τ = τdy(D) and white curve τ = τqs(D) represent 
the dynamic and quasi-static rupture growth paths, respectively. 
For reference, the slip-weakening curve τ = τfr(D) is also plotted 
in black. The symbols τi , τp , τr , and τf indicate the initial, peak, residual, 
and final values of the shear stress τ , respectively. The area enclosed 
by the thick gray and white curves gives the total seismic energy 
escaping from the mechanical system concerned

Fig. 16 A shear stress–fault slip diagram showing the dynamic rupture 
growth path. The symbols τi , τp , τr , and τf indicate the initial, peak, 
residual, and final values of the shear stress τ , respectively. The difference 
between the areas marked with + and − gives the radiated seismic 
energy ER
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in quasi-static problems, the decrease of elastic poten-
tial energy (elastic strain energy) balances with the work 
done for shear faulting.

The mechanical energy balance of a non-gravitating 
earth model in dynamic shear faulting can be generally 
written as K  (kinetic energy) = – �UE (change in elastic 
potential energy)—W  (work done for shear faulting). The 
indirect evaluation of radiated seismic energy ER has 
been often done by using a simplified energy balance 
equation, written in the average shear stress component τ 
parallel to the direction of slip D on a fault with area S as 
ER

/

S = 1
2 (τinitial + τfinal)Dfinal −

∫ Dfinal
0 τ (D)dD . How-

ever, this simplified equation appears to be misleading 
because the direct evaluation of ER based on elastic dislo-
cation theory shows its dependence on rupture growth 
rate.

The growth of shear rupture is controlled by the inflow 
rate of released shear strain energy into the rupture front. 
In the case of quasi-static rupture growth, the work 
done for shear faulting W  must always balance with the 
released potential energy −�UE because of no seismic 
wave radiation. Therefore, writing the τ−D relation in the 
quasi-static case as τ = τqs(D) , we obtain the energy bal-
ance equation 1

2 (τinitial + τfinal)Dfinal =
∫ Dfinal
0 τqs(D)dD . 

In normal earthquakes, the dynamic rupture is gradu-
ally accelerated to a terminal velocity, indicating the 
excess of the inflow rate of shear strain energy over the 
fracture surface energy, and then eventually arrested 
by the existence of barriers with large fracture sur-
face energy. Even after the arrest of dynamic rupture 
propagation, the potential energy released in the past 
at a distant place will continue to flow into the source 
region for a short while. As a result, the stress level 
inside the rupture area decreases gradually and the 
fault slip overshoots. Including this adjustment pro-
cess, we write the τ−D relation in the dynamic case as 
τ = τdy(D) . Then, we obtain the energy balance equa-
tion 1

2 (τinitial + τfinal)Dfinal =
∫ Dfinal
0 τdy(D)dD − ER

/

S . 
Since the total release of elastic potential energy does not 
depend on the time history of rupture growth, from com-
parison of these two cases, we can finally evaluate the 
total seismic energy escaping from the mechanical sys-
tem as −ER

/

S =
∫ Dfinal
0 [τdy(D)− τqs(D)]dD.
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